
Under review as a conference paper at ICLR 2020

ON THE LINGUISTIC CAPACITY OF REAL-TIME
COUNTER AUTOMATA

Anonymous authors
Paper under double-blind review

ABSTRACT

While counter machines have received little attention in theoretical computer sci-
ence since the 1960s, they have recently achieved a newfound relevance to the
field of natural language processing (NLP). Recent work has suggested that some
strong-performing recurrent neural networks utilize their memory as counters.
Thus, one potential way to understand the sucess of these networks is to revisit the
theory of counter computation. Therefore, we choose to study the abilities of real-
time counter machines as formal grammars. We first show that several variants
of the counter machine converge to express the same class of formal languages.
We also prove that counter languages are closed under complement, union, inter-
section, and many other common set operations. Next, we show that counter ma-
chines cannot evaluate boolean expressions, even though they can weakly validate
their syntax. This has implications for the interpretability and evaluation of neu-
ral network systems: successfully matching syntactic patterns does not guarantee
that a counter-like model accurately represents underlying semantic structures. Fi-
nally, we consider the question of whether counter languages are semilinear. This
work makes general contributions to the theory of formal languages that are of
particular interest for the interpretability of recurrent neural networks.

1 INTRODUCTION

It is often taken for granted that modeling natural language syntax well requires a hierarchically
structured grammar formalism. Early work in linguistics established that finite-state models are
insufficient for describing the dependencies in natural language data (Chomsky, 1956). Instead,
a formalism capable of expressing the relations in terms of hierarchical constituents ought to be
necessary.

Recent advances in deep learning and NLP, however, challenge this long-held belief. Neural network
formalisms like the long short-term memory network (LSTM) (Hochreiter & Schmidhuber, 1997)
have been shown to perform well on tasks requiring structure sensitivity (Linzen et al., 2016), even
though it is not obvious that such models have the capacity to represent hierarchical structure. This
mismatch raises interesting questions for both linguists and practitioners of NLP. It is unclear what
about the LSTM’s structure lends itself towards good linguistic representations, and under what
conditions these representations might fall short of grasping the structure and meaning of language.

Recent work has suggested that the expressive capacity of LSTMs resembles that of counter ma-
chines (Merrill, 2019; Suzgun et al., 2019; Weiss et al., 2018). Weiss et al. (2018) studied LSTMs
with fully saturated weights (i.e. the activation functions evaluate to their asymptotic values instead
of intermediate rational values) and showed that such models can express simplified counter lan-
guages. Merrill (2019), on the other hand, showed that the general counter languages are an upper
bound on the expressive capacity of saturated LSTMs. Thus, there seems to be a strong theoretical
connection between LSTMs and the counter automata. Merrill (2019); Suzgun et al. (2019); Weiss
et al. (2018) also all report experimental results suggesting that some class of counter languages
matches the learnable capacity of LSTMs trained by gradient descent.

Taking the counter machine as a simplified formal model of the LSTM, we study the formal prop-
erties of counter machines as grammars. We do this with the hope of understanding to what degree
counter machines, and LSTMs by extension, have computational properties well-suited for repre-
senting the structure of natural language. The contributions of this paper are as follows:

1

Under review as a conference paper at ICLR 2020

• We prove that general counter machines, incremental counter machines, and stateless
counter machines have equivalent expressive capacity, whereas simplified counter ma-
chines (Weiss et al., 2018) are strictly weaker than the general class.
• We demonstrate that counter languages are closed under complement, union, intersection,

and many other common operations.
• We show that counter machines are incapable of representing the deep syntactic structure

or semantics of boolean expressions, even though they can validate whether a boolean
expression is well-formed.
• We prove that a certain subclass of the counter languages are semilinear, and conjecture

that this result holds for all counter languages.

2 DEFINITIONS

2.1 GENERAL COUNTER MACHINE

Informally, we can think of counter automata as finite-state automata that have been augmented by
a finite number of integer-valued counters. While processing a string, the machine can update the
values of the counters, and the counters can in turn inform the machine’s state transitions.

Early results in theoretical computer science established that a 2-counter machine with unbounded
computation time is Turing-complete (Fischer, 1966). However, restricting computation to be real-
time (i.e. one iteration of computation per input) severely limits the counter machine’s computational
capacity (Fischer et al., 1968). A similar fact holds for recurrent neural networks like LSTMs (Weiss
et al., 2018). We study the capabilities of several types of real-time counter automata.

