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ABSTRACT

We present a new approach that helps developers automate the process of user
interface implementation. Concretely, given an input image created by a designer
(e.g, using a vector graphics editor), we learn to infer its implementation which
when rendered (e.g., on the Android platform), looks visually the same as the
input image. To achieve this, we take a black box rendering engine and a set of
attributes it supports (e.g., colors, border radius, shadow or text properties), use it
to generate a suitable synthetic training dataset, and then train specialized neural
models to predict each of the attribute values. To improve pixel-level accuracy,
we also use imitation learning to train a neural policy that refines the predicted
attribute values by learning to compute the similarity of the original and rendered
images in their attribute space, rather than based on the difference of pixel values.

1 INTRODUCTION

With over 5 million applications in Google Play Store and Apple App Store and over a billion
webpages, a significant amount of time can be saved by automating even small parts of their de-
velopment. To achieve this, several tools have been recently developed that help user interface
designers explore and quickly prototype different ideas, including Sketch2Code (Microsoft, 2018)
and InkToCode (Corrado et al., 2018), which generate user interface sketches from hand-drawn
images, Swire (Huang et al., 2019) and Rico (Deka et al., 2017), which allow retrieving designs
similar to the one supplied by the user and Rewire (Swearngin et al., 2018), which transforms im-
ages into vector representations consisting of rectangles, circles and lines. At the same time, to
help developers implement the design, a number of approaches have been proposed that generate
layout code that places the user interface components at the desired position (e.g., when resizing
the application). These include both symbolic synthesis approaches such as InferUI (Bielik et al.,
2018), which encodes the problem as a satisfiability query of a first-order logic formula, as well
as statistical approaches (Beltramelli, 2018; Chen et al., 2018), which use encoder-decoder neural
networks to process the input image and output the corresponding implementation.

In this work, we address the task of inferring an implementation of an user interface component (e.g.,
colors, shape, shadow, text attributes, etc.) from an image which when rendered, looks visually the
same as the input image. Going from an image to a concrete implementation on a given platform is
a time consuming, yet necessary task, which is often outsourced to a company for a high fee (replia,
2019; psd2android, 2019; psd2mobi, 2019). Compared to prior work, we focus on the pixel-accurate
implementation of the given component, rather than on producing sketches or addressing the com-
plementary task of synthesizing layouts that place the components at the desired positions.

Concretely, given a black box rendering engine that defines a set of categorical and numerical at-
tributes of a component, we design a two step process which predicts the attribute values from an
input image – (i) first, we train a neural model to predict the most likely initial attribute values, and
then (ii) we use imitation learning to iteratively refine the attribute values to achieve pixel-level accu-
racy. Crucially, all our models are trained using synthetic datasets that are obtained by sampling the
black box rendering engine, which makes it easy to train models for other attributes in the future. We
instantiate our approach to the task of inferring the implementation of Android Button attributes
and show that it generalizes well to a real-world dataset consisting of buttons found in existing
Google Play Store applications. In particular, our approach successfully infers the correct attribute
values in 94.8% and 92.5% of the cases for the synthetic and the real-world datasets, respectively.
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2 RELATED WORK

As an application, our work is related to a number of recently developed tools in the domain of
user interface design and implementation with the goal of making developers more productive, as
discussed in Section 1. Here we give overview of the related research from a technical perspective.

Inverting rendering engines to interpret images The most closely related work to ours phrases
the task of inferring attributes from images as the more general task of learning to invert the render-
ing engines used to produce the images. For example, Wu et al. (2017) use reinforcement learning
to train a neural pipeline that given an image of a cartoon scene or a Minecraft screenshot, identifies
objects and a small number of high level features (e.g., whether the object is oriented left or right).
Ganin et al. (2018) also use reinforcement learning, but with an adversarially learned reward signal,
to generate a program executed by a graphics engine that draws simple CAD programs or handwrit-
ten symbols and digits. Johnson et al. (2018) and Ellis et al. (2018) design a neural architecture that
generates a program that when rendered, produces that same 2D or 3D shape as in the input image.
While Johnson et al. (2018) train the network using a combination of supervised pretraining and re-
inforcement learning with a custom reward function (using Chamfer distance to measure similarity
of two objects), Ellis et al. (2018) use a two step process that first uses supervised learning to predict
a set of objects in the image and then synthesizes a program (e.g., containing loops) that draws them.

