
Under review as a conference paper at ICLR 2020

SAMPLING-FREE LEARNING OF
BAYESIAN QUANTIZED NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Bayesian learning of model parameters in neural networks is important in sce-
narios where estimates with well-calibrated uncertainty are important. In this pa-
per, we propose Bayesian quantized networks (BQNs), quantized neural networks
(QNNs) for which we learn a posterior distribution over their discrete parameters.
We provide a set of efficient algorithms for learning and prediction in BQNs with-
out the need to sample from their parameters or activations, which not only allows
for differentiable learning in quantized models but also reduces the variance in gra-
dients estimation. We evaluate BQNs on MNIST, Fashion-MNIST and KMNIST
classification datasets compared against bootstrap ensemble of QNNs (E-QNN).
We demonstrate BQNs achieve both lower predictive errors and better-calibrated
uncertainties than E-QNN (with less than 20% of the negative log-likelihood).

1 INTRODUCTION

A Bayesian approach to deep learning considers the network’s parameters to be random variables
and seeks to infer their posterior distribution given the training data. Models trained this way, called
Bayesian neural networks (BNNs) (Wang & Yeung, 2016), in principle have well-calibrated uncer-
tainties when they make predictions, which is important in scenarios such as active learning and
reinforcement learning (Gal, 2016). Furthermore, the posterior distribution over the model parame-
ters provides valuable information for evaluation and compression of neural networks.

There are three main challenges in using BNNs: (1) Intractable posterior: Computing and storing
the exact posterior distribution over the network weights is intractable due to the complexity and
high-dimensionality of deep networks. (2) Prediction: Performing a forward pass (a.k.a. as prob-
abilistic propagation) in a BNN to compute a prediction for an input cannot be performed exactly,
since the distribution of hidden activations at each layer is intractable to compute. (3) Learning:
The classic evidence lower bound (ELBO) learning objective for training BNNs is not amenable to
backpropagation as the ELBO is not an explicit function of the output of probabilistic propagation.

These challenges are typically addressed either by making simplifying assumptions about the distri-
butions of the parameters and activations, or by using sampling-based approaches, which are expen-
sive and unreliable (likely to overestimate the uncertainties in predictions). Our goal is to propose a
sampling-free method which uses probabilistic propagation to deterministically learn BNNs.

A seemingly unrelated area of deep learning research is that of quantized neural networks (QNNs),
which offer advantages of computational efficiency and reduced model size compared to continuous-
valued neural networks. QNNs, like BNNs, face challenges in training, though for different reasons:
(4.1) The non-differentiable activation function is not amenable to backpropagation. (4.2) Training
is not compatible to gradient descent, since their parameters in QNNs are coarsely quantized that
gradient updates cease to be meaningful.

In this work, we combine the ideas of BNNs and QNNs in a novel way that addresses the aforemen-
tioned challenges (1)(2)(3)(4) in training both models. We propose Bayesian quantized networks
(BQNs), models that (like QNNs) have quantized parameters and activations over which they learn
(like BNNs) categorical posterior distributions. BQNs have several appealing properties:

• BQNs solve challenge (1) due to their use of categorical distributions for their model parameters.

1

Under review as a conference paper at ICLR 2020

• BQNs can be trained via sampling-free backpropagation and stochastic gradient ascent of a dif-
ferentiable lower bound to ELBO, which addresses challenges (2), (3) and (4) above.

• BQNs leverage efficient tensor operations for probabilistic propagation, further addressing chal-
lenge (2). We show the equivalence between probabilistic propagation in BQNs and tensor con-
tractions (Kolda & Bader, 2009), and introduce a rank-1 CP tensor decomposition (mean-field
approximation) that speeds up the forward pass in BQNs.

• BQNs provide a tunable trade-off between computational resource and model complexity: using
a refined quantization allows for more complex distribution at the cost of more computation.

• Sampling from a learned BQN provides an alternative way to obtain deterministic QNNs .

In our experiments, we evaluate the expressive power of BQNs and show that BQNs trained using
our sampling-free method have much better-calibrated uncertainty compared with the state-of-the-
art Bootstrap ensemble of quantized neural networks (E-QNN) trained by (Courbariaux et al., 2016).
More impressively, our trained BQNs achieve comparable log-likelihood against Gaussian Bayesian
neural network (BNN) trained with stochastic gradient variational Bayes (SGVB) augmented by
local re-parameterization trick (Shridhar et al., 2019) (the performance of BNN is expected to be
better than BQN since the BNN allows for continuous parameters). We further verify that BQNs
can be easily used to compress (Bayesian) neural networks, and obtain deterministic QNNs. Finally,
we evaluate the effect of mean-field approximation in BQN by comparing with its Monte Carlo
realizations, where no mean-field approximation is used. We show that our sampling-free proba-
bilistic propagation using mean-field approximation achieves similar accuracy and log-likelihood
— justifying the use of mean-field approximation in BQNs.

Related Works. In Appendix A, we survey different approaches for training bf Bayesian neural
networks including sampling-free assumed density filtering (Ghosh et al., 2016; Soudry et al., 2014;
Hernández-Lobato & Adams, 2015; Minka, 2001), sampling-based variational inference (Hinton &
Van Camp, 1993; Graves, 2011; Blundell et al., 2015; Bengio et al., 2013; Maddison et al., 2016;
Jang et al., 2016; Wu et al., 2018; Balan et al., 2015) as well as sampling-free variational infer-
ence (Wu et al., 2018), Quantized Neural Networks Han et al. (2015); Zhu et al. (2016); Cour-
bariaux et al. (2015); Kim & Smaragdis (2016); Zhou et al. (2016); Rastegari et al. (2016); Hubara
et al. (2017); Esser et al. (2015); Peters & Welling (2018); Shayer et al. (2017) and Tensor Net-
works and Tensorial Neural Networks (Grasedyck et al., 2013; Orús, 2014; Cichocki et al., 2016;
2017; Su et al., 2018; Newman et al., 2018; Robeva & Seigal, 2017).

