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ABSTRACT

It has been an open research challenge for developing an end-to-end multi-domain
task-oriented dialogue system, in which a human can converse with the dialogue
agent to complete tasks in more than one domain. First, tracking belief states of
multi-domain dialogues is difficult as the dialogue agent must obtain the complete
belief states from all relevant domains, each of which can have shared slots common
among domains as well as unique slots specifically for the domain only. Second, the
dialogue agent must also process various types of information, including contextual
information from dialogue context, decoded dialogue states of current dialogue turn,
and queried results from a knowledge base, to semantically shape context-aware
and task-specific responses to human. To address these challenges, we propose
an end-to-end neural architecture for task-oriented dialogues in multiple domains.
We propose a novel Multi-level Neural Belief Tracker which tracks the dialogue
belief states by learning signals at both slot and domain level independently. The
representations are combined in a Late Fusion approach to form joint feature vectors
of (domain, slot) pairs. Following recent work in end-to-end dialogue systems, we
incorporate the belief tracker with generation components to address end-to-end
dialogue tasks. We achieve state-of-the-art performance on the MultiWOZ2.1
benchmark with 50.91% joint goal accuracy and competitive measures in task-
completion and response generation.

1 INTRODUCTION

In a task-oriented dialogue system, the Dialogue State Tracking (DST) module is responsible for
updating dialogue states (essentially, what the user wants) at each dialogue turn. The DST supports
the dialogue agent to steer the conversation towards task completion. As defined by Henderson et al.
(2014a), a dialogue belief state consists of inform slots - information to query a given knowledge
base or database (DB), and request slots - information to be returned to the users. Task-oriented
dialogues can be categorized as either single-domain or multi-domain dialogues. In single-domain
dialogues, humans converse with the dialogue agent to complete tasks of one domain. In contrast, in
multi-domain dialogues, the tasks of interest can come from different domains. A dialogue state in a
multi-domain dialogue should include all inform and request slots of corresponding domains up to
the current turn. Examples of a single-domain dialogue and a multi-domain dialogue with annotated
states after each turn can be seen in Figure 1.

Despite there being several efforts in developing task-oriented dialogue systems in a single domain
(Wen et al., 2016a; 2017; Li et al., 2017; Lei et al., 2018), there have been limited contributions for
multi-domain task-oriented dialogues. Developing end-to-end systems for multi-domain dialogues
faces several challenges: (1) Belief states in multi-domain dialogues are usually larger and more
complex than in single-domain, because of the diverse information from multiple domains. Each
domain can have shared slots that are common among domains or unique slots that are not shared
with any. (2) In an end-to-end system, the dialogue agent must incorporate information from source
sequences, e.g. dialogue context and human utterances, as well as tracked belief states and extracted
information from knowledge base, to semantically shape a relevant response with accurate information
for task completion.
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U1: i am looking for a hotel that include free parking and has a 1 star 
rating .
BS1: {'parking': 'yes', 'stars': '1', type: ‘hotel’}
S1: there are no hotels that meet that criteria . would you like me to 
expand the search a bit ?
U2: yes can you find guesthouses meeting that criteria ?
BS2: {'parking': 'yes', 'stars': '1', ‘type’: ‘guesthouse’}
S2: i am sorry , there are no guesthouses matching that criteria .
U3: could you please try guesthouse , with free parking and a 4 star?
BS3: {'parking': 'yes', 'stars': '4', 'type': 'guesthouse'}
S3: i have 16 entries matching that criteria . what part of town and price 
range would you prefer ?...

U1: i would like a place to eat in the expensive price range .
BS1: {restaurant: {pricerange: expensive}}
S1: sure , what type of food are you interested in ?
U2: could you make a suggestion ? one in the centre ?
BS2: {restaurant: {pricerange: expensive, area: centre}}
S2: fitzbillies restaurant is an expensive british restaurant in the centre . 
can i book that for you ?   ...
U5: also , i need the number for kings hedges learner pool .
BS5: {restaurant: {pricerange: expensive, name: fitzbillies restaurant, 
area: centre, request: [address, postcode, food] }, attraction: {name: 
kings hedges learner pool, request: [phone]}}
S5: the phone number for the pool is 01223353248 . is there something 
else i can do for you ?   ...

Figure 1: Examples of single-domain (Left) and multi-domain dialogues (Right). U : user utterance, BS:
dialogue belief state, S: system response. The subscript indicates dialogue step. Best viewed in color.

Directly applying methods for single-domain dialogues to multi-domain dialogues is not straight-
forward because the belief states extend across multiple domains. A possible solution is to process
a multi-domain dialogue for ND times for ND domains, each time obtaining a belief state of one
domain. However, this approach does not allow learning co-references in dialogues whereby users
can switch from one domain to another turn by turn. We propose an end-to-end dialogue system
approach which explicitly track the dialogue states in multiple domains altogether. Specifically, (1)
we propose Multi-level Neural Belief Tracker to process contextual information for both slot-level and
domain-level signals independently. The two levels are subsequently combined to learn multi-domain
dialogue states. Our dialogue state tracker enables shared learning of slots common among domains
as well as learning of unique slots in each domain. (2) we utilize multi-head attention layers (Vaswani
et al., 2017) to comprehensively process various types of information: dialogue context, user utter-
ances, belief states of both inform and request slots, and DB query results. The multi-head structure
allows the model to independently attend to the features over multiple representation sub-spaces; and
(3) we combine all components to create a dialogue system from state tracking to response generation.
The system can be jointly learned in an end-to-end manner. Our end-to-end dialogue system utilizes
supervision signals of dialogue states and output responses without using system action annotation.

To comprehensively validate our method, we compare our models with baselines in end-to-end,
DST, and context-to-text generation settings. We achieve the state-of-the-art performance in DST,
task-completion, and response generation in the MultiWOZ2.1 corpus (Budzianowski et al., 2018;
Eric et al., 2019) as compared to other baselines in similar settings. In context-to-text generation
setting that allows supervision of dialogue acts, our models can achieve competitive measures of
Inform and BLEU metric.

2 RELATED WORK

Our work is related to 2 main bodies of research: DST and end-to-end dialogue systems.