In comparison to these prior works, our approach differs in three key aspects. First, the main chal-
lenge in prior works is predicting the set of objects contained in the image and how to compose
them. Instead, the focus of our work is in predicting a set of object properties after the objects in
the image were already identified. Second, instead of using the expensive REINFORCE (Williams,
1992) algorithm (or its variation) to train our models, we use a two step process that first pretrains
the network to make an initial prediction and then uses imitation learning to refine it. This is pos-
sible because, in our setting, there is a fixed set of attributes known in advance for which we can
generate a suitable synthetic dataset used by both of these steps. Finally, because our goal is to
learn pixel-accurate attribute values, the refinement loop takes as input both the original image, as
well as the rendered image of the current attribute predictions. As a result, we do not require our
models to predict pixel-accurate rendering of an attribute value but instead, to only predict whether
the attribute values in two images are the same or in which direction they should be adjusted.

Attribute prediction Optical character recognition (Jaderberg et al., 2016; Lyu et al., 2018; Jader-
berg et al., 2014; Gupta et al., 2016) is a well studied example of predicting an attribute from
an image with a large number of real-world applications. Other examples include predicting text
fonts (Zhao et al., 2018; Wang et al., 2015; Chen et al., 2014), predicting eye gaze (Shrivastava
et al., 2017), face pose and lighting (Kulkarni et al., 2015), chair pose and content (Wu et al., 2018)
or 3D object shapes and pose (Kundu et al., 2018), to name just a few. The attribute prediction
network used in our work to predict the initial attribute value is similar to these existing approaches,
except that it is applied to a new domain of inferring user interface attributes. As a result, while
some of the challenges remain the same (e.g., how to effectively generate synthetic datasets), our
main challenge is designing a pipeline, together with a network architecture capable of achieving
pixel-level accuracies on a range of diverse attributes.

3 BACKGROUND: USER INTERFACE ATTRIBUTES

Visual design of user interface components can be specified in many different ways – by defining
a program that draws on a canvas, by defining a program that instantiates components at runtime and
manipulates their properties, declaratively by defining attribute values in a configuration file (e.g.,
using CSS), or by using a bitmap image that is rendered in place of the components. In our work,
we follow the best practices and consider the setting where the visual design is defined declaratively,
thus allowing separating the design from the logic that controls the application behaviour.

Formally, let C denote a component with a set of attributes A. The domain of possible values of
each attribute ai ∈A is denoted as Θi. As all the attributes are rendered on a physical device, their
domains are finite sets containing measurements in pixels or a set of categorical values. For example,
the domain for the text color attribute is three RGB channels N3×[0,255], the domain for text gravity
is {top, left, center, right, bottom} and the domain for border width is N[0,20]. We distinguish
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two domain types: (i) comparable (e.g., colors, shadows or sizes) for which a valid distance metric d :
Θ×Θ→N[0,∞) exists, and (ii) uncomparable (e.g., font types or text gravity) for which the distance
between any two attribute values is equal to one. We use Θ ⊆ Θ1×· · ·×Θn to denote the space of
all possible attribute configurations, and use the function render : Θ→R3×h×w to denote an image
with width w, height h and three color channels obtained by rendering the attribute configuration
y∈Θ. Furthermore, we use the notation y∼Θ to denote a random sample of attribute values from
the space of all valid attribute configurations. Finally, we note that attributes often affect the same
parts of the rendered image (e.g., the shadow is overlayed on top of the background) and they are in
general not independent of each other (e.g, changing the border width affects the border radius).

4 LEARNING TO INFER USER INTERFACE ATTRIBUTES FROM IMAGES

We now present our approach for learning to infer user interface component attributes from images.

Problem statement Given an input image I ∈ R3×h×w, our goal is to find an attribute configura-
tion y ∈ Θ which when rendered, produces an image most visually similar to I:

arg miny∈Θ cost(I, render(y))

where cost : I × I → R[0,∞) is a function that computes the visual similarity of a given user
interface component in two images. It returns zero if the component looks visually the same in both
images or a positive real value denoting the degree to which the attributes are dissimilar.