Contributions:

• We propose an alternative evidence lower bound (ELBO) for Bayesian neural networks such that
optimization of the variational objective is compatible with the backpropagation algorithm.

• We introduce Bayesian quantized networks (BQNs), establish a duality between BQNs and hierar-
chical tensor networks, and show prediction a BQN is equivalent to a series of tensor contractions.

• We derive a sampling-free approach for both learning and inference in BQNs using probabilistic
propagation (analytical inference), achieving better-calibrated uncertainty for the learned models.

• We develop a set of fast algorithms to enable efficient learning and prediction for BQNs.

2 BAYESIAN NEURAL NETWORKS

Notation. We use bold letters such as θ to denote random variables, and non-bold letters such as θ
to denote their realizations. We abbreviate Pr[θ = θ] as Pr[θ] and use bold letters in an equation
if the equality holds for arbitrary realizations. For example, Pr[x,y] = Pr[y|x] Pr[x] means
Pr[x = x,y = y] = Pr[y = y|x = x] Pr[x = x],∀x ∈ X , y ∈ Y .

2.1 PROBLEM SETTING

Given a dataset D = {(xn, yn)}Nn=1 of N data points, we aim to learn a neural network with model
parameters θ that predicted the output yn ∈ Y based on the input xn ∈ X . (1) We first solve the
learning problem: to find an approximate posterior distribution Q(θ;φ) over θ with parameters φ
such thatQ(θ;φ) ≈ Pr[θ|D]. (2) We then solve the prediction problem: to compute the predictive
distribution Pr[y|x,D] for arbitrary input x = x given Q(θ;φ). For notational simplicity, we will
omit the conditioning on D and write Pr[y|x,D] as Pr[y|x] in what follows.

2

Under review as a conference paper at ICLR 2020

In order to address the prediction and learning problems in BNNs, we analyze these models in their
general form of hierarchical Bayesian models (shown in Figure 3b in Appendix B). Leth(l), θ(l) and
h(l+1) denote the inputs, model parameters, and outputs of the l-th layer respectively. We assume
that θ(l)’s are layer-wise independent, i.e. Q(θ;φ) =

∏L−1
l=0 Q(θ(l);φ(l)), and that the hidden

variables h(l) follow the Markovian property, i.e. Pr[h(l+1)|h(: l),θ(: l)] = Pr[h(l+1)|h(l),θ(l)].

2.2 THE PREDICTION PROBLEM

Computing the predictive distribution Pr[y|x,D] with a BNN requires marginalizing over the ran-
dom variable θ. The hierarchical structure of BNNs allows this marginalization to be performed in
multiple steps sequentially. In Appendix B, we show that the predictive distribution of h(l+1) given
input x can be obtained from its preceding layer h(l) by

Pr[h(l+1)|x]︸ ︷︷ ︸
P (h(l+1);ψ(l+1))

=

∫
h(l),θ(l)

Pr[h(l+1)|h(l), θ(l)] Q(θ(l);φ(l)) Pr[h(l)|x]︸ ︷︷ ︸
P (h(l);ψ(l))

dh(l)dθ(l) (1)

This iterative process to compute the predictive distributions sequentially, layer-by-layer is known
as probabilistic propagation (Soudry et al., 2014; Hernández-Lobato & Adams, 2015; Ghosh et al.,
2016). With this approach, we need to explicitly compute and store each intermediate result
Pr[h(l)|x] in its parameterized form P (h(l);ψ(l)) (the conditioning on x is hidden in ψ(l), i.e. ψ(l)

is a function of x). Therefore, probabilistic propagation is a deterministic process that computes
ψ(l+1) as a function of ψ(l) and φ(l), which we denote as ψ(l+1) = g(l)(ψ(l), φ(l)).

Challenge in Sampling-Free Probabilistic Propagation. If the hidden variables h(l)’s are contin-
uous, Equation (1) generally can not be evaluated in closed form as it is difficult to find a family P
of parameterized distributions for h(l) such that h(l+1) remains in P under the operations performed
in a neural network layer. Therefore most existing methods consider approximations at each layer
of probabilistic propagation. In Section 4, we will show that this issue can be (partly) addressed if
we consider the h(l)’s to be discrete random variables, as in a BQN.

2.3 THE LEARNING PROBLEM

Objective Function. A standard approach to finding a good approximation Q(θ;φ) is variational
inference, which finds φ? such that the KL-divergence KL(Q(θ;φ)||Pr[θ|D]) from Q(θ;φ) to
Pr[θ|D] is minimized. To minimize this KL-divergence, it is equivalent to maximize an objective
function known as the evidence lower bound (ELBO), denoted as L(φ). In Appendix B, we show
that the ELBO can be expressed as

max
φ
L(φ) = −KL(Q(θ;φ)||Pr[θ|D]) =

N∑
n=1

Ln(φ) +R(φ)

where Ln(φ) = EQ [logPr[yn|xn,θ]] andR(φ) = EQ [log (Pr[θ])] +H(Q)

(2)

Probabilistic Backpropagation. Optimization in neural networks heavily relies on the gradient-
based methods, where the partial derivatives ∂L(φ)/∂φ of the objective L(φ) w.r.t. the parameters
φ are obtained by backpropagation. Formally, if the output produced by a neural network is given
by a (sub-)differentiable function g(φ), and the objective L(g(φ)) is an explicit function of g(φ)
(and not just an explicit function of φ), then the partial derivatives can be computed by chain rule:

∂L(g(φ))

∂φ
=
∂L(g(φ))

∂g(φ)
· ∂g(φ)

∂φ
. (3)

The learning problem can then be (approximately) solved by first-order methods, such as stochastic
gradient descent/ascent. Remarks: (1) For classification, the function g(φ) returns the probabilities
after the softmax function, not the categorical label; (2) An additional regularization term R(φ) on
the parameters will not cause difficulty in backpropagation, if ∂R(φ)/∂φ is easily computed.