2.1 DIALOGUE STATE TRACKING

Prior DST work focuses on single-domain dialogues using WOZ (Wen et al., 2017) and DSTC2
(Henderson et al., 2014a) corpus. (Mrkšić et al., 2015; Wen et al., 2016b; Rastogi et al., 2017) address
transfer learning in dialogues from one domain to another rather than multiple domains in a single
dialogue. Our work is more related to recent effort for multi-domain DST such as (Ramadan et al.,
2018; Lee et al., 2019; Wu et al., 2019a; Goel et al., 2019). These models can be categorized into two
main categories of DST: fixed-vocabulary and open-vocabulary approach. Fixed vocabulary models
(Zhong et al., 2018; Ramadan et al., 2018; Lee et al., 2019) assume known slot ontology with a fixed
candidate set for each slot. Open-vocabulary models (Lei et al., 2018; Wu et al., 2019a; Gao et al.,
2019) derive the candidate set based on the source sequence i.e. dialogue history, itself. Our approach
is more related to open-vocabulary approach as we aim to dynamically generate dialogue state based
on input dialogue history. Different from most prior work, our Multi-level Neural Belief Tracker
can learn domain-level and slot-level signals independently and both are combined in a Late Fusion
manner to obtain contextual representations of all (domain, slot) pairs.
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2.2 END-TO-END DIALOGUE SYSTEMS

Conventionally, an end-to-end dialogue system is composed of separate modules for Natural Language
Understanding (NLU) (Hashemi et al., 2016; Gupta et al., 2018), DST (Henderson et al., 2014b;
Zhong et al., 2018), Dialogue Policy (Peng et al., 2017; 2018), and Natural Language Generator
(NLG) (Wen et al., 2016a; Su et al., 2018). These components can be learned independently and
combined into a pipeline architecture for end-to-end system (Wen et al., 2017; Liu & Lane, 2017; Li
et al., 2017). Another line of research aims to develop a dialogue agent without modularizing these
components but incorporating them into a single network (Eric & Manning, 2017; Lei et al., 2018;
Madotto et al., 2018; Wu et al., 2019b). Our work is more related to the latter approach whereby
we incorporate conventional components into an integrate network architecture and jointly train all
parameters. However, following (Lei et al., 2018), we consider a separate module that combines
NLU and DST together. The module utilizes additional supervision for more fine-grained tracking
of user goals. This strategy is also suitable for large-scale knowledge base with large number of
entities. (Madotto et al., 2018; Wu et al., 2019b; Gangi Reddy et al., 2019) completely omit the DST
component by formulating entity attributes into memory form based on (Subject, Relation, Object)
tuples. These models achieve good performance in small-scale corpus such as In-Car Assistant (Eric
& Manning, 2017) and WOZ2.0 (Wen et al., 2017) but will become extremely hard to scale to large
knowledge base in multi-domain setting such as MultiWOZ corpus.

3 APPROACH

Given a dialogue with dialogue history of t − 1 turns, each including a pair of user utterance and
system response, (U1, S1), ..., (Ut−1, St−1), the user utterance at current dialogue turn Ut, and a
knowledge base in form of entity data tables, the goal of a task-oriented dialogue system is to generate
a response St that is not only appropriate to the dialogue context, but also task-related with the correct
entity results for the users. In the multi-domain dialogue setting, turns in the dialogue history and
the current user utterance could come from different domains. Therefore, the generated response in
this setting should also be domain-related with the correct domain-specific information for the users.
We propose a novel Multi-level Neural Belief Tracker to track belief states at both domain level and
slot level to address multi-domain dialogues. Following (Lei et al., 2018), we utilize the previous
belief states Bt−1 as an input to the model. This allows the model to rely on the dialogue states
detected from the previous dialogue step t− 1 to update the state of the current step t. In addition,
we adopt the attention-based principle of Transformer network (Vaswani et al., 2017) and propose an
end-to-end architecture for task-oriented dialogues. Our model allows comprehensive information
processing from different input sources, incorporating contextual features from dialogue context and
user utterance as well as learning signals from domain-level and slot-level dialogue states.

Our solution consists of 3 major components: (i) Encoders encode sequences of dialogue history,
current user utterances, target system responses, domain and slot names, and previous dialogue belief
states, into continuous representations. (ii) Multi-level Neural Belief Tracker includes 2 modules,
one for processing slot-level information and one for domain-level information. Each module
comprises attention layers to project domain or slot token representations and attend on relevant
features for state tracking. The outputs of the two modules are combined to create domain-slot joint
feature representations. Each feature representation is used as a context-aware vector to decode
the corresponding inform or request slots in each domain. (iii) Response Generator projects the
target system responses and incorporates contextual information from dialogue context as well as
intermediate variables from the state tracker and DB query results. Employing attention mechanisms
with feed-forward and residual connections allows our models to focus on relevant parts of the
inputs and pass on the relevant information to decode appropriate system responses. We combine all
the modules into an end-to-end architecture and jointly train all components. An overview of the
proposed approach can be seen in Figure 2.

3.1 ENCODERS

An encoder encodes a text sequence of tokens (x1, ..., xn) to a sequence of continuous representation
z = (z1, ..., zn) ∈ Rn×d. Each encoder includes a token-level trainable embedding layer and layer
normalization (Ba et al., 2016). Depending on the type of text sequences, we inject sequential
characteristics of the tokens (i.e. their positions in the sequence) using a sine and cosine positional
encoding functions (Vaswani et al., 2017). Element-wise summation is used to combine the token-

3



Under review as a conference paper at ICLR 2020

S: (<inf_type>, 
<inf_name>…

<req_address>,…)

Slot 
Token 

Encoder

Domain 
Token 

Encoder

Slot 
Self-Attn

Domain 
Self-Attn

Dialogue 
History 

Attn

Dialogue 
History 

Attn

Prev. 
State 
Attn

User Utt.
Attn

User Utt.
Attn

(U1, S1…,Ut-1, St-1)

Dialogue 
History 

Encoder

Ut:Thanks.  I am also 
looking for a restaurant 

in the east

User Utt. 
Encoder

D: (<res>, 
<hotel>, <taxi>…)

Bt-1: A&B hostel <inf_name> 
<req_price>...<hotel>cambrid
ge<inf_departure>...<train>... 

Belief 
State 

Encoder

⊗

Domain-
Slot 

Self-Attn

RNN RNN 

Linear

...

...

<sos>

0 or 1

east

east

<eos>

Self-Attn Multi-domain 
State Attn

DB 
Pointer

Attn

Dialogue 
History 

Attn

User Utt.
Attn

zhis zDzS

zhis

zut

t

zbs

zutt

(offset) St: There are 8 
restaurants in the 

<res_location>. You have 
any food preference?

Target 
Res. 

Encoder
ztgt

Linear

Generated 
Response

St

zhis zut

t

zS
out zD

out

Select * from 
restaurant where 
location=east ...