The first challenge that arises from the problem statement above is how to define the cost function.
Pixel based metrics, such as mean squared error of pixel differences, are not suitable and instead
of producing images with similar attribute values, produce images that have on average similar
colors. Training a discriminator also does not work, as all the generated images are produced by
rendering a set of attributes and are true images by definition. Finally, the cost can be computed not
over the rendered image but by comparing the predicted attributes y with the ground-truth labels.
Unfortunately, even if we would spend the effort and annotated a large number of images with their
ground-truth attributes, using a manually annotated dataset restricts the space of models that can be
used to infer y to only those that do supervised learning. In what follows we address this challenge
by showing how to define the cost function over attributes (used for supervise learning) as well as
over images (used for reinforcement learning), both by using a synthetically generated dataset.

Our approach To address the task of inferring user interface attributes from images, we propose
a two step process that – (i) first selects the most likely initial attribute values arg maxy∈Θ p(y | I)
by learning a probability distribution of attribute values conditioned on the input image, and then (ii)
iteratively refines the attribute values by learning a policy π(∆y(i) |I, render(y(i))) that represents
the probability distribution of how each attribute should be changed, conditioned on both the original
image, as well as the rendered image of the attribute configuration y(i) at iteration i. We use the
policy π to define the cost between two images as cost(I, I ′) := 1−π(∆y=0 | I, I ′). That is, the
cost is defined as the probability that the two images are not equal in the attribute space.

We illustrate both steps in Figure 1 with an example that predicts attributes of a Button component.
In Figure 1 (a), the input image is passed to a set of convolutional neural networks, each of which
is trained to predict a single attribute value. In our example, the most likely value predicted for
the border width is 2dp while the most likely color of the border is #4a4a4a. Then, instead
of returning the most likely attribute configuration y, we take advantage of the fact that it can be
rendered and compared to the original input image. This give us additional information that is used
to refine the predictions as shown in Figure 1 (b). Here, we use a pair of siamese networks (pre-
trained on the prediction task) to learn the probability distribution over changes required to make the
component attributes in both images the same. In our example, the network predicts that the border
color and the text gravity attributes have already the correct values but the border width should
be decreased by 2dp and the shadow should be increased by 4dp. Then, due to the large number
of different attributes that affect each other, instead of applying all the changes at once, we select
and apply a single attribute change. In our example, the ∆y corresponds to adjusting the value of
border width by −2dp. Since the change is supposed to correct a mispredicted attribute value, we
accept it only if it indeed makes the model more confident that the prediction is correct.
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(a) Attribute Prediction (Section 4.1)
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(b) Attribute Refinement Loop (Section 4.2)
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Figure 1: (a) Illustration of the attribute prediction network which takes an input an image with
a component (a Button) and predicts all the component attribute values. (b) Refinement loop which
renders the attribute values obtained from (a) and iteratively refines them to match the input image.

Synthetic datasets We instantiate our approach by training it purely using synthetic datasets,
while ensuring that it generalizes well to real-world images. This allows us to avoid the expen-
sive task of collecting and annotating real-world datasets and more importantly, makes our approach
easily applicable to new domains and attributes. In particular, given a space of possible attribute
configurations Θ and a rendering function render, we generate two different datasets D and D∆

used to train the attribute prediction network and the policy π, respectively. The dataset D =
{(render(y(i)),y(i) ∼ Θ)}Ni=1 is constructed by sampling a valid attribute configuration y(i) ∼ Θ
and rendering it to produce the input image. To generateD∆, we sample two attribute configurations
y(i),y(j)∼Θ that are used to render two input images and train the network to predict the difference
of their attributes, that is,D∆ ={(〈render(y(i) ∼ Θ), render(y(j) ∼ Θ)〉,∆(y(i)−y(j)))}Mi,j=1.