The first counter automaton we introduce is the general counter machine. This machine can ma-
nipulate the counters by adding or subtracting from them. The other variants that we will go on to
define are special cases of this general machine.

For m ∈ Z, we write +m to denote the function λx.x + m. By ×0, we denote the constant zero
function λx.0.
Definition 2.1 (General counter machine). A k-counter machine is a tuple 〈Σ, Q, q0, u, δ, F 〉 with

1. A finite alphabet Σ

2. A finite set of states Q

3. An initial state q0

4. A counter update function

u : Σ×Q× {0, 1}k →
(
{+m : m ∈ Z} ∪ {×0}

)k
5. A state transition function

δ : Σ×Q× {0, 1}k → Q

6. An acceptance mask
F ⊆ Q× {0, 1}k

Given an input string x and a counter machine, we perform computation by processing x one token
at a time. For each token, we use u to update the counters and δ to update the state according to the
current input token, the current state, and a finite mask of the current counter values. We formalize
this in Definition 2.2.

As a preliminary remark on notation, we use z(x) to denote the zero check function

z(x) =

{
0 if x = 0

1 otherwise.
(1)

Given a vector x, we use z(x) to represent this function broadcasted over each element of the vector.

2

Under review as a conference paper at ICLR 2020

Definition 2.2 (Counter machine computation). Let 〈q, c〉 ∈ Q×Zk be a configuration of machine
M . Upon reading input xt ∈ Σ, we define the transition

〈q, c〉 →xt 〈δ(xt, q, z(c)), u(xt, q, z(c))(c)〉.

Definition 2.3 (Real-time acceptance). For any string x ∈ Σ∗ with length n, a counter machine
accepts x if there exist states q1, .., qn and counter configurations c1, .., cn such that

〈q0,0〉 →x1
〈q1, c1〉 →x2

..→xn
〈qn, cn〉 ∈ F.

Definition 2.4 (Real-time language acceptance). A counter machines accepts a language L if, for
each x ∈ Σ∗, it accepts x if and only if x ∈ L.

We denote the set of languages that are acceptable in real time by a general counter machine as CL.
We will use the terms “accept” and “decide” interchangeably, as accepting and deciding a language
are equivalent for real-time automata.

2.2 COUNTER MACHINE VARIANTS

Now, we can can consider various restrictions of the general counter machine, and the corresponding
classes of languages acceptable by such automata.

First, we present the simplified counter machine discussed by Weiss et al. (2018). The counter update
function in the simplified counter machine has two important constraints compared to the general
machine. First, it can only be conditioned by the input symbol at each time step. Second, it can only
increment or decrement its counters instead of being able to add or subtract arbitrary constants.

Definition 2.5 (Simplified counter machine). A counter machine is simplified if u has the form

u : Σ→ {−1, +0, +1, ×0}k.

Another variant that we consider is the incremental counter machine. This machine also is con-
strained to have only increments and decrements on its counters, but the counter update function is
allowed to depend on the state and counter value.

Definition 2.6 (Incremental counter machine). An counter machine is incremental if u has the form

u : Σ×Q× {0, 1}k → {−1, +0, +1, ×0}k.

Finally, we define a stateless variant of the counter machine. Removing state from the counter
machine is equivalent to allowing it to only have one state q0.

Definition 2.7 (Stateless counter machine). A counter machine is stateless if

Q = {q0}.

3 COUNTER LANGUAGE HIERARCHY

3.1 SIMPLIFIED COUNTER LANGUAGES

Our first result relating counter classes is to show that the simplified counter languages are a proper
subset of the general counter languages. The weakness of the simplified machine is that the update
function is conditioned only by the input symbol. Thus, languages like amb2m, which require
switching counting behavior, cannot be decided correctly. We formalize this in Theorem 3.1.

Theorem 3.1 (Weakness of SCL). Let SCL be the set of languages acceptable in real time by a
simplified counter machine. Then,

SCL ⊂ CL.

Proof. Consider the language amb2m. This is trivially acceptable by a 1-counter machine that adds
2 for each a and subtracts 1 for each b. On the other hand, we shall show that it cannot be accepted
by any simplified machine. Assume by way of contradiction that such a simplified machine M
exists.