0 1 0 0 .. 1 0
zdb

zDS
out[0,:]

Bt

#entities

Slot-level Processing Domain-level Processing

Domain-Slot Joint 
State Tracking

Response Generator

x NS
dst

x ND
dst

zDS

x NDS
dst

zDS
out[i,:]

zDS
out

x Ngen

zgen
out

Multi-domain 
Belief State

Figure 2: Our architecture consists of 3 major components: (i) Encoders encode sequences of dialogue history,
previous user utterances, domain and slot tokens, and dialogue belief states of previous turn, into continuous
representations; (ii) Multi-level Neural Belief Tracker consists of 2 modules, one for learning slot-level signals
and one for domain-level signals; the outputs are combined to obtain domain-slot joint features, which are used
decode multi-domain belief states; and (iii) Response Generator incorporates information from dialogue context,
dialogue states, and knowledge base, to decode system responses. For simplicity, Feed Forward, Residual
Connection, and Layer Normalization layers are not presented. Best viewed in color.

level embedding with positional embedding, each has the same embedding dimension d. The current
user utterance Ut is tokenized, prepended and appended with 〈sos〉 and 〈eos〉 token respectively. In
the dialogue history, each human utterance and system response up to dialogue step t− 1 is processed
similarly. The tokenized past utterances and system responses are concatenated sequentially by the
dialogue step. For target system response St, during training, the sequence is offset by one position to
ensure that token prediction in generation step i is based on the previous positions only i.e. 1, ..., i−1.

Denoting namesloti and valuesloti as the slot name and slot value of slot i, we create se-
quences of dialogue belief state from previous turn by following the template: valuesloti
〈inf_namesloti〉...〈req_nameslotj 〉...〈domaind〉... A 〈req_nameslotj 〉 is only included in the
sequence if slotj is predicted as in the previous turn. As a slot such as area can be both request or
inform type, the 2 slot types are differentiated by the prefixes inf and req. Our belief sequences
can be used to encode past dialogue states of multiple domains, each separated by the 〈domaind〉
token. To learn slot-level and domain-level signals for state tracking, we construct set of slot and
domain tokens as input to the state tracker. Each input set is created by concatenating slot names
or domains: S = (...〈inf_namesloti〉, ..., 〈req_nameslotj 〉...), ‖S‖ = N inf

S + Nreq
S = NS , and

D = (〈domain1〉, ..., 〈domainND
〉) respectively. Both sequences are kept fixed in all dialogue sam-

ples to factor in all possible domains and slots for multi-domain state tracking. Positional encoding
is used in all sequences except for input sets of slot and domain tokens as these sets do not contain
sequential characteristic. Embedding weights are shared among all the encoders of source sequences.
Embedding weights of the target system responses are not shared to allow the models to learn the
semantics of input and output sequences differently.

3.2 MULTI-LEVEL NEURAL BELIEF TRACKER

The DST module processes slot-level and domain-level information independently, and integrates the
two for multi-domain state tracking. We adopt a Late Fusion approach to combine domain and slot
representations in deeper network layers.

Slot-level Processing. Given the encoded features from the source sequences, including dialogue
history zhis, previous belief state zbs, and the current user utterance zutt, the slot-level signals are
learned by projecting the encoded slot token sequence zS through NS

dst identical layers. Each layer
contains 4 attention blocks, each of which employ the multi-head attention mechanism (Vaswani
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et al., 2017) to attend on the inputs at different representation sub-spaces. Each attention block
is coupled with a position-wise feed-forward layer, including 2 linear transformations with ReLU
activation in between. Residual connection (He et al., 2016) and layer normalization (Ba et al., 2016)
are employed in each attention block. Specifically, given the current feature vector zoutS as output
from previous attention block (or zS itself in the first attention block of the first processing layer) and
the encoded features zseq of a source sequence, the multi-head attention is defined as:

m = Concat(h1, ..., hNh
)WO (1)

hi = Attn(zoutS WQ
i , zseqW

K
i , zseqW

V
i ) where Attn(q, k, v) = softmax

( qkT√
da

)
v (2)

where WQ
i WK

i ,WV
i ∈ Rd×da ,WO ∈ RNhda×d, and seq = {S, his, bs, utt} (for simplicity, the

subscripts of S and seq are omitted in each W ). The first attention block is a self-attention, i.e.
seq = S, which enables learning the relation between slots independently from domains. Subsequent
attention layers on dialogue context, previous belief state, and user utterance of current turn, inject
each slot token representation with dialogue contextual information up to current user utterance in
turn t. Through residual connection, the contextual information are passed forward in each zoutS .
Using different attention blocks allows flexible processing of information from various input sources.

Domain-level Processing. The input to the domain-level processing module includes the encoded
domain token sequence zD, the encoded dialogue history up to turn t− 1 zhis, and the encoded user
utterance of current turn zutt. The domain features are passed through ND

dst identical layers, each of
which include 3 multi-head attention blocks to obtain important contextual information from dialogue
context and user utterance. Similarly to slot-level processing, a self-attention block is leveraged to
allow reasoning among domains independently from slots. Attending on dialogue history and current
user utterance separately enables learning domain signals from the contextual information of past
dialogue turns and current turns differently. Therefore, the models can potentially detect changes of
dialogue domains from past turns to the current turn. Especially in multi-domain dialogues, users can
switch from one domain to another and the generated responses should address the latest domain.

Domain-Slot Joint State Tracking. The output slot token representations zoutS ∈ RNS×d and
domain token representations zoutD ∈ RND×d are combined by expanding the representations to
identical dimensions and using element-wise multiplication, resulting in domain-slot joint features
zDS ∈ RNSND×d. The joint features are passed through NDS

dst identical self-attention layers to allow
learning over all applicable ND ×NS combinations of domains and slots. In each attention block,
we mask the joint features at positions of inapplicable domain-specific slots. For example, there is no
inform_departure slot in the hotel domain and its position is masked in each zoutDS . The output vectors
at the last layer are used as context-aware and domain-specific representations to decode dialogue
states. Each feature vector zoutDS [i, :] ∈ Rd is used to decode the corresponding domain-specific slot i.
The vector is used as initial hidden state for an RNN decoder to decode an inform slot token by token
or passed through a linear transformation layer for binary classification for a request slot.