For both datasets, to avoid overfitting when training models for attributes with large domain of
possible values, we sample only a subset of attributes, while setting the remaining attributes to values
from the previous example y(i−1). As a result, every two consecutive samples are similar to each
other, since a subset of their attributes is the same. Further, because the real-world images do not
contain components in isolation but together with other components that fill the rest of the screen,
we introduce three additional attributes xpos∈N, ypos∈N and background. We use xpos and ypos to
denote the horizontal and vertical position of the component in the image, respectively. This allows
the network to learn robust predictions regardless of the component position in the image. We use
background to select the background on which the component is rendered. We experimented with
three different choices of backgrounds – only while color, random solid color and overlaying the
component on top of an existing application, all of which are evaluated in Section 5.

4.1 ATTRIBUTE PREDICTION

The attribute prediction network architecture is a multilayer convolutional neural network (CNN)
followed by a set of fully connected layers. The multilayer convolutional part consists of 6 repeti-
tive sequences of convolutional layers with ReLU activations, followed by batch normalization and
a max-pooling layer of size 2 and stride 2. For the convolutional layers we use 3×3 filters of size
32, 32, 64, 64, 128 and 128, respectively. The result of the convolutional part is then flattened and
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connected to a fully connected layer of size 256 with ReLU activation followed by a final softmax
layer (or a single neuron for regression). We note that this is not a fixed architecture and instead, it
is adapted to a given attribute by performing an architecture search, as shown in Section 5.

Supporting multiple input sizes To support user interface components of different sizes, we select
the input image dimension such that it is large enough to contain them. This is necessary as our goal
is to infer pixel-accurate attribute values and scaling down or resizing the image to a fixed dimension
is not an option, as it leads to severe performance degradation. However, this is problematic, as most
of the input images are smaller or cropped in order to remove other components. As a result, before
feeding the image to the network we need to increase the dimension of the input without resizing or
scaling. To achieve this, we pad the missing pixels with the values of edge pixels, which improves
the generalization to real-world images as shown in Section 5.1 and illustrated in Appendix B.

Optimizations To improve the accuracy and reduce the variance of the attribute prediction network,
we perform the following two optimizations. First, we compute the most likely attribute value
by combining multiple predictions and selecting the most likely among them. This is achieved
by generating several perturbations of the input image, each of which shifts the image randomly,
horizontally by εx ∼ U(−t, t) and vertically by εy ∼ U(−t, t), where t ∈ N. This is similar to
ensemble models but instead of training multiple models we generate and evaluate multiple inputs.

Second, to improve the accuracy of the color attributes, we perform color clipping by picking the
closest color to one of those present in the input image. To reduce the set of all possible colors,
we use saliency maps (Simonyan et al., 2013) to select a subset of the pixels most relevant for the
prediction. In our experiments we keep only the pixels with the normalized saliency value above 0.8.
Then, we clip the predicted color to the closest color from the top five most common colors among
the pixels selected by the saliency map. We provide illustration of the color clipping in Appendix C.

4.2 ATTRIBUTE REFINEMENT LOOP

We now describe how to learn a function π(∆y | I, render(y)) that represents probability distri-
bution of how each attribute should be changed, conditioned on both the original image as well as
the rendered image of the current attribute configuration y. We can think of π as a policy, where
the actions correspond to changing an attribute value and the state is a tuple of the original and the
currently rendered image. We can then apply imitation learning to train the policy π on a synthetic
dataset D∆ = {(〈render(y(i)∼Θ), render(y(j)∼Θ)〉,∆(y(i)−y(j)))}Mi,j=1. Because the range
of possible values ∆(y(i)−y(j)) can be large and sparse, we limit the range by clipping it to an
interval [−c, c], where c is selected per attribute. To fix a change larger than c, during the inference
we perform sequence of small changes. For comparable attributes, the delta between two attribute
values is defined as their distance ∆(y

(i)
k −y

(j)
k ) :=d(y

(i)
k −y

(j)
k ). For uncomparable attributes, the

delta is binary and determines whether the attribute already has the correct value or not.