Challenge in Sampling-Free Probabilistic Backpropagation. Learning BNNs is not amenable to
standard backpropagation because the ELBO objective function L(φ) in (4b) is not an explicit (i.e.

3

Under review as a conference paper at ICLR 2020

implicit) function of the predictive distribution g(φ) in (4a):

gn(φ) = EQ [Pr[yn|xn,θ]] =

∫
θ

Pr[yn|xn, θ]Q(θ;φ)dθ (4a)

Ln(φ) = EQ [log(Pr[yn|xn,θ])] =

∫
θ

log (Pr[yn|xn, θ])Q(θ;φ)dθ (4b)

Although Ln(φ) is a function of φ, it is not an explicit function of gn(φ). Consequently, the chain
rule in Equation (3) on which backpropagation is based is not directly applicable.

3 PROPOSED LEARNING METHOD FOR BAYESIAN NEURAL NETWORKS

3.1 ALTERNATIVE EVIDENCE LOWER BOUND

We make learning in BNNs amenable to backpropagation by developing a lower bound Ln(φ) ≤
Ln(φ) such that partial derivatives ∂Ln(φ)/∂φ can be obtained by chain rule (i.e. Ln(φ) is an
explicit function of output/intermediate results of the forward pass.) With Ln(φ) in hand, we can
(approximately) find φ? by maximizing the alternative objective via gradient-based methods:

φ? = arg max
φ
L(φ) = arg max

φ

(
R(φ) +

N∑
n=1

Ln(φ)

)
(5)

Theorem 3.1 (Alternative Evidence Lower Bound). Define each term Ln(φ) in L(φ) as

Ln(φ) := Eh(L−1)∼P ; θ(L−1)∼Q
[
log
(
Pr[yn|h(L−1),θ(L−1)]

)]
, (6)

then Ln(φ) is a lower bound of Ln(φ), i.e. Ln(φ) ≤ Ln(φ), and therefore L(φ) ≤ L(φ).

Remarks: The equality Ln(φ) = Ln(φ) holds if either of the following two conditions is met: (1)
Pr[h(L−1)|xn,θ(:L−2)] follows a delta distribution, i.e. the hidden variable h(L−1) is a determinis-
tic given input x and all model parameters before the last layer θ(:L−2); (2) Pr[yn|h(L−1),θ(L−1)]
is constant over the support of Pr[h(L−1)|xn,θ(:L−1)].

We prove theorem 3.1 in Appendix C.1. Notice that if θ(L−1) is not random variable (typical for an
output layer), the alternative objective Ln(φ) can be further simplified as:

Ln(φ) =

∫
h(L−1)

log
(
Pr[yn|h(L−1);φ(L−1)]

)
P (h(L−1);ψ(L−1))dh(L−1) (7)

where we write Pr[h(L−1)|x] in its parameterized form P (h(L−1);ψ(L−1)). Now, the gradi-
ent ∂Ln(φ)/∂φ(L−1) can be obtained by differentiating over Equation (7), while other gradients
∂Ln(φ)/φ(:L−2) further obtained by chain rule:

∂Ln(φ)

∂φ(:L−2)
=

∂Ln(φ)

∂ψ(L−1) ·
∂ψ(L−1)

∂φ(:L−2)
(8)

which requires us to compute ∂Ln(φ)/∂ψ(L−1) and ∂ψ(L−1)/∂φ(:L−2). While ∂Ln(φ)/∂ψ(L−1)

can be derived from Equation (7), ∂ψ(L−1)/∂φ(:L−2) can be obtained by backpropagating outputs
of the (L − 2)th layer obtained from probabilistic propagation in Equation (1). In other words:
since P (h(L−1);ψ(L−1)) is an intermediate step of the forward pass, ψ(L−1) is a function of all
parameters from previous layers φ(:L−2), and if each step ψ(l+1) = g(l)(ψ(l), φ(l)) is differentiable
w.r.t. ψ(l) and φ(l), the partial derivatives ∂ψ(L−1)/∂φ(:L−2) can be obtained by iterative chain rule.

3.2 ANALYTIC FORMS OF Ln(φ) AND ∂Ln(φ)/∂ψ(L−1)

The analysis in Section 3.1 applies to BNNs with arbitrary distributions P on hidden variables
h, Q on model parameters θ, and any problem setting (e.g. classification or regression) depend-
ing on the form of Pr[y|h(L−1),θ(L−1)]. In practice, sampling-free probabilistic backpropaga-
tion requires that the partial derivatives ∂Ln(φ)/∂ψ(L−1) and ∂Ln(φ)/∂φ(L−1) can be analyti-
cally computed. This task is nontrivial and requires redesign of the output layer, i.e. the form of

4

Under review as a conference paper at ICLR 2020

Pr[y|h(L−1),θ(L−1)]. In this part, we present two such designs, one for classification and another
for regression. Since the gradients only involve one layer and one data point, we will omit the scripts
of h(L−1), ψ(L−1), φ(L−1), xn, yn, and denote them as h, ψ, φ, x, y in the following theorems.

Theorem 3.2 (Analytic Form of Ln(φ) for Classification). Let h ∈ RK (with K the number of
classes) be the pre-activations of a softmax layer (a.k.a. logits), and φ = s ∈ R+ be a scaling factor
that adjusts its scale such that Pr[y = c|h, s] = exp(hc/s)/

∑K
k=1 exp(hk/s). Suppose the logits

{hk}Kk=1 are pairwise independent (which holds under mean-field approximation) and hk follows
a Gaussian distribution hk ∼ N (µk, νk) (therefore ψ = {µk, νk}Kk=1) and s is a deterministic
parameter. Then Ln(φ) takes an analytic form:

Ln(φ) =
µc
s
− log

(
K∑
k=1

exp
(µk
s

+
νk
2s2

))
(9)

whose derivatives are ∂Ln(φ)
∂µk

= − 1
s

(
exp(µk/s+νk/2s

2)∑K
k=1 exp(µk/s+νk/2s2)

− 1[k = c]

)
where 1[k = c] is an

indicator function, and ∂Ln(φ)
∂νk

= − 1
2s2

(
exp(µk/s+νk/2s

2)∑K
k=1 exp(µk/s+νk/2s2)

)
.