3

Under review as a conference paper at ICLR 2020

Tracking the ratio between a’s and b’s requires infinite state. Thus, the counters of M , as opposed
to the finite state, must encode whether 2m = l for strings of the form ambl. Let c be the value
of some counter in M . We can decompose c into the update contributed by a’s and the the update
contributed by b’s as follows:

c = mua + lub, (2)
ua, ub ∈ {−1, 0, 1}. (3)

Exhausting all the possible functions that c can compute, we get

c ∈ {0,±m,±l,±(m+ l),±(m− l)} (4)
z(c) ∈ {0,1m>0,1l>0,1m+l>0,1m−l 6=0}. (5)

We ignore the first four options for z(c), as they clearly do not relate m to l. The final option checks
whether the ratio is 1, not 2. Thus, z(c) cannot distinguish whether 2m = l.

Note that this argument breaks down if we allow the counter update to depend on the state. In that
case, we can build a machine that has two counters and two states: q0 adds 1 to the first counter
while it reads a, and then decrements the first counter and increments the second counter when it
reads b. When the first counter is empty and the second counter is not empty, q0 transitions to q1,
which decrements the second counter. We accept if and only if both counters are 0 after xn.

3.2 INCREMENTAL COUNTER LANGUAGES

Unlike the simplified counter machine, the incremental machine has the same linguistic capacity as
the general machine. We can simulate each counter on a general machine with a finite amount of
overhead. This provides a reduction from general to incremental machines.
Theorem 3.2 (Generality of ICL). Let ICL be the set of languages acceptable in real time by an
incremental counter machine. Then,

ICL = CL.

Proof. Let d be the maximum that is ever added or subtracted from a counter c in M . We simulate
c in M ′ using a counter c′ and a value q ∈ Z mod d encoded in finite state. We will implement a
“ring-counter” encoding of c such that

c′ = bc/dc
q = c mod d.

To simulate a ×0 update on c, we apply ×0 to c′, and transition state such that q := 0.

To simulate a +m update on c for some m ∈ Z, we first change state such that q := (q + m)
mod d. Next, we apply the following update to c′:

+1 if q +m ≥ d
−1 if q +m < 0

+0 otherwise.
(6)

We can compute z(c) by checking whether z(c′) = 0 and q = 0.

3.3 STATELESS COUNTER LANGUAGES

Similarly, restricting a counter machine to be stateless does not weaken its expressive capacity. We
show how to reduce an arbitrary stateful machine to a stateless machine that has been augmented
with additional counters. The key idea here is that we can use the additional counters as a one-hot
vector that tracks the state of the original machine.

Theorem 3.3 (Generality of Q̃CL). Let Q̃CL be the set of languages acceptable in real time by a
stateless counter machine. Then,

Q̃CL = CL.

4

Under review as a conference paper at ICLR 2020

Proof. We define a new stateless machine M ′ to simulate M by adding a |Q|-length vector of new
counters called q′.

Let ω(i) denote the |Q|-length one-hot vector encoding i, i.e. [ω(i)]i = 1, and all other indices are
0. Note that we consider ω(0) = 0.

At initialization, q′ encodes the initial state since q′ = 0 = ω(0). Furthermore, we define the
invariant that, at any given time, q′ = ω(i) for some state i. Thus, the additional counters now
encode the current state.

Let x‖y denote the concatenation of vectors x and y. We define the acceptance mask in M ′ as

F ′ = {〈q0, b‖ω(i)〉 | 〈qi, b〉 ∈ F}. (7)

An analogous transformation allows us to update the counters inherited from M . The last step is to
properly update the new counters q′. For each transition δ(xt, qi, b) = qj in M , we update q′ by
adding −ω(i) + ω(j). This ensures that the updated value of q′ is one-hot since

ω(i) +
(
− ω(i) + ω(j)

)
= ω(j). (8)

3.4 SUMMARY

The general counter machine, incremental counter machine, and stateless counter machine all con-
verge to the same linguistic capacity, which we call CL.

The simplified counter machine defined by Weiss et al. (2018), however, has a linguistic capacity
SCL that is strictly weaker than CL.

4 COUNTER CLOSURE PROPERTIES

Another way to understand the counter languages is through their closure properties. It turns out
that the real-time counter languages are closed under a wide array of common operations, including
complement, intersection, union, set difference, and symmetric set difference. The general result in
Theorem 4.1 implies these closure properties, as well as many others.

Theorem 4.1 (General set operation closure). Let P be anm-ary operation over languages. If there
exists an m-ary boolean function p such that

1P (L1,..,Lm)(x) = p
(
1L1

(x), ..,1Lm
(x)
)
,

then CL and SCL are both closed under P .