The model architecture used to represent π consists of two convolutional neural networks with
shared weights θ, also called siamese neural networks, each of which computes a latent represen-
tation of the input image hx = fθ(I) and hr = fθ(render(y)). The function fθ has the same
architecture as the attribute prediction network, except that we replace the fully connected layer
with one that has a bigger size and remove the last softmax layer. Then, we combine the latent
features hx and hr into a single vector h = [hx;hr;hx +hr;hx−hr;hx�hr], where � denotes
element-wise multiplication. Finally, the vector h is passed to a fully connected layer of size 256
with ReLU activations, followed by a final softmax layer. Once the models are trained, we perform
the refinement loop as follows:

Select attribute to change. As in general attributes interfere with each other, in each refinement iter-
ation we adjust only a single attribute, which is chosen by sampling from the following distribution:

P [A = ai] =
1− π(∆yi = 0 | I, render(y))∑|A|
k=1 1− π(∆yk = 0 | I, render(y))

where π(∆yk = 0 | I, render(y)) denotes the probability that the k-th attribute should not be
changed, that is, the predicted change is zero. Since we train a separate model for each attribute, the
probability that the given attribute should be changed is 1− π(∆yk = 0 | I, render(y)).

5



Under review as a conference paper at ICLR 2020

Select attribute’s new value. For comparable attributes, we adjust their value by sampling from
the probability distribution computed by the policy π, which contains changes in range [−c, c].
For uncomparable attributes another approach has to be chosen, since the delta prediction network
computes only whether the attribute is correct and not how to change it. Instead, we select the
new value by sampling from the probability distribution computed by the corresponding attribute
prediction network.

Accept or reject the change. In a typical setting, we would accept the proposed changes as long as
the model predicts that an attribute should be changed. However, in our domain we can render the
proposed changes and check whether the result is consistent with the model. Concretely, we accept
the change y′ if it reduces the cost, that is, cost(I, render(y′))< cost(I, render(y)). Note that
this optimization is possible only if the change was supposed to fix the attribute value, that is, the
change was in the range (−c, c) or the attribute is uncomparable.

5 EVALUATION

To evaluate the effectiveness of our approach, we apply it to the task of generating Android Button
implementations. Concretely, we predict the following 12 attributes – border color, border width,
border radius, height, width, padding, shadow, main color, text color, text font type, text gravity and
text size. We do not predict the text content for which specialized models already exist (Jaderberg
et al., 2016; Lyu et al., 2018; Jaderberg et al., 2014; Gupta et al., 2016). We provide domains and the
visualization of all these attributes in Appendix A. In what follows we first describe our datasets and
evaluation metrics, then we present a detailed evaluation of our approach consisting of the attribute
prediction network (Section 4.1) and the refinement loop (Section 4.2).

Datasets To train the attribute prediction network we use a synthetic datasetD containing≈20,000
images and their corresponding attributes as described in Section 4. To train the refinement loop
we use a second synthetic dataset D∆, also containing ≈20,000 image pairs. During training we
perform two iterations of DAgger (Ross et al., 2011), each of which generates ≈20,000 samples
obtained by running the policy on the initial training dataset. To evaluate our models we use two
datasets – (i) syntheticDsyn generated in the same way as for training, and (ii) real-worldDgplay we
obtained by manually implementing 110 buttons in existing Google Play Store applications. The il-
lustration of samples and our inferred implementations for both datasets are provided in Appendix E.

Evaluation metrics To remove clutter, we introduce an uniform unit to measure attribute similar-
ity called perceivable difference. We say that two attributes have the same (=) perceivable difference
if their values are the same or almost indistinguishable. For example, the text size is perceivably the
same, if the distance of the predicted y and the ground-truth y∗ value is d(y, y∗) ≤ 1, while the
border width is perceivably the same only if it is predicted perfectly, i.e., d(y, y∗) = 0. The formal
definition of perceivable difference with visualizations of all attributes is provided in Appendix D.

5.1 ATTRIBUTE PREDICTION

A detailed summary of the variations of our attribute prediction models and their effect on perfor-
mance is shown in Table 1. To enable easy comparison, we selected a good performing instantiation
of our models, denoted as core, against which all variations in the rows (A)-(E) can be directly
compared. Based on our experiments, we then select the best configuration that achieves accuracy
93.6% and 91.4% on the synthetic and the real-world datasets, respectively. All models were trained
for 500 epochs, with early-stopping of 15 epochs, using a batch size of 128 and initial learning rate
of 0.01. In what follows we provide a short discussion of each of the variations from Table 1.