Theorem 3.3 (Analytic Form of Ln(φ) for Regression). Let h ∈ RI be the output of last hidden
layer (with I the number of hidden units), and φ = (w, s) ∈ RI × R+ be the parameters that de-
fine the predictive distribution over output y as Pr[y|h;w, s] = 1/

√
2πs exp

(
−(y − w>h)2/2s

)
.

Suppose the hidden units {hk}Kk=1 are pairwise independent (which holds under mean-field approx-
imation), and each hi has mean µi and variance νi, then Ln(φ) takes an analytic form:

Ln(φ) = − (y − w>µ)2 + (w◦2)>ν
2s

− log(2πs)

2
(10)

where (w◦2)i = w2
i . The derivatives are ∂Ln(φ)

∂µ = − (y−w>µ)w
s and ∂Ln(φ)

∂ν = −w
◦2

2s .

The proofs for both theorems are deferred to Appendix C.2 and C.3.

4 BAYESIAN QUANTIZED NETWORKS (BQNS)

In Section 3 we provided a general solution to the problems of prediction and learning in BNNs, but
this solution relies on the ability to perform probabilistic propagation efficiently. To address this,
we introduce Bayesian quantized networks (BQNs) — Bayesian neural networks where both hidden
units h(l)’s and model parameters θ(l)’s take integer values — along with a set of novel algorithms
for efficient sampling-free probabilistic propagation in BQNs.

4.1 PROBABILISTIC PROPAGATION AS TENSOR CONTRACTIONS

For simplicity of exposition, we assume all activations and model parameters take values in the same
discrete set Q, and denote the degree of quantization as D = |Q|, e.g. Q = {−1, 1}, D = 2.

Lemma 4.1 (Probabilistic Propagation in BQNs). After quantization, the iterative step of proba-
bilistic propagation in Equation (1) is computed with a finite sum instead of an integral:

P (h(l+1);ψ(l+1)) =
∑

h(l),θ(l)
Pr[h(l+1)|h(l), θ(l)] Q(θ(l);φ(l)) P (h(l);ψ(l)) (11)

and a categorically distributed h(l) results in h(l+1) being categorical as well. The equation holds
without any assumption on the operation Pr[h(l+1)|h(l), θ(l)] performed in the neural network.

All probability distributions in Equation (11) are high-order tensors. Suppose there are I input
units, J output units, and K model parameters at the l-th layer, then h(l) ∈ QI , θ(l) ∈ QK ,
and h(l+1) ∈ QJ , and their distributions are characterized by P (h(l);ψ(l)) ∈ RDI

, Q(θ(l);φ(l))

∈ RDK

, P (h(l+1);ψ(l+1)) ∈ RDJ

, and Pr[h(l+1)|h(l),θ(l)] ∈ RDJ×DI×DK

respectively. There-
fore, each step in probabilistic propagation is a tensor contraction of three tensors, which establishes
the duality between BQNs and hierarchical tensor networks (Robeva & Seigal, 2017).

5

Under review as a conference paper at ICLR 2020

Since tensor contractions are differentiable w.r.t. all inputs, BQNs thus circumvent the difficulties
involved in training QNNs (Courbariaux et al., 2015; Rastegari et al., 2016), whose outputs are
not differentiable w.r.t. their parameters. This result is not surprising: if we consider learning in
QNNs as an integer programming (IP) problem, solving its Bayesian counterpart is equivalent to the
standard approach to relaxing an IP problem into a continuous optimization problem.

Complexity of Exact Propagation. The computational complexity to evaluate Equation (11) is
exponential in the number of random variables O(DIJK), which is intractable for quantized neural
network of any reasonable size. We thus turn to approximations.

4.2 APPROXIMATE PROPAGATION VIA RANK-1 TENSOR CP DECOMPOSITION

A principled way to solve the “curse of dimensionality” in probabilistic propagation in BQNs is
tensor decomposition, where an intractable high-order probability tensor is factored into tractable
lower-order factors (Cichocki et al., 2016). In this paper, we consider the simplest rank-1 CP de-
composition (Kolda & Bader, 2009) (equivalent to the mean-field approximation (Wainwright et al.,
2008)), where the joint distributions of P and Q are fully factorized into products of their marginal
distributions. With rank-1 CP decomposition on P (h(l);ψ(l),∀l ∈ [L], the tensor contraction in (11)
reduces to a standard Tucker contraction (Kolda & Bader, 2009)

P (h
(l+1)
j ;ψ

(l+1)
j) ≈

∑
h(l),θ(l)

Pr[h
(l+1)
j |θ(l), h(l)]

∏
k
Q(θ

(l)
k ;φ

(l)
k)

∏
i
P (h

(l)
i ;ψ

(l)
i) (12)

where each term of ψ(l)
i , φ(l)k parameterizes a single categorical variable. In our implementation, we

choose the natural reduced form, i.e. Q(θ
(l)
k = Q(d)) = exp(ψ

(l)
k (d))/

∑D
q=1 exp(φ

(l)
k (q)).

Complexity of Approximate Propagation and Fan-in Number E. In a practical model, each
output unit h(l+1)

j only depends on a subset of input units {h(l)
i } and parameters {θ(h)k }. Denote

the numbers of responsible input units and parameters as I(j) and M(j), and define the fan-in
number E as maxj(I(j)+M(j)). Then the computational complexity of approximate propagation
is reduced from O(DIJK) to O(JDE), which is linear in the number of output units J .

4.3 FAST ALGORITHMS FOR TENSOR CONTRACTIONS

Small Fan-in: Direct Tensor Contraction. If E is small, tensor contraction in Equation (12) is im-
mediately applicable. Representative cases of small E are shortcut layer (a.k.a. skip-connection)
and depth-wise layers. (1) In a shortcut layer, h(l+1) is an addition of two previous layers
h(l) and h(m), and the distribution of h(l+1) can be directly computed as P (h

(l+1)
i ;ψ

(l+1)
i) =∑

h
(l)
i ,h

(m)
i

δ[h
(l+1)
i = h

(l)
i + h

(m)
i] P (h

(l)
i ;ψ

(l)
i) P (h

(m)
i ;ψ

(m)
i).