3.3 RESPONSE GENERATOR

The decoded dialogue states are used to query the DBs of all domains and obtain the number of the
result entities in each domain. We then create a fixed-dimensional one-hot pointer vector for each
domain d: zddb ∈ {0, 1}6 and

∑6
i z

d
db,i = 1. Each position of the pointer vector indicates the number

of result entities. The pointer vectors of all domains are concatenated to create a multi-domain
pointer vector zdb ∈ R6ND . We embed the pointer vector with the learned embedding and positional
embedding as similarly described in Section 3.1, resulting in zdb ∈ R6ND×d. The DB pointer vector
zdb, context-aware domain-slot joint features zoutDS , encoded dialogue history zhis, and user utterance
of current turn zutt, are used as inputs to incorporate relevant signals to decode system responses.
The generator includes Ngen identical layers, each includes 5 multi-head attention blocks, including a
self-attention block at the beginning. Adopting attention with residual connection in each block allows
the models to comprehensively obtain contextual cues, either through text sequences or domain-slot
joint features, and knowledge base signals from DB pointer vectors. The final output zoutgen is passed
to a linear transformation with softmax activation to decode system responses.
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3.4 END-TO-END TRAINING

The objective function is a combination of belief state objectives, including the log-likelihood of
all inform slot sequences Sinf , and the binary cross entropy of request slots Sreq, and the system
response objective, including the log-likelihood of the target response sequence T , as follows:

L = L(T ) + L(Bt) = L(T ) + L(Binf
t ) + L(Breq

t ) =
∑
m

logP (ym|ym−1, ..., y1, C, U,Bt, Q)+∑
i

∑
n

logP (sin|sin−1, ..., s
i
1, C, U,Bt−1) +

∑
r

logP (sr|C,U,Bt−1) (3)

where i = [1, N inf
S ] and r = [1, Nreq

S ]. The above objectives are conditioned on the input features,
including dialogue context C, current user utterance U , previous and current belief state Bt−1 and
Bt, and DB queries Q.

4 EXPERIMENTS

4.1 DATA

We used the MultiWOZ 2.1 dataset (Budzianowski et al., 2018; Eric et al., 2019) which consists
of both single-domain and multi-domain dialogues. Compared to version 2.0, MultiWOZ 2.1 is
improved with some correction of DST labels, including about 40% changes across training samples.
We pre-processed the dialogues by tokenizing, lower-casing, and delexicalizing all system responses.
From the belief state annotation of the training data, we identified all possible domains and slots.
We identified ND = 7 domains and NS = 35 unique inform slots in total. We followed the pre-
processing scripts as provided by (Budzianowski et al., 2018; Wu et al., 2019b). The result corpus
includes 8,438 dialogues in the training with an average of 1.8 domains per dialogue. Each dialogue
has more than 13 turns. There are 1,000 in each validation and test set, each including an average of
1.9 domains per dialogue. Other details of data pre-processing procedures, domains, slots, and entity
DBs, are included in Appendix A.1.

4.2 TRAINING SETUP

The model parameters are: d = 256, da = 32, Nh = 8, NS
dst = ND

dst = 4, NDS
dst = 1, Ngen = 4. We

employed dropout (Srivastava et al., 2014) of 0.3 at all network layers except the linear layers in the
generative components. Label smoothing (Szegedy et al., 2016) for target system responses is applied
during training. During training, we utilize teacher-forcing learning strategy by simply using the
ground-truth inputs of dialogue state from previous turn and the gold DB pointer. During inference,
in each dialogue, we decode system responses sequentially turn by turn, using the previously decoded
belief state as input in the current turn, and at each turn, using the decoded belief state to query DBs
for pointer vectors. We train all networks in an end-to-end manner with Adam optimizer (Kingma
& Ba, 2015) and the learning rate schedule similarly adopted by Vaswani et al. (2017). We used
batch size 32 and tuned the warmup_steps from 9K to 15K training steps. All models are trained
up to 30 epochs and best models are selected based on validation loss. We used a greedy approach
to decode all slots and beam search with beam size 5 and a length penalty 1.0 to decode responses.
The maximum length is set to 10 tokens for each slot and 20 for system responses. Our models are
implemented using PyTorch (Paszke et al., 2017).

4.3 RESULTS

To evaluate the models, we use the following metrics: (1) DST metrics: Joint Accuracy and Slot
Accuracy (Henderson et al., 2014b). Joint Accuracy compares the predicted dialogue states to the
ground truth in each dialogue turn. All slot values must match the ground truth labels to be counted
as a correct prediction. Slot Accuracy considers individual slot-level accuracy across the topology.
(2) Task-completion metrics: Inform and Success (Wen et al., 2017). Inform refers to system ability
to provide an appropriate entity while Success is the system ability to answer all requested attributes.
(3) Generation metrics: BLEU score (Papineni et al., 2002). We ran all experiments 3 times and
reported the average results. We report results in 2 different settings: end-to-end dialogues and DST.
In end-to-end setting, we train a dialogue agent that is responsible for both DST and text generation
without assuming access to ground-truth labels.
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End-to-End. In this setting, we compare our model performance on the joint task of DST and
context-to-text generation. For fair comparision, we select TSCP (Lei et al., 2018) as the baseline
as TSCP does not use additional supervision signals of system action as input. This is the current
state-of-the-art for end-to-end dialogue task in the single-domain WOZ (Wen et al., 2017). TSCP
applies pointer network to develop a two-stage decoding process to decode belief states, in a form of
text sequence, and subsequently decode system responses. We adapt the method to the multi-domain
dialogue setting. We experiment with 2 cases of TSCP in which the maximum length of the output
state sequence Lbspan is set to 8 and 20 tokens. As can be seen in Table 1, our model outperforms
in all metrics, except for the Slot Acc metric in one case. Overall, our model performs well in both
multi-domain and single-domain dialogues, especially with higher performance gain in multi-domain
dialogues. The performance gain in multi-domain dialogues can be explained by the separate network
structure between domain and slot processing modules in our models. This allows our models to
learn domain-dependent and slot-dependent signals separately before the two are fused into a joint
feature vectors for downstream process. For TSCP, increasing the Lbspan from 8 to 20 tokens helps
to improve the performance, but also increases the training time to convergence significantly. In our
approach, all inform and request slots are decoded independently and the training time is less affected
by the size of the target dialogue states, especially in cases of extensive belief states (e.g. 4 or 5
domains in a dialogue). Additional results by individual domains are described in Appendix A.3.

Table 1: Evaluated on MultiWOZ2.1, the proposed approach achieves better performance than TSCP (Lei et al.,
2018), especially with higher performance gain in multi-domain dialogues. The best result in each metric is
highlighted in bold.