Image background (A) We trained our models on synthetic datasets with three different component
backgrounds of increasing complexity – white color, random solid color and user interface screen-
shot. Unsurprisingly, the models trained with white background fail to generalize to real-world
datasets and achieve only 56.7% accuracy. Perhaps surprisingly, although the models trained with
the screenshot background improve significantly, they also fail to generalize and achieve only 75.6%
accuracy. Upon closer inspection, this is because overlaying components over existing images often
introduces small visual artefacts around the component. On the other hand, random color back-
grounds generalize well to real-world dataset as they have enough variety and no visual artefacts.
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Table 1: Variations of the attribute prediction network and their effect on the model accuracy.

Network Architecture Dataset & Input Preprocessing Accuracy

arch lrrd colorclip inputsize tr background Dsyn
= Dgplay

=

core C0,R0 - saliencytop5 150×330 tr2 rand 92.7% 90.1%

(A)
white 88.9% 56.7%

screenshot 88.6% 75.6%

(B)
center 89.4% 82.4%
tr1 92.3% 90.3%

(C)
135×310 92.5% 91.2%
180×350 92.5% 88.7%

(D)

imagetop5 89.2% 85.9%
imageall 87.1% 83.0%
none 74.1% 72.0%

(E)

C3 83.2% 83.4%
C6 88.6% 88.2%
R1 62.6% 64.3%
R2 67.7% 65.3%
· · · · · · · · ·

best C6, R2 0.1 saliencytop5 135×310 tr2 rand 93.6% 91.4%
arch model architecture tr input transformation lrrd reduced learning rate on plateau

Affine transformations (B) Since the components can appear in any part of the input image, we use
three methods to generate the training datasets – tr1 places the component randomly at any position
with a margin of at least 20 pixels of the image border, tr2 places the component in the middle of
the image with a horizontal offset εx∼U(−13, 13) and vertical offset εy∼U(−19, 19), and center
always places the component exactly in the center. We can see that using either tr1 or tr2 leads to
significantly more robust model and increases the real-world accuracy by ≈ 8%.

Input image size & padding (C) As our goal is to perform pixel-accurate predictions, we do not scale
down or resize the input images. However, since large images include additional noise (e.g., parts of
the application unrelated to the predicted component), we measure how robust our model is to such
noise by training models for three different input sizes – 135×310, 150×330 and 180×350. While
the accuracy on the synthetic dataset is not affected, the real-world accuracy shows a slight decrease
for larger sizes that contain more noise. However, note that the decrease is so small because of our
padding technique, which extends the component to a larger size by padding the missing pixels with
edge pixel values. When using no padding, the accuracy of the real-world dataset drops to 72% and
when padding with a white color the accuracy drops even further to 71% (not shown in Table 1).

Color clipping (D) We experimented with different color clipping techniques – saliencytop5 that
considers the top 5 colors in the saliency map of a given attribute, imagetop5 that considers the top
5 colors in the image, and imageall that considers all the colors in the image. As can be seen from
the results, the color clipping using saliency maps performs the best and leads to more than 3% and
16% improvements over other types of clipping or using no clipping, respectively. While the other
types of color clipping also perform reasonably well, they typically fail for images that include many
colors, where the saliency map helps focusing only on the colors relevant to the prediction.

Network architecture (E) We adapt the architecture presented in Section 4.1 for each attribute, by
performing a small scale architecture search. Concretely, we choose between using classification (C)
or regression (R), the kernel sizes, the number of output channels, whether we use pooling layer and
whether we use additional fully connected layer before the softmax layer. Although the results in
Table 1 are not directly comparable, as they provide only the aggregate accuracy over all attributes
(additionally for regression experiments we consider only numerical attributes), they do show that
such architectural choices have a significant impact on the network’s performance.
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Table 2: Accuracy of the attribute refinement loop instantiated with different similarity metrics. The
accuracy shown in brackets denotes the improvement compared to the initial attribute values.