(2) In a depth-wise layer, eachh(l+1)
i is a transformation (parameterized by θ(l)i) of its corresponding

h
(l)
i : i.e. P (h

(l+1)
i ;ψ

(l+1)
i) =

∑
h
(l)
i ,θ

(l)
i

Pr[h
(l+1)
i |h(l)i , θ

(l)
i] Q(θ

(l)
i ;φ

(m)
i) P (h

(l)
i ;ψ

(l)
i). Depth-

wise layers include dropout layers (where θ(l) are dropout rates), nonlinear layers (where θ(l) are
threshold values) or element-wise product layers (where θ(l) are the weights). For both shortcut and
depth-wise layers, the time complexity is O(JD2) since E <= 2.

Medium Fan-in: Discrete Fourier Transform. Summation of discrete random variables is equiv-
alent to convolution of their probability mass function, and therefore can be efficiently evaluated via
fast Fourier transform. Let ui take values in {bi, bi + 1, . . . , Bi} between integers bi and Bi. Then
the summation v =

∑E
i=1 ui takes values between b andB, where b =

∑E
i=1 bi andB =

∑E
i=1Bi.

Theorem 4.2 (Fast summation via discrete Fourier transform). Let Cv , Cui be the discrete
Fourier transforms of P v , Pui respectively, i.e. Cv(f) =

∑B
v=b P

v(v) exp(−j2π(v − b)f/(B −
b + 1)) and Cui(f) =

∑Bi

ui=bi
Pui(ui) exp(−j2π(ui − bi)f/(Bi − bi + 1)). Then Cv(f) is the

element-wise product of all Fourier transforms Cui(f), i.e. Cv(f) =
∏E
i=1 C

ui(f),∀f .

We prove the Lemma 4.2 in Appendix D.2. By with the fast Fourier transform, the probability mass
function of v can be computed as P v = IFFT(

∏E
i=1 FFT(Pui)) , which takes O(E2D log(ED))

time with fan-in number E instead of O(DE) with direct tensor contraction.

6

Under review as a conference paper at ICLR 2020

Large Fan-in: Lyapunov Central Limit Theorem. In a typical linear layer, the fan-in E is large,
and a super-quadratic algorithm using fast Fourier transform is still computational expensive. There-
fore, we derive a faster algorithm in Appendix D based on the Lyapunov central limit theorem.

Theorem 4.3 (Fast summation via Lyapunov Central Limit Theorem). Let v = σ(ṽ) =
σ(
∑
i∈I θiui) is activations of a hidden layer computed via a nonlinearity σ. Suppose both in-

puts {θi}i∈I and parameters {ui}i∈I have bounded variance, then for sufficiently large |I| the
distribution of ṽ converges to a Gaussian distribution N (µ̃, ν̃), with mean µ̃ =

∑
i∈I E[θi]E[ui]

and variance ν̃ =
∑
i∈I(E[θi]

2V[ui]+E[h
(l)
i]2V[θi]+V[ui]V[θi]). And if the nonlinear transform

σ is a sign function, the activation v follows a Bernoulli distribution P (v = 1) = Φ(µ̃/
√
ν̃), where

Φ is the culminative probability function of a standard Gaussian distribution N (0, 1).

Remarks: With theorem 4.3, performing one addition operation with fan-in E takes only O(ED).
While CLT is always faster than the DFT of Theorem 4.2,the Gaussian approximation does not hold
if E is not sufficiently large. Therefore, depending on computational resources, one can adopt CLT
for linear layers with sufficiently large E, such as fully connected layer and convolutional layers,
and DFT for those with smaller E, such as average pooling layer.

5 EXPERIMENTS

In this section, we demonstrate the effectiveness of BQNs on the MNIST, Fashion-MNIST and
KMNIST image classification datasets, each of which contains 50, 000 training and 10, 000 test
samples of 28 × 28 gray-scale images. In training, each image is augmented by a random shift
within 2 pixels, and no augmentation is used in testing. In the experiments, we consider a class of
quantized neural networks, with both binary weights and activations (i.e. Q = {−1, 1}) with sign
activations σ(·) = sign(·). For BQNs, the distribution parameters φ were initialized by Xavier’s
uniform initializer, and all models are trained by ADAM optimizer (Kingma & Ba, 2014) for 100
epochs with batch size 100 and initial learning rate 10−2, which decays by 0.98 per epoch.

Network Architectures and Training Objective of BQNs. We evaluate our BQNs with both multi-
layer perceptron (MLP) and convolutional neural network (CNN) models. For MLP, we use a 3-
layers network with 512 units in the first layer and 256 units in the second; and for CNN, we use a
4-layers network with two 5 × 5 convolutional layers with 64 channels followed by 2 × 2 average
pooling, and two fully-connected layers with 1024 hidden units.

To allow for customized level of uncertainty in the learned Bayesian models, we introduce a regu-
larization coefficient λ in the alternative ELBO proposed in Equation (5) (i.e. a lower bound of the
likelihood), and train the BQNs by maximizing the following objective:

L(φ) =

N∑
n=1

Ln(φ) + λR(φ) = λ

(
1/λ

N∑
n=1

Ln(φ) +R(φ)

)
(13)

where λ controls the uncertainty level, i.e. the importance weight of the prior over the training set.

Baseline. We compare our BQN against the baseline – Bootstrap ensemble of quantized neural net-
works (E-QNN). Each member in the ensemble is trained with in a non-Bayesian way (Courbariaux
et al., 2016), and jointly make the prediction by averaging over the logits from all members.