Model Joint Acc Slot Acc Inform Success BLEU
All Dialogues
TSCP (L=8) 31.64% 95.53% 45.31% 38.12% 11.63
TSCP (L=20) 37.53% 96.23% 66.41% 45.32% 15.54
Ours 50.91% 97.34% 72.45% 52.14% 19.80
Multi-domain Dialogues (771 dialogues)
TSCP (L=8) 33.63% 93.24% 48.23% 28.42% 10.32
TSCP (L=20) 43.23% 95.32% 57.23% 43.25% 15.62
Ours 49.53% 97.20% 66.28% 48.19% 19.95
Single-domain Dialogues (229 dialogues)
TSCP (L=8) 53.52% 98.04% 75.23% 46.23% 12.42
TSCP (L=20) 55.23% 98.34% 87.23% 60.23% 15.02
Ours 58.98% 98.18% 93.36% 65.49% 18.86

DST. We isolate the DST components (i.e. training models only with L(Bt)) and report the DST
performance. We compare the performance with the baseline models on the MultiWOZ 2.1 in Table
2 (Refer to Appendix A.2 for more description of DST baselines). Our model outperforms existing
baselines and achieves the state-of-the-art performance in MultiWOZ2.1 corpus. By leveraging on
dialogue context signals through independent attention modules at domain level and slot level, our
DST can generate slot values more accurately. DST approaches that try to separate domain and slot
signals such as TRADE (Wu et al., 2019a) reveal competitive performance. However, our approach
has better performance as we enable deeper interaction of context-related signals in each domain and
slot representation. Compared to TRADE, our approach can be considered as Late Fusion approach
that combines representations in deeper network layers for better joint features of domains and slots.
We also noted that DST performance improves when our models are trained as an end-to-end system.
This can be explained as additional supervision from system responses not only contributes to learn a
good response generation network but also positively impact DST network. Additional DST results
of individual domains can be seen in Appendix A.3.

For completion, we also conduct experiment for context-to-text generation setting and compare with
baseline models in Appendix A.3.

Ablation. We experiment with different model variants in Table 3. First, we noted that removing self-
attention on the joint feature domain-slot vectors (NDS

dst = 0) reduces the joint accuracy performance.
This self-attention is important because it allows our models to learn signals across (domain, slot)
joint features rather than just at independently domain level and slot level. Second, ranging the
number of attention layers in domain-level processing and slot-level processing from 3 to 1 gradually
reduces the model performance. This shows the efficacy of our Late Fusion approach. Combining the
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Table 2: Joint Accuracy metric on MultiWOZ2.1. Except for TSCP, the baseline results are as reported by Eric
et al. (2019). Best results are highlighted in bold.

Model Joint Accuracy
HJST (Eric et al., 2019) 35.55%
DST Reader (Gao et al., 2019) 36.40%
TSCP (Lei et al., 2018) 37.12%
FJST (Eric et al., 2019) 38.00%
HyST (Goel et al., 2019) 38.10%
TRADE (Wu et al., 2019a) 45.60%
Ours 49.55%

features at deeper network layers results in better joint feature representation and hence, increases the
model performance. Lastly, we observed that our models can efficiently detect contextual signals
from the dialogue states of previous turn PrevBS as the performance of our models with or without
using the full dialogue history is very similar. This will benefit as the dialogue history evolves over
time and our models only need to process the latest dialogue turn in combination with the predicted
dialogue state in previous turn as an input.

Table 3: We experiment with several model variants by controlling following changes: whether to include
dialogue state in previous turn PrevBS as an input or not, length of dialogue history (in turns) as 1 (latest turn
only) or all possible dialogue turns, number of attention layers in slot-level module NS

dst, domain-level module
ND

dst, and joint domain-slot module NDS
dst . The best result in each metric is highlighted in bold.

PrevBS length(X_his) NS
dst ND

dst NDS
dst Joint Acc Slot Acc Inform Success BLEU

Y 1 4 4 1 50.91% 97.34% 72.45% 52.14% 19.80
Y 1 4 4 0 47.14% 96.92% 71.20% 50.40% 19.74
Y 1 3 3 1 46.60% 96.91% 70.42% 50.23% 19.10
Y 1 2 2 1 45.88% 96.76% 67.23% 50.23% 19.15
Y 1 1 1 1 43.41% 96.55% 64.22% 49.52% 18.42
Y All 4 4 1 50.21% 97.23% 71.42% 51.53% 19.85
N All 4 4 1 36.32% 92.53% 52.13% 35.53% 17.31
N 1 4 4 1 29.24% 90.04% 42.52% 25.32% 15.23

Qualitative Analysis. We examine an example dialogue in the test data and compare our predicted
outputs with the baseline TSCP (Lbspan = 20) (Lei et al., 2018) and the ground truth. From the table
in the left of Figure 3, we observe that both our predicted dialogue state and system response are
more correct than the baseline. Specifically, our dialogue state can detect the correct type slot in the
attraction domain. As our dialogue state is correctly predicted, the queried results from DB is also
more correct, resulting in better response with the right information (i.e. ‘no attraction available’).
From visualization of domain-level and slot-level attention on the user utterance, we notice important
tokens of the text sequences, i.e. ‘entertainment’ and ‘close to’, are attended with higher attention
scores. In addition, at domain-level attention, we find a potential additional signal from the token
‘restaurant’, which is also the domain from the previous dialogue turn. We also observe that attention
is more refined along the neural network layers. For example, in the domain-level processing,
compared to the 2nd layer, the 4th layer attention is more clustered around specific tokens of the user
utterance. The complete predicted output for this example dialogue and other qualitative analysis can
be seen in Appendix A.4.

5 CONCLUSION

In this work, we proposed an end-to-end dialogue system with a novel Multi-level Neural Belief
Tracker. Our DST module can track complex belief states of multiple domains and output more
accurate dialogue states. The DST is combined with attention-based generation module to generate
dialogue responses. Evaluated on the large-scale multi-domain dialogue benchmark MultiWOZ2.1,
our models achieve the state-of-the-art performance in DST and competitive measures in task-
completion and response generation.
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S4: all set . your reference number is k2bo09vq . 
U5: thanks . i am also looking for some entertainment close to 
the restaurant . any suggestions ? 

BS5: {restaurant: {area: center, name: dojo noodle bar, 
pricerange: cheap}, attraction: { area: center, type: 
entertainment}}
S5: i am sorry i do not have any attractions meeting the 
criteria you listed . is there another type of attraction or area 
you would like me to search ?

BS5
tscp: {restaurant: {area: center, pricerange: cheap}, 

attraction: { area: center}}
S5

tscp: there are many attractions in the restaurant_area . do 
you have a preference?

BS5
ours: {restaurant: {area: center, pricerange: cheap}, 

attraction: { area: center, type: entertainment}}
S5

ours: there are no attraction_type attractions in the 
restaurant_area of town . would you like to try another area ?