Random Attribute Initialization Best Prediction Initialization

Metric Dsyn= Dgplay= Dsyn= Dgplay=

Our Work
Learned Dst. 94.4% (+57.3%) 91.3% (+53.3%) 94.8% (+1.2%) 92.5% (+1.1%)

Baselines
Pixel Sim. 59.6% (+22.5%) 65.0% (+27.0%) 93.6% ( 0.0%) 91.1% (−0.3%)

Structural Sim. 81.1% (+44.0%) 71.9% (+33.9%) 93.4% (−0.2%) 89.3% (−2.1%)

Wasserstein Dst. 63.4% (+26.3%) 61.8% (+23.8%) 91.8% (−1.8%) 89.6% (−1.8%)

5.2 ATTRIBUTE REFINEMENT

To evaluate our attribute refinement loop, we perform two experiments that refine the attribute val-
ues: (i) starting from random initial values, and (ii) starting from values computed by the attribute
prediction network. For both experiments, we show that the refinement loop improves the accuracy
of the predicted attribute values, as well as significantly outperforms other similarity metrics used
as a baseline. We trained all our models for 500 epochs, with early-stopping of 15 epochs, using
a batch size of 64, learning rate of 0.01 and gradient clipping of 3, which is necessary to make the
training stable. Further, we initialize the siamese networks with the pretrained weights of the best
attribute prediction network, which leads to both improved accuracy of 4%, as well as faster conver-
gence when compared to training from scratch. Finally, we introduce a hyperparameter that controls
which attributes are refined. This is useful as it allows the refinement loop to improve the overall
accuracy even if only a subset of the attributes values can be refined successfully.

Attribute refinement improves accuracy The top row in Table 2 (right) shows the accuracy of our
refinement loop when applied starting from values predicted by the best attribute prediction network.
Based on our hyperparameters, we refined the following six attributes – text size, text gravity, text
font, shadow, width and height. The refined attributes are additionally set to random initial values
for the experiment in Table 2 (left). The overall improvement for both synthetic and real-world
dataset is≈1.1% when starting from the values predicted by the attribute prediction network. When
starting from random values the refinement loop can still recover predictions of almost the same
quality, although with ≈ 12× more refinement iterations. The reason why the improvement is not
higher is mainly because ≈ 5% of the errors are performed when predicting the text color and the
text padding, for which both the attribute prediction networks and the refinement loop work poorly.
This suggest that a better network architecture is needed to improve the accuracy of these attributes.

Effectiveness of our learned similarity metric To evaluate the quality of our learned cost function,
which computes image similarity in the attribute space, we use the following similarity metrics as
a baseline – pairwise pixel difference, structural similarity (Wang et al., 2004), and Wasserstein
distance. As the baseline metrics depend heavily on the fact that the input components are aligned
in the two images (e.g., when computing pairwise pixel difference), for a fair comparison we add
a manual preprocessing step that centers the components in the input image. The results from Table 2
show that all of these metrics are significantly worse compared to our learned cost function. Even
though they provide some improvement when starting from random attributes, the improvement is
limited and all of them result in accuracy decrease when used starting from good attributes.

6 CONCLUSION

We present an approach for learning to infer user interface attributes from images. We instanti-
ate it to the task of learning the implementation of the Android Button component and achieve
92.5% accuracy on a dataset consisting of Google Play Store applications. We show that this can be
achieved by training purely using suitable datasets generated synthetically. This result indicates that
our method is a promising step towards automating the process of user interface implementation.
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APPENDIX

We provide five appendices. In Appendix A we define domains of all the attributes considered in
our work and include their visualizations. In Appendix B we illustrate three different techniques
to pad images to a larger size. In Appendix C we show an example of using color clipping with
saliency maps. In Appendix D we formally define the perceivable different metric used to compute
accuracy in our evaluation. Finally, in Appendix E we provide examples of images and the inferred
implementations for samples in both the synthetic and real-world datasets.

A ANDROID BUTTON ATTRIBUTES

We provide definition of all the attributes considered in our work as well as their visualization in
Table 3. For border radius we use a special value∞ to denote round buttons.

Table 3: Button attribute domains and illustration of their visual appearance.