Proof. First, we construct counter machines M1, ..,Mm that decide the counter languages
L1, .., Lm. We define a new machine M ′ that, on input x, simulates M1, ..,Mm in parallel, and
accepts if and only if

p(M1(x), ..,Mm(x)) = 1. (9)

Let Λ be a placeholder for either CL or SCL. Let L1, L2 ∈ Λ. By Theorem 4.1, Λ is closed under
the following operations:

Σ∗ \ L1 (10)
L1 ∩ L2 (11)
L1 ∪ L2 (12)
L1 \ L2 (13)

(L1 \ L2) ∪ (L2 \ L1). (14)

5

Under review as a conference paper at ICLR 2020

5 HIERARCHICAL EXPRESSIONS

We now study the ability of counter machines to represent the language Lm (Definition 5.1). Like
natural language, Lm has a deep structure recursively composed from hierarchical constituents.
Definition 5.1 (Lm; Fischer et al., 1968). For any m, let Lm be the language generated by:

<exp> -> <VALUE>
<exp> -> <UNARY> <exp>
<exp> -> <BINARY> <exp> <exp>
..
<exp> -> <m-ARY> <exp> .. <exp>

Surprisingly, Fischer et al. (1968) shows that, by implementing Algorithm 1, even a 1-counter ma-
chines can decide Lm in real time. Algorithm 1 uses a counter to keep track of the depth at any
given index. If the depth counter reaches −1 at the end of the string, the machine has verified that
the string is well-formed. We define the arity of a <VALUE> as 0, and the arity of an <m-ARY>
operation as m.

Algorithm 1 Deciding Lm (Fischer et al., 1968)
1: procedure DECIDE(x)
2: c← 0
3: for each xt ∈ x do
4: c← c+ ARITY(xt)− 1

5: return c = −1

5.1 SEMANTIC EVALUATION AS STRUCTURE SENSITIVITY

While Algorithm 1 decides Lm, we observe that it is agnostic to the deep structure of the input in
that it does not represent the dependencies between tokens. This means that it could not be used
to evaluate these expressions, for example. Based on this observation, we prove that no counter
machine can evaluate boolean expressions due to the deep structural sensitivity that semantic evalu-
ation (as opposed to syntactic acceptance) requires. We view boolean evaluation as a simpler formal
analogy to evaluating the compositional semantics of natural language.

To be more formal, consider an instance of L2 with values {0, 1} and binary operations {∧,∨}. We
assign the following semantics to the terminals:

[[0]] = 0 [[1]] = 1 (15)
[[∧]] = λpq. p ∧ q (16)
[[∨]] = λpq. p ∨ q. (17)

Furthermore, our semantics evaluates each nonterminal by applying the denotation of each syntactic
argument to the semantic arguments of the operation. For example,

[[∨01]] = [[∨]]([[0]], [[1]]) = 0 ∨ 1 = 1. (18)
We also define semantics for non-constituent prefixes via function composition. For example,

[[∨∨]] = [[∨]] ◦ [[∨]] = λpqr. p ∨ q ∨ r. (19)

Finally, we define the language B as the set of expressions x where [[x]] = 1 under these semantics.
Theorem 5.1 (Weak evaluation). For any k, a real-time k-counter machine cannot decide B.

Proof. Assume by way of contradiction that such an evaluation can be performed. We consider an
input x that contains a prefix of p operators followed by a suffix of p+ 1 values. For the machine to
evaluate x correctly, the configuration after xp must encode which boolean function xp specifies.

However, a counter machine with k counters only has O(pk) configurations after reading p charac-
ters. We show by induction over p that an p-length prefix of operators can encode ≥ 2p boolean
functions. Since the counter machine does not have enough configurations to encode all the possi-
bilities, we reach a contradiction.

6

Under review as a conference paper at ICLR 2020

Base Case With p = 0, we have a null prefix followed by one value that determines [[x]]. There-
fore, we can represent exactly 1 (20) function, which is the identity.

Inductive Case The expression has a prefix of operators x1:p+1 followed by values xp+2:2p+3.
We decompose the semantics of the full expression to

[[x]] = [[x1]]([[x2:2p+2]], [[x2p+3]]). (20)

Since [[x2:2p+2]] has a prefix of p operators, we apply the inductive assumption to show it can
represent ≥ 2p boolean functions. Define f as the composition of [[x1]] with [[x2:2p+2]]. There are
two possible values for f : f∧, obtained when x1 = ∧, and f∨, obtained when x1 = ∨. We complete
the proof by verifying that f∧ and f∨ are necessarily different functions.