2nd Layer 4th Layer3rd Layer

Domain-level 
Processing

Slot-level
Processing

Figure 3: Example dialogue with the input system response St−1 and current user utterance Ut, and the output
belief state BSt and system response St. Compared with TSCP (Row 3), our dialogue state and response (Last
Row) are more correct and closer to the ground truth (Row 2). Visualization of attention to the user utterance
sequence at slot-level (lower right) and domain-level (upper right) is also included. More red denotes higher
attention score between domain or slot representation and token representation. Best viewed in color.
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A APPENDIX

A.1 DATA PRE-PROCESSING

First, we delexicalize each target system response sequence by replacing matched entity attribute
appeared in the sequence to the canonical tag 〈domain_attribute〉. For example, the original
target response ‘the train id is tr8259 departing from cambridge’ is delexicalized into ‘the train id
is train_id departing from train_departure’. We use the provided entity databases (DBs) to match
potential attributes in all target system responses. For dialogue history, we keep the original version
of all text, including system responses of previous turns, rather than the delexicalized form. We
split all sequences of dialogue history, user utterances of current turn, previous belief states, and
delexicalized target responses, into case-insensitive tokens. We share the embedding weights of
all source sequences. For source sequences, in total there are 5,491 unique tokens, including slot
and domain tokens as well as 〈eos〉, 〈sos〉, 〈pad〉, and 〈unk〉 tokens. For target sequences, there are
2,648 unique tokens in total, including all canonical tags as well as 〈eos〉, 〈sos〉, 〈pad〉, and 〈unk〉
tokens. As can be seen in Table 4, in source sequences, the overlapping rates of unique tokens to the
training embedding vocabulary are about 64% and 65% in validation and test set respectively. For
target sequences, the overlapping rates are about 83% and 82% in validation and test set respectively.

Table 4: Numbers of unique tokens in source and target sequences.

train val test
Source Sequences
#tokens 15,339 4,831 4,685
#tokens with freq>1 5,491 - -
#overlapping tokens with training vocabulary 5,491 3,131 3,047
Target Sequences
#tokens 4,842 1,924 1,875
#tokens with freq>1 2,648 - -
#overlapping tokens with training vocabulary 2,648 1,591 1,543

As we analyze the data, we summarize the number of dialogues in each domain in Table 5. For each
domain, a dialogue is selected as long as the whole dialogue (i.e. single-domain dialogue) or parts of
the dialogue (i.e. in multi-domain dialogue) is involved with the domain. For each domain, we also
build a set of possible inform and request slots using the belief state annotation in the training data.
The details of slots, entity attributes, and DB size, in each domain, can be seen in Table 6. The DBs
of 3 domains taxi, police, and hospital were not provided in the benchmark.

Table 5: Summary of MultiWOZ dataset (Budzianowski et al., 2018) by domain

Domain #dialogues

train val test
Restaurant 3,817 438 437
Hotel 3,387 416 394
Attraction 2,718 401 396
Train 3,117 484 495
Taxi 1,655 207 195
Police 245 0 0
Hospital 287 0 0

A.2 BASELINES

We describe a list of baseline models in DST setting and context-to-text generation setting.

A.2.1 DIALOGUE STATE TRACKING

FJST and HJST (Eric et al., 2019). FJST and HJST follow a fixed-vocabulary approach for state
tracking. Both models include encoder modules (either bidirectional LSTM or hierarchical LSTM) to
encode the dialogue history. The models pass the context hidden states to separate linear transforma-
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Table 6: Summary of slots and DB details by domain in the MultiWOZ dataset (Budzianowski et al., 2018)

Domain Slots #entities DB attributes
Restaurant inf_area, inf_food, inf_name, inf_pricerange,

inf_bookday, inf_bookpeople, inf_booktime,
req_address, req_area, req_food, req_phone,
req_postcode

110 id, address, area, food, introduction,
name, phone, postcode, pricerange, sig-
nature, type

Hotel inf_area, inf_internet, inf_name, inf_parking,
inf_pricerange, inf_stars, inf_type, inf_bookday,
inf_bookpeople, inf_bookstay, req_address,
req_area, req_internet, req_parking, req_phone,
req_postcode, req_stars, req_type

33 id, address, area, internet, parking, sin-
gle, double, family, name, phone, post-
code, pricerange’, takesbookings, stars,
type

Attraction inf_area, inf_name, inf_type, req_address,
req_area, req_phone, req_postcode, req_type

79 id, address, area, entrance, name, phone,
postcode, pricerange, openhours, type

Train inf_arriveBy, inform_day, inf_departure,
inf_destination, inf_leaveAt, inf_bookpeople,
req_duration, req_price

2,828 trainID, arriveBy, day, departure, desti-
nation, duration, leaveAt, price

Taxi inf_arriveBy, inf_departure, inf_destination,
inf_leaveAt, req_phone

- -

Police inf_department, req_address, req_phone,
req_postcode

- -

Hospital req_address, req_phone, req_postcode - -

tion to obtain final vectors to predict individual state slots separately. The output vector is used to
measure a score of a predefined candidate set for each slot.

TSCP (Lei et al., 2018). TSCP is an end-to-end dialogue system that can do both DST and NLG.
The model utilize pointer network to generate both dialogue states and responses. To compare with
TSCP in DST setting, we adapt the model to multi-domain dialogues and report the results only on
DST components. For DST experiment, we reported the performance when the maximum length of
dialogue state sequence in the state decoder L is set to 20 tokens.

DST Reader (Gao et al., 2019). This model considers the DST task as a reading comprehension
task. The model predicts each slot as a span over tokens within dialogue history. DST Reader
utilizes attention-based neural network with additional modules to predict slot type and slot carryover
probability.

HyST (Goel et al., 2019). This baseline combines the advantage of both fixed-vocabulary and
open-vocabulary approaches. In open-vocabulary, the set of candidates of each slot is constructed
based on all word n-grams in dialogue history. Both approaches are applied in all slots and depending
on their performance in validation set, the better approach is applied to predict individual slots.

TRADE (Wu et al., 2019a). This is the current state-of-the-art model on the MultiWOZ2.1 dataset.
The model combines pointer network to generate individual slot token-by-token. The prediction is
additional supported by a slot gating component that decides whether the slot is “none", “dontcare",
or “pointer" (generated).

A.2.2 CONTEXT-TO-TEXT GENERATION

Budzianowski et al. (2018) provides a baseline for this setting by following the sequence-to-sequence
model (Sutskever et al., 2014) with additional signals from the belief tracker and discrete data pointer
vector.

TokenMoE (Pei et al., 2019). TokenMoE refers to Token-level Mixture-of-Expert model. The model
follows a modularized approach by separating different components known as expert bots for different
dialogue scenarios. A dialogue scenario can be dependent on a domain, a type of dialogue act, etc. A
chair bot is responsible for controlling expert bots to dynamically generate dialogue responses.

HDSA (Chen et al., 2019). This is the current state-of-the-art for context-to-text generation setting in
MultiWOZ2.0. HDSA leverages the structure of dialogue acts to build a multi-layer hierarhical graph.
The graph is incorporated as an inductive bias in self-attention network to improve the semantic
quality of generated dialogue responses.