Attribute Domain Example

Border Color N3×[0,255]

Border Radius N[0,20] ∪∞

Border Width N[0,12]

Main Color N3×[0,255]

Padding N[0,43]

Shadow N[0,12]

Text Color N3×[0,255]

Text Font Family {thin, light, regular, medium, bolt}

Text Gravity {top, left, center, right, bottom}

Text Size N[10,30] ∪ 0

Height N[20,60]

Width N[25,275]

B IMAGE PADDING

To improve robustness of our models on real-world images we experimented with three techniques
of image padding shown in Figure 2. In (a) the image is padded with the edge values, in (b) the
image is padded with a constant solid color and in (c) the image is simply extended to the required
input size.
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(a) Edge pixel padding (b) Constant color padding (c) Expanding bounding-box

Figure 2: Illustration of different padding methods to resize the image to the network input size.

C COLOR CLIPPING USING SALIENCY MAPS

To improve color clipping results we are limiting the colors to which the predicted colors can be
clipped by only considering the top 5 colors within the thresholded saliency map of the input image.
An illustration of this process is shown in Figure 3, where (a) shows an initial input image, (b) the
saliency map of the prediction, and (c) and (d) the thresholded saliency map (we use threshold 0.8)
and the colors it contains.

(a) Input (b) Saliency map (c) Thresholded map (d) Masked colors

Figure 3: Restricting colors for color clipping.

D PERCEIVABLE ATTRIBUTE DIFFERENCE

We define the perceivable difference for each attribute in Table 4. We use ε to denote the distance
between two attribute values. For all numerical attributes except colors, the distance is defined as the
attribute value difference, i.e., d(yi, yj) = yi − yj . To better capture the difference between colors,
we define their distance using the CIE76 formula (Schanda, 2007), denoted as dE. Furthermore, we
provide illustration of the worse case perceivable difference for each attribute in Table 5.

Table 4: Perceivable difference definition for all attributes used in our work.

Attribute same (=) similar (≈) different (6=)

Border Color ε ≤ 5dE 5dE < ε ≤ 10dE 10dE < ε

Border Radius ε ≤ 1dp 1dp < ε ≤ 3dp 3dp < ε

Border Width ε ≤ 0dp 0dp < ε ≤ 1dp 1dp < ε

Main Color ε ≤ 5dE 5dE < ε ≤ 10dE 10dE < ε

Padding ε ≤ 1dp 1dp < ε ≤ 3dp 3dp < ε

Shadow ε ≤ 0dp 0dp < ε ≤ 2dp 2dp < ε

Text Color ε ≤ 5dE 5dE < ε ≤ 10dE 10dE < ε

Text Font Family same font - different font
Text Gravity same gravity - different gravity

Text Size ε ≤ 1sp 1dp < ε ≤ 2dp 2sp < ε

Height ε ≤ 1dp 1dp < ε ≤ 3dp 3dp < ε

Width ε ≤ 2dp 2dp < ε ≤ 4dp 4dp < ε
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Table 5: Examples of perceivable difference between two attribute values. For the same (=) and the
similar (≈) perceivable difference, we include worst case examples.

Attribute Ground-truth Examples of Perceivable Difference

same (=) similar (≈) different (6=)

Border Color

Border Radius

Border Width

Main Color

Padding

Shadow

Text Color

Text Font -

Text Gravity -

Text Size

Height

Width

E DATASETS AND INFERRED IMPLEMENTATION VISUALIZATIONS

We provide illustrations of our approach for inferring Android Button implementations from im-
ages. Concretely, we include examples of images for which our approach works well, as well as
examples where our models make mistakes. The visualizations for the synthetic Dsyn and real-
world Dgplay dataset of buttons found in Google Play Store applications are shown in Table 6 and
Table 7, respectively. Each table row is divided into 4 parts: an image of the input, the preprocessed
input image, a rendering of the predicted Button and a rendering of the refined Button.
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Table 6: Visualization of the attribute predictions for the synthetic buttons in the Dsyn dataset.

Input Preprocessed Predicted Refined
Good predictions

Poor predictions
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Table 7: Visualization of the attribute predictions for the real-world buttons in the Dgplay dataset.

Input Preprocessed Predicted Refined
Good predictions

Poor predictions
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