To exhibit the effectiveness of our BQN, we compare against continuous-valued Bayesian neural
network (abbreviated as BNN), with Gaussian distributed parameters. The model is with stochastic
gradient variational Bayes (SGVB) augmented by local re-parameterization trick (Shridhar et al.,
2019). Since the BNN allows for continuous parameters (different from the BQN which has quan-
tized parameters), the predictive error is expected to be lower than BQN.

Evaluation of BQNs. While 0-1 test error is a popular metric to measure the predictive perfor-
mance, it is too coarse a metric to assess the uncertainty in decision making (for example it does
not account for how badly the wrong predictions are). Therefore, we will mainly use the negative
log-likelihood (NLL) to measure the predictive performance in the experiments.

Once a BQN is trained (i.e. an approximate posterior Q(θ) is learned), we consider three modes to
evaluate the behavior of the model: (1) analytic inference (AI), (2) Monte Carlo (MC) sampling and
(3) Maximum a Posterior (MAP) estimation:

7

Under review as a conference paper at ICLR 2020

1. In analytic inference (AI, i.e. our proposed method), we analytically integrate overQ(θ) to obtain
the predictive distribution as in the training phase. Notice that the exact NLL is not accessible
with probabilistic propagation (which is why we propose an alternative ELBO in Equation (5)),
we will report an upper bound of the NLL in this mode.

2. In MC sampling, S sets of model parameters are drawn independently from the posterior pos-
terior θs ∼ Q(θ),∀s ∈ [S], and the forward propagation is performed as in (non-Bayesian)
quantized neural network for each set θs, followed by an average over the model outputs. The
difference between analytic inference and MC sampling will be used to evaluate (a) the effect of
mean-field approximation and (b) the tightness of the our proposed alternative ELBO.

3. MAP estimation is similar to MC sampling, except that only one set of model parameters θ?
is obtained θ? = arg maxθ Q(θ). We will exhibit our model’s ability to compress a Bayesian
neural network by comparing MAP estimation of our BQN with non-Bayesian QNN.

5.1 ANALYSIS OF RESULTS

Methods MNIST KMNIST Fashion-MNIST
NLL(10−3) % Err. NLL(10−3) % Err. NLL(10−3) % Err.

Ensemble-QNN on MLP 546.60±157.90 3.30±0.65 2385.60±432.30 17.88±1.86 2529.40±276.70 13.02±0.81
Our BQN on MLP 130.00±3.50 2.49±0.08 457.70±13.80 13.41±0.12 417.30±8.10 9.99±0.20
Ensemble-QNN on CNN 425.3±61.80 0.85±0.13 3755.70±465.10 11.49±1.16 1610.70±158.40 3.02±0.37
Our BQN on CNN 41.80±1.60 0.85±0.06 295.50±1.40 9.95±0.15 209.50±2.80 4.65±0.15

Table 1: Comparison of performance of BQNs against the baseline E-QNN. Each E-QNN is an
ensemble of 10 networks, which are trained individually and but make predictions jointly. We report
both NLL (which accounts for prediction uncertainty) and 0-1 test error (which doesn’t account for
prediction uncertainty). All the numbers are averages over 10 runs with different seeds, the standard
deviation are exhibited following the ± sign.

Expressive Power and Uncertainty Calibration in BQNs. We report the performance via all
evaluations of our BQN models against the Ensemble-QNN in Table 1 and Figure 1. (1) Com-
pared to E-QNNs, our BQNs have significantly lower NLL and smaller predictive error (except for
Fashion-MNIST with architecture CNN). (2) As we can observe in Figure 1, BQNs impressively
achieve comparable NLL to continuous-valued BNN, with slightly higher test error. As our model
parameters only take values {−1, 1}, small degradation in predictive accuracy is expected.

10−4 10−3

101.5

102

102.5

λ level of model uncertainty

N
L

L

BNN
E-QNN
BQN

(a) NLL MNIST

10−4 10−3

103

104

λ level of model uncertainty

N
L

L

BNN
E-QNN
BQN

(b) NLL FMNIST

10−4 10−3

102.5

103

λ level of model uncertainty

N
L

L

BNN
E-QNN
BQN

(c) NLL KMNIST

10−4 10−3

0.7

0.8

0.9

λ level of model uncertainty

Pe
rc

en
ta

ge
E

rr
or

BNN
E-QNN
BQN

(d) Error MNIST

10−4 10−3
8

10

12

14

16

λ level of model uncertainty

Pe
rc

en
ta

ge
E

rr
or

BNN
E-QNN
BQN

(e) Error FMNIST

10−4 10−3

3

3.5

4

4.5

5

λ level of model uncertainty

Pe
rc

en
ta

ge
E

rr
or

BNN
E-QNN
BQN

(f) Error KMNIST

Figure 1: Comparison of the predictive performance of our BQNs against the E-QNN as well as the
non-quantized BNN trained by SGVB on a CNN. Negative log-likelihood (NLL) which accounts
for uncertainty and 0-1 test error which doesn’t account for uncertainty are displayed.

8

Under review as a conference paper at ICLR 2020

Evaluations of Mean-field Approximation and Tightness of the Alternative ELBO. If analytic
inference (by probabilistic propagation) were computed exactly, the evaluation metrics would have
been equal to the ones with MC sampling (with infinite samples). Therefore we can evaluate the
approximations in probabilistic propagation, namely mean-field approximation in Equation (12) and
relaxation of the original ELBO in Equation (5), by measuring the gap between analytic inference
and MC sampling. As shown in Figure 2, such gaps are small for all scenarios, which justifies the
approximations we use in BQNs.