Structured Fusion (Mehri et al., 2019). This approach follows a traditional modularized dialogue
system architecture, including separate components for NLU, DM, and NLG. These components are
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pretrained and combined into an end-to-end system. Each component output is used as a structured
input to other components.

LaRL (Zhao et al., 2019). This model uses a latent dialogue action framework instead of traditional
handcrafted dialogue acts. The latent variables are learned using unsupervised learning with stochastic
variational inference. The model are trained in a reinforcement learning framework whereby the
parameters are trained to yield better Success rate.

A.3 ADDITIONAL RESULTS

Domain-Specific Results. In Table 7 and 8, we presented additional results of our model and the
baselines TSCP (Lei et al., 2018). For state tracking, the metrics are calculated for domain-specific
slots of the corresponding domain at each dialogue turn. For task completion and response generation,
we calculated the metrics for single-domain dialogues of the corresponding domain. We do not
report the Inform metric for the taxi domain because no DB was provided in the benchmark for this
domain. From Table 7, in each domain, our approach outperforms TSCP across most of the metrics,
except the Success and BLEU metric in the taxi domain. In term of task-completion, our model
performs better significant improvement in domains with large DB sizes such as train and restaurant.
In term of response generation, our results are consistently higher than the baselines as the model can
return more appropriate responses from better decoded dialogue states and DB queried results. For
state tracking task alone, in Table 8, our models perform consistently in the 3 domains attraction,
restaurant, and train domains. However, the performance significantly drops in the taxi domain.
This performance drop negatively impacts the overall performance across all domains. We plan to
investigate further to identify and address challenges in this particular domain in future work.

Table 7: Additional experiment results on MultiWOZ2.1. Compared to the baseline TSCP (Lei et al., 2018),
our model performs better in most of the metrics in each domain. For state tracking, the metrics are calculated
for domain-specific slots of the corresponding domain at each dialogue turn. For task completion and response
generation, the metrics are computed for only single-domain dialogues with the corresponding domain in each
row. The best result in each metric and domain is highlighted in bold.

Model Joint Acc Slot Acc Inform Success BLEU
Attraction domain
TSCP (L=8) 63.53% 97.34% 68.24% 51.52% 16.53
TSCP (L=20) 68.12% 98.42% 73.24% 66.24% 16.63
Ours 70.78% 99.06% 75.00% 66.66% 22.58
Hotel domain
TSCP (L=8) 41.52% 96.34% 74.24% 45.23% 11.52
TSCP (L=20) 45.23% 97.24% 81.42% 66.23% 12.63
Ours 49.52% 97.50% 88.06% 86.57% 17.58
Restaurant domain
TSCP (L=8) 64.23% 97.34% 91.24% 63.23% 15.24
TSCP (L=20) 65.13% 98.52% 93.23% 78.23% 17.52
Ours 66.50% 98.76% 95.16% 85.48% 20.99
Taxi domain
TSCP (L=8) 15.52% 91.24% N/A 14.32% 7.42
TSCP (L=20) 18.92% 94.02% N/A 35.23% 15.53
Ours 23.05% 96.42% N/A 23.24% 14.30
Train domain
TSCP (L=8) 54.23% 89.24% 55.24% 42.42% 11.53
TSCP (L=20) 61.53% 90.02% 63.23% 51.04% 15.42
Ours 65.12% 90.22% 96.97% 87.88% 20.54

Context-to-Text Generation. Following Eric et al. (2019), to compare with baselines in this setting,
we assumes access to the ground-truth labels of dialogue belief states and data pointer during inference.
We compare with existing baselines in Table 2 (Refer to Appendix A.2 for more description of the
baselines). Our model achieves the state-of-the-art in the Inform metric but do not perform as
well in terms of Success metric. We achieve a competitive BLEU score, only behind the current
state-of-the-art HDSA model. An explanation for our model not able to achieve a high Success metric
is that we did not utilize the dialogue act information. The current state-of-the-art HDSA leverages
the graph structure of dialogue acts into dialogue models. Furthermore, compared to approaches such
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Table 8: Additional experiment results of state tracking on MultiWOZ2.1. In each domain, the metrics are
calculated for domain-specific slots of the corresponding domain at each dialogue turn. The best result in each
domain is highlighted in bold.

Domain Joint Acc Slot Acc
Attraction 67.91% 98.97%
Hotel 47.48% 97.58%
Restaurant 65.39% 98.62%
Taxi 23.05% 96.35%
Train 66.00% 98.24%

Table 9: Performance for context-to-text generation setting on MultiWOZ2.0. The baseline results are as reported
in the benchmark leaderboard.

Model Inform Success BLEU
Baseline (Budzianowski et al., 2018) 71.29% 60.96% 18.80
TokenMoE (Pei et al., 2019) 75.30% 59.70% 16.81
HDSA (Chen et al., 2019) 82.90% 68.90% 23.60
Structured Fusion (Mehri et al., 2019) 82.70% 72.10% 16.34
LaRL (Zhao et al., 2019) 82.78% 79.20% 12.80
Ours 83.83% 67.36% 19.88

as (Pei et al., 2019; Mehri et al., 2019), our model does not use pretrained network modules such as
NLU and DST. Our end-to-end setting is more related along the line of research work for end-to-end
dialogue systems without relying on system action annotation (Lei et al., 2018; Madotto et al., 2018;
Wu et al., 2019b). To improve the Success metric, we plan to extend our work in the future that can
derive better dialogue policy for higher Success rate.

A.4 ADDITIONAL QUALITATIVE ANALYSIS

In Table 10, we reported the complete output of an example multi-domain dialogue. Overall, our
dialogue agent can carry a proper dialogue with the user throughout the dialogue steps. Specifically,
we observed that our model can detect new domains at dialogue steps where the domains are
introduced e.g. attraction domain at the 5th turn and taxi domain at the 8th turn. The dialogue agent
can also detect some of the co-references among the domains. For example, at the 5th turn, the
dialogue agent can infer the slot area for the new domain attraction as the user mentioned ‘close the
restaurant’. We noticed that that at later dialogue steps such as the 6th turn, our decoded dialogue
state is not correct possibly due to the incorrect decoded dialogue state in the previous turn, i.e. 5th
turn.

In Figure 4 and 5, we reported the Joint Goal Accuracy and BLEU metrics of our model by dialogue
turn. As we expected, the Joint Accuracy metric tends to decrease as the dialogue history extends over
time. The dialogue agent achieves the highest accuracy in state tracking at the 1st turn and gradually
reduces to zero accuracy at later dialogue steps, i.e. 15th to 18th turns. For response generation
performance, the trend of BLEU score is less obvious. The dialogue agent obtains the highest BLEU
scores at the 3rd turn and fluctuates between the 2nd and 13th turn.
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Table 10: Complete results of an example multi-domain dialogue, including the input of past system response
St−1 and current user utterance Ut, and the predicted dialogue belief state BSt and system response St. The
dialogue includes 11 turns in total and extends across 3 domains sequentially: restaurant, attraction, and taxi.