To do this, consider the minimal sequence of values that will satisfy them according to a right-to-left
ordering of the sequences. For f∧, this minimal sequence ends in 1, whereas for f∨ it must end in a
0. Therefore, f can have 2 unique values for each value of [[x2:2p+2]]. Thus, a p+1-length sequence
of prefixes can encode ≥ 2 · 2p = 2p+1 boolean functions.

Theorem 5.1 shows how counter machines cannot represent certain hierarchical dependencies, even
when the generated language is within the counter machine’s weak expressive capacity. This is
analogous to how CFGs can weakly generate Dutch center embedding (Pullum & Gazdar, 1980),
even though they cannot assign the correct cross-serial dependencies between subjects and verbs
(Bresnan et al., 1982).

6 SEMILINEARITY

Semilinearity is a condition that has been proposed as a desired property for any formalism of natural
language syntax (Joshi et al., 1990). Intuitively, semilinearity ensures that the set of string lengths in
a language is not unnaturally sparse. Regular, context-free, and a variety of mildly context-sensitive
languages are known to be semilinear (Joshi et al., 1990). The semilinearity of CL is an interesting
open question if we aim to understand the abilities of counter machines as grammars.

6.1 DEFINITION

We first define semilinearity over sets of vectors before considering languages. To start, we introduce
the notion of a linear set:
Definition 6.1 (Linear set). A set S ⊆ Nk is linear if there exist W ∈ Nk×m and b ∈ Nk such that

S = {n ∈ Nm |Wn + b = 0} .

Semilinearity, then, is a weaker condition that specifies that a set is made up of a finite number of
linear components:
Definition 6.2 (Semilinear set). A set S ⊆ Nk is semilinear if it is the finite union of linear sets.

To apply this definition to a language L, we translate each sentence x ∈ L into a vector by taking
Ψ(x), the Parikh mapping of x. The Parikh mapping of a sentence is, in more familiar machine
learning terms, just its bag of tokens representation. For example, the Parikh mapping of abaa with
respect to Σ = {a, b} is 〈3, 1〉.
Definition 6.3 (Semilinear language). A language L is semilinear if {Ψ(x) | x ∈ L} is semilinear.

6.2 SEMILINEARITY OF COUNTER LANGUAGES

While we do not prove that the general counter languages are semilinear, we do prove it for a
dramatically restricted subclass of the counter languages. We define Q̃SCL as the set of language
acceptable by a counter machine that is both simplified (Definition 2.5) and stateless (Definition 2.7),
and show that this class is indeed semilinear.

7

Under review as a conference paper at ICLR 2020

Theorem 6.1 (Semilinearity of Q̃SCL). For all L ∈ Q̃SCL, L is semilinear.

Proof. We express L as

L =
⋃
b∈F

{x | c(x) = b} =
⋃
b∈F

k∨
i=1

{x | ci(x) = bi}. (21)

Since semilinear languages are closed under finite union and intersection, the problem reduces to
showing that {x | ci(x) = bi} is semilinear. We apply the following trick:

{x | ci(x) = bi} = Σ∗‖Z‖L(b, i) (22)

where Z is the set of all tokens that set counter i to 0, and L(b, i) is the set of suffixes after the last
occurence of some token in Z, for ever string in L. Since semilinear languages are closed under
concatenation, and Σ∗ and the finite language Z are trivially semilinear, we just need to show that
L(b, i) is semilinear. Counter i cannot be set to zero on strings of L(b, i), so we can write

bi = ci(x) =

n∑
t=1

ui(xt) =
∑
σ∈Σ

ui(σ)#σ(x) = ui ·Ψ(x) (23)

where #σ(x) is the number of occurrences of σ in x, and ui denotes the vector of possible updates
to counter i where each index corresponds to a different σ ∈ Σ. So, L(b, i) is the linear language

L(b, i) = {x ∈ Σ∗ | ui ·Ψ(x)− bi = 0}. (24)

Although the proof of Theorem 6.1 is nontrivial, it should be noted that Q̃SCL is quite a weak class.
Such languages have limited ability to even detect the relative order of tokens in a string. We hope
this argument might be extended to show that SCL or CL is semilinear.