Turn Input Dialogue Ground-truth State and Response Our Predicted State and Response
S0: <blank> BS1: {restaurant: {area: centre, pricerange: cheap}} BS1: {restaurant: {area: centre, pricerange: cheap}}

1 U1: i am looking for a cheap restaurant in the
center of the city

S1: do you have any specific type of food you would like ? S1: there are 15 restaurant_pricerange restaurant_type s in
the restaurant_area of town . do you have a preference ?

S1: do you have any specific type of food you
would like ?

BS2: {restaurant: {area: centre, pricerange: cheap}} BS2: {restaurant: {area: centre, pricerange: cheap}}

2 U2: no , i am not picky as long as the price -s
are low .

S2: there is a restaurant_pricerange restaurant_food restau-
rant_type called the restaurant_name located in the restau-
rant_area of town . would you like to book a table ?

S2: how about restaurant_name ? it s an restau-
rant_pricerange restaurant_food restaurant_type located in
the restaurant_area of town .

S2: there is a cheap chinese restaurant called the
dojo noodle bar located in the centre of town .
would you like to book a table ?

BS3: {restaurant: {area: centre, pricerange: cheap, name:
dojo noodle bar}}

BS2: {restaurant: {area: centre, pricerange: cheap}}

3 U3: yes please , for 8 people at 1830 on thurs-
day .

S3: i am sorry but restaurant_name is solidly booked at that
time . i can try a different time or day for you .

S3: booking was successful . the table will be reserved for
15 minutes . reference number is restaurant_reference .

S3: i am sorry but dojo noodle bar is solidly
booked at that time . i can try a different time or
day for you

BS4: {restaurant: {area: centre, pricerange: cheap, name:
dojo noodle bar}}

BS4: {restaurant: {area: centre, pricerange: cheap}}

4 U4: can you try to book it at 1730 . S4: all set . your reference number is restaurant_reference . S4: booking was successful . the table will be reserved for
15 minutes . reference number is restaurant_reference .

S4: all set . your reference number is k2bo09vq
.

BS5: {restaurant: {area: centre, pricerange: cheap, name:
dojo noodle bar}, attraction: {area: centre, type: entertain-
ment}}

BS5: {restaurant: {area: centre, pricerange: cheap}, attrac-
tion: {area: centre, type: entertainment}}

5 U5: thanks . i am also looking for some enter-
tainment close to the restaurant . any sugges-
tions ?

S5: i am sorry i do not have any attractions meeting the crite-
ria you listed . is there another type of attraction or area you
would like me to search ?

S5: there are no attraction_type attractions in the restau-
rant_area of town . would you like to try another area ?

S5: i am sorry i do not have any attractions
meeting the criteria you listed . is there another
type of attraction or area you would like me to
search ?

BS6:{restaurant: {area: centre, pricerange: cheap, name:
dojo noodle bar}, attraction: {area: centre, type: architec-
ture}}

BS6:{restaurant: {area: centre, pricerange: cheap}, attrac-
tion: {area: centre, type: architecture}}

6 U6: why do not you try an architectural attrac-
tion , instead .

S6: attraction_name looks good , would you like to head
there ?

S6: attraction_name is a great attraction_type in the center of
town . would you like more information ?

S6: all saints church looks good , would you
like to head there ?

BS7:{restaurant: {area: centre, pricerange: cheap, name:
dojo noodle bar}, attraction: {area: centre, type: architec-
ture}}

BS7:{restaurant: {area: centre, pricerange: cheap}, attrac-
tion: {area: centre, type: architecture}}

7 U7: yes please . can you let me know what the
entrance fee is too ?

S7: its entrance fee is attraction_pricerange . S7: the entrance fee is attraction_pricerange . is there any-
thing else i can help you with ?

S7: its entrance fee is free . BS8:{restaurant: {area: centre, pricerange: cheap, name:
dojo noodle bar}, attraction: {area: centre, type: architec-
ture}, taxi: {departure: dojo noodle bar, destination: all
saints church}}

BS8:{restaurant: {area: centre, pricerange: cheap}, attrac-
tion: {area: centre, type: architecture}, taxi: {destination:
dojo noodle bar}}

8 U8: i also need to book a taxi between the
restaurant and the church .

S8: what time would you like the taxi to pick you up from
restaurant_name ?

S8: what time would you like to leave or arrive by ?

S8: what time would you like the taxi to pick
you up from dojo noodle bar ?

BS9: {restaurant: {area: centre, pricerange: cheap, name:
dojo noodle bar}, attraction: {area: centre, type: architec-
ture}, taxi: {departure: dojo noodle bar, destination: all
saints church, leaveAt: 1830}}

BS9:{restaurant: {area: centre, pricerange: cheap}, attrac-
tion: {area: centre, type: architecture}, taxi: {destination:
dojo noodle bar}}

9 U9: 1830 , please . S9: your taxi is booked . the car is a taxi_type and the contact
number is taxi_phone . is there anything else i can help you
with ?

S9: booking completed ! booked car type taxi_type contact
number taxi_phone can i help you with anything else ?

S9: your taxi is booked . the car is a blue bmw
and the contact number is 07239644669 . is
there anything else i can help you with ?

BS10: {restaurant: {area: centre, pricerange: cheap, name:
dojo noodle bar}, attraction: {area: centre, type: architec-
ture}, taxi: {departure: dojo noodle bar, destination: all
saints church, leaveAt: 1830}}

BS10: {restaurant: {area: centre, pricerange: cheap}, attrac-
tion: {area: centre, type: architecture}, taxi: {destination:
dojo noodle bar}}

10 U10: that s it . thanks . S10: awesome , enjoy your trip ! S10: you are welcome . have a great day !
S10: awesome , enjoy your trip ! BS11: {restaurant: {area: centre, pricerange: cheap, name:

dojo noodle bar}, attraction: {area: centre, type: architec-
ture}, taxi: {departure: dojo noodle bar, destination: all
saints church, leaveAt: 1830}}

BS11: {restaurant: {area: centre, pricerange: cheap}, attrac-
tion: {area: centre, type: architecture}, taxi: {destination:
dojo noodle bar}}

11 U11: thanks ! i will definitely try to . S11: great ! goodbye and have a nice day . S11: thank you for using our services . have a great day .
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Figure 4: Joint Accuracy metric by dialogue turn in the test data.
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Figure 5: BLEU4 metric by dialogue turn in the test data.
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