7 CONCLUSION

We have shown that many variants of the counter machine converge to express the same class of
formal languages, which supports that CL is a robustly defined class. We also proved that real-time
counter languages are closed under a large number of common set operations. This provides tools
for future work investigating real-time counter automata.

We also showed that counter automata are incapable of evaluating boolean expressions, even though
they are capable of verifying that boolean expressions are syntactically well-formed. This result has
a clear parallel in the domain of natural language, where deciding whether a sentence is grammatical
is a different task than representing its deep syntactic or semantic structure. A general take-away
from our results is that just because a counter machine (or LSTM) is sensitive to surface patterns in
linguistic data does not mean it can build correct semantic representations. Counter memory can be
exploited to weakly match patterns in language, which might provide the wrong kinds of inductive
bias for achieving sophisticated natural language understanding.

Finally, we asked whether counter languages are semilinear as another way of studying their linguis-
tic capacity. We concluded only that a quite weak subclass of the counter languages are semilinear,
and encourage future work to address the general case.

REFERENCES

Joan Bresnan, Ronald M. Kaplan, Stanley Peters, and Annie Zaenen. Cross-serial dependencies
in dutch. Linguistic Inquiry, 13(4):613–635, 1982. ISSN 00243892, 15309150. URL http:
//www.jstor.org/stable/4178298.

Noam Chomsky. Three models for the description of language. IRE Transactions on information
theory, 2(3):113–124, 1956.

8

http://www.jstor.org/stable/4178298
http://www.jstor.org/stable/4178298

Under review as a conference paper at ICLR 2020

Patrick C Fischer. Turing machines with restricted memory access. Information and Control, 9(4):
364–379, 1966.

Patrick C. Fischer, Albert R. Meyer, and Arnold L. Rosenberg. Counter machines and counter
languages. Mathematical systems theory, 2(3):265–283, Sep 1968. ISSN 1433-0490. doi: 10.
1007/BF01694011. URL https://doi.org/10.1007/BF01694011.

Sepp Hochreiter and Jrgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):
1735–1780, 1997. doi: 10.1162/neco.1997.9.8.1735. URL https://doi.org/10.1162/
neco.1997.9.8.1735.

Aravind K Joshi, K Vijay Shanker, and David Weir. The convergence of mildly context-sensitive
grammar formalisms. Technical Reports (CIS), pp. 539, 1990.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg. Assessing the ability of LSTMs to learn syntax-
sensitive dependencies. Transactions of the Association for Computational Linguistics, 4:521–
535, 2016. doi: 10.1162/tacl a 00115. URL https://www.aclweb.org/anthology/
Q16-1037.

William Merrill. Sequential neural networks as automata. In Proceedings of the Workshop on
Deep Learning and Formal Languages: Building Bridges, pp. 1–13, Florence, August 2019. As-
sociation for Computational Linguistics. URL https://www.aclweb.org/anthology/
W19-3901.

Geoffrey K. Pullum and Gerald Gazdar. Natural languages and context-free languages. Linguistics
and Philosophy, 4(4):471–504, 1980. doi: 10.1007/BF00360802.

Mirac Suzgun, Yonatan Belinkov, Stuart Shieber, and Sebastian Gehrmann. LSTM networks can
perform dynamic counting. In Proceedings of the Workshop on Deep Learning and Formal Lan-
guages: Building Bridges, pp. 44–54, Florence, August 2019. Association for Computational
Linguistics. URL https://www.aclweb.org/anthology/W19-3905.

Gail Weiss, Yoav Goldberg, and Eran Yahav. On the practical computational power of finite pre-
cision RNNs for language recognition. CoRR, abs/1805.04908, 2018. URL http://arxiv.
org/abs/1805.04908.

9

https://doi.org/10.1007/BF01694011
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://www.aclweb.org/anthology/Q16-1037
https://www.aclweb.org/anthology/Q16-1037
https://www.aclweb.org/anthology/W19-3901
https://www.aclweb.org/anthology/W19-3901
https://www.aclweb.org/anthology/W19-3905
http://arxiv.org/abs/1805.04908
http://arxiv.org/abs/1805.04908

	Introduction
	Definitions
	General Counter Machine
	Counter Machine Variants

	Counter Language Hierarchy
	Simplified Counter Languages
	Incremental Counter Languages
	Stateless Counter Languages
	Summary

	Counter Closure Properties
	Hierarchical Expressions
	Semantic Evaluation as Structure Sensitivity

	Semilinearity
	Definition
	Semilinearity of Counter Languages

	Conclusion