10−6 10−5 10−4 10−3

20

30

40

50

60

λ level of model uncertainty

N
L

L

Monte Carlo Sampling
Analytical Inference
Difference

(a) NLL MNIST

10−4 10−3
0

100

200

300

λ level of model uncertainty

N
L

L

Monte Carlo Sampling
Analytical Inference
Difference

(b) NLL FMNIST

10−4 10−3

50

100

150

200

λ level of model uncertainty

N
L

L

Monte Carlo Sampling
Analytical Inference
Difference

(c) NLL KMNIST

10−6 10−5 10−4 10−3

0

0.2

0.4

0.6

0.8

1

λ level of model uncertainty

Pe
rc

en
ta

ge
E

rr
or

Monte Carlo Sampling
Analytical Inference
Difference

(d) Error MNIST

10−4 10−3
0

2

4

6

8

10

λ level of model uncertainty

Pe
rc

en
ta

ge
E

rr
or

Monte Carlo Sampling
Analytical Inference
Difference

(e) Error FMNIST

10−4 10−3
0

1

2

3

4

5

λ level of model uncertainty
Pe

rc
en

ta
ge

E
rr

or

Monte Carlo Sampling
Analytical Inference
Difference

(f) Error KMNIST

Figure 2: Illustration of mean-field approximation and tightness of alternative ELBO on a CNN.
The performance gap between our analytical inference and the Monte Carlo Sampling is displayed.

To further decouple these two factors of mean-field approximation and relaxation of the original
ELBO, we vary the regularization coefficient λ in the learning objective (13). (1) For λ = 0 (where
the prior term is removed), the models are forced to become deterministic during training. Since the
deterministic models do not have mean-field approximation in the forward pass, the gap between an-
alytic inference and MC-sampling reflects the tightness of our alternative ELBO. (2) As λ increases,
the gaps increases slightly as well, which shows that the mean-field approximation becomes slightly
less accurate with higher learned uncertainty in the model.

Methods MNIST KMNIST Fashion-MNIST
NLL(10−3) % Err. NLL(10−3) % Err. NLL(10−3) % Err.

QNN on MLP 522.4±42.2 4.14±0.25 2019.1±281.2 19.56±1.97 2427.1±193.5 15.67±1.19
MAP of BQN on MLP 137.60±4.40 3.69±0.09 464.60±12.80 14.79±0.21 461.30±13.40 12.89±0.17
QNN on CNN 497.4±139.5 1.08±0.2 4734.5±1697.2 14.2±2.29 1878.3±223.8 3.88±0.33
MAP of BQN on CNN 30.3±1.6 0.92±0.07 293.6±4.4 10.82±0.37 179.1±4.4 5.00±0.11

Table 2: Deterministic model compression through direct training of QNN (Courbariaux et al.,
2016) v.s. MAP estimation in our proposed BQN. All the numbers are averages over 10 runs with
different seeds, the standard deviation are exhibited following the ± sign.

Compression of Neural Networks via BQNs. One advantage of BQNs over continuous-valued
BNNs is that deterministic QNNs can be obtained for free, since a BQN can be interpreted as an
ensemble of infinite QNNs (each of which is a realization of posterior distribution). (1) One simple
approach is to set the model parameters to their MAP estimates, which compresses a given BQN to
1/64 of its original size (and has the same number of bits as a single QNN). (2) MC sampling can be
interpreted as another approach to compress a BQN, which reduces the original size to its S/64 (with
the same number of bits as an ensemble of S QNNs). In Tables 2 and 3, we compare the models
by both approaches to their counterparts (a single QNN for MAP, and E-QNN for MC sampling)
trained from scratch as in Courbariaux et al. (2016). For both approaches, our compressed models
outperform their counterparts (in NLL) . We attribute this to two factors: (a) QNNs are not trained

9

Under review as a conference paper at ICLR 2020

Methods MNIST KMNIST Fashion-MNIST
NLL(10−3) % Err. NLL(10−3) % Err. NLL(10−3) % Err.

E-QNN on MLP 546.60±157.90 3.30±0.65 2385.60±432.30 17.88±1.86 2529.40±276.70 13.02±0.81
MC of BQN on MLP 108.9±2.6 2.73±0.09 429.50±11.60 13.83±0.12 385.30±5.10 10.81±0.44
E-QNN on CNN 425.3±61.80 0.85±0.13 3755.70±465.10 11.49±1.16 1610.70±158.40 3.02±0.37
MC of BQN on CNN 29.2±0.6 0.87±0.04 286.3±2.7 10.56±0.14 174.5±3.6 4.82±0.13

Table 3: Bayesian Model compression through direct training of Ensemble-QNN vs a Monte-Carlo
sampling on our proposed BQN. Each ensemble consists of 5 quantized neural networks, and for
fair comparison we use 5 samples for Monte-Carlo evaluation. All the numbers are averages over
10 runs with different seeds, the standard deviation are exhibited following the ± sign.

in a Bayesian way, therefore the uncertainty is not well calibrated; and (b) Non-differentiable QNNs
are unstable to train. Our compression approaches via BQNs simultaneously solve both problems.

6 CONCLUSION

We present a sampling-free, backpropagation-compatible, variational-inference-based approach for
learning Bayesian quantized neural networks (BQNs). We develop a suite of algorithms for efficient
inference in BQNs such that our approach scales to large problems. We evaluate our BQNs by
Monte-Carlo sampling, which proves that our approach is able to learn a proper posterior distribution
on QNNs. Furthermore, we show that our approach can also be used to learn (ensemble) QNNs by
taking maximum a posterior (or sampling from) the posterior distribution.

REFERENCES

Anoop Korattikara Balan, Vivek Rathod, Kevin P Murphy, and Max Welling. Bayesian dark knowl-
edge. In Advances in Neural Information Processing Systems, pp. 3438–3446, 2015.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in
neural networks. arXiv preprint arXiv:1505.05424, 2015.

Andrzej Cichocki, Namgil Lee, Ivan V Oseledets, Anh Huy Phan, Qibin Zhao, and D Mandic.
Low-rank tensor networks for dimensionality reduction and large-scale optimization problems:
Perspectives and challenges part 1. arXiv preprint arXiv:1609.00893, 2016.

Andrzej Cichocki, Anh-Huy Phan, Qibin Zhao, Namgil Lee, Ivan Oseledets, Masashi Sugiyama,
Danilo P Mandic, et al. Tensor networks for dimensionality reduction and large-scale optimiza-
tion: Part 2 applications and future perspectives. Foundations and Trends R© in Machine Learning,
9(6):431–673, 2017.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep neural
networks with binary weights during propagations. In Advances in neural information processing
systems, pp. 3123–3131, 2015.

Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks: Training deep neural networks with weights and activations constrained to+ 1
or-1. arXiv preprint arXiv:1602.02830, 2016.

Steve K Esser, Rathinakumar Appuswamy, Paul Merolla, John V Arthur, and Dharmendra S Modha.
Backpropagation for energy-efficient neuromorphic computing. In Advances in Neural Informa-
tion Processing Systems, pp. 1117–1125, 2015.

Yarin Gal. Uncertainty in Deep Learning. PhD thesis, University of Cambridge, 2016.

Soumya Ghosh, Francesco Maria Delle Fave, and Jonathan S Yedidia. Assumed density filtering
methods for learning bayesian neural networks. In AAAI, pp. 1589–1595, 2016.

10

Under review as a conference paper at ICLR 2020

Lars Grasedyck, Daniel Kressner, and Christine Tobler. A literature survey of low-rank tensor
approximation techniques. GAMM-Mitteilungen, 36(1):53–78, 2013.

Alex Graves. Practical variational inference for neural networks. In Advances in neural information
processing systems, pp. 2348–2356, 2011.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

José Miguel Hernández-Lobato and Ryan Adams. Probabilistic backpropagation for scalable learn-
ing of bayesian neural networks. In International Conference on Machine Learning, pp. 1861–
1869, 2015.

Geoffrey E Hinton and Drew Van Camp. Keeping the neural networks simple by minimizing the
description length of the weights. In Proceedings of the sixth annual conference on Computational
learning theory, pp. 5–13. ACM, 1993.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Quantized
neural networks: Training neural networks with low precision weights and activations. Journal
of Machine Learning Research, 18:187–1, 2017.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016.

Mohammad Khan. Variational learning for latent Gaussian model of discrete data. PhD thesis,
University of British Columbia, 2012.

Minje Kim and Paris Smaragdis. Bitwise neural networks. arXiv preprint arXiv:1601.06071, 2016.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM review, 51(3):
455–500, 2009.

Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous
relaxation of discrete random variables. arXiv preprint arXiv:1611.00712, 2016.

Thomas Peter Minka. A family of algorithms for approximate Bayesian inference. PhD thesis,
Massachusetts Institute of Technology, 2001.

Elizabeth Newman, Lior Horesh, Haim Avron, and Misha Kilmer. Stable tensor neural networks for
rapid deep learning, 2018.

Román Orús. A practical introduction to tensor networks: Matrix product states and projected
entangled pair states. Annals of Physics, 349:117–158, 2014.

Jorn WT Peters and Max Welling. Probabilistic binary neural networks. arXiv preprint
arXiv:1809.03368, 2018.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. In European Conference on Computer
Vision, pp. 525–542. Springer, 2016.

Elina Robeva and Anna Seigal. Duality of graphical models and tensor networks. Information and
Inference: A Journal of the IMA, 2017.

Oran Shayer, Dan Levi, and Ethan Fetaya. Learning discrete weights using the local reparameteri-
zation trick. arXiv preprint arXiv:1710.07739, 2017.

Kumar Shridhar, Felix Laumann, and Marcus Liwicki. A comprehensive guide to bayesian convo-
lutional neural network with variational inference. arXiv preprint arXiv:1901.02731, 2019.

11

Under review as a conference paper at ICLR 2020

Daniel Soudry, Itay Hubara, and Ron Meir. Expectation backpropagation: Parameter-free train-
ing of multilayer neural networks with continuous or discrete weights. In Advances in Neural
Information Processing Systems, pp. 963–971, 2014.

Jiahao Su, Jingling Li, Bobby Bhattacharjee, and Furong Huang. Tensorized spectrum preserving
compression for neural networks. arXiv preprint arXiv:1805.10352, 2018.

Martin J Wainwright, Michael I Jordan, et al. Graphical models, exponential families, and variational
inference. Foundations and Trends R© in Machine Learning, 1(1–2):1–305, 2008.

Hao Wang and Dit-Yan Yeung. Towards bayesian deep learning: A survey. arXiv preprint
arXiv:1604.01662, 2016.

Anqi Wu, Sebastian Nowozin, Edward Meeds, Richard E Turner, José Miguel Hernández-Lobato,
and Alexander L Gaunt. Fixing variational bayes: Deterministic variational inference for bayesian
neural networks. arXiv preprint arXiv:1810.03958, 2018.

Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-net: Train-
ing low bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint
arXiv:1606.06160, 2016.

Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally. Trained ternary quantization. arXiv
preprint arXiv:1612.01064, 2016.

12

Under review as a conference paper at ICLR 2020

Appendix: Sampling-Free Learning of
Bayesian Quantized Neural Networks

A RELATED WORK

Bayesian Neural Networks Various types of approaches have been proposed to learn the posterior
distribution over model parameters in neural networks.

(1) Sampling-free Assumed Density Filtering (ADF), including EBP Soudry et al. (2014) and
PBP (Hernández-Lobato & Adams, 2015), is an online algorithm which (approximately) updates
the posterior distribution by Bayes’ rule for each observation. If the model parameters θ are Gaus-
sian distributed, Minka (2001) shows that the Bayes’ rule can be computed in analytic form based
on ∂ log(gn(φ))/∂φ, and EBP Soudry et al. (2014) derives a similar rule for Bernoulli parameters
in binary classification. Notice that ADF is compatible to backpropagation:

∂log(gn(φ))

∂φ
=

1

gn(φ)
· ∂gn(φ)

∂φ
(14)

assuming gn(φ) can be (approximately) computed by probabilistic propagation as in Section 2.
However, this approach has two major limitations: the Bayes’ rule needed to be derived case by
case, and analytic rule for most common cases are not known yet. Second, it is not compatible to
modern optimization methods (such as SGD or ADAM) as the optimization is solved analytically
for each data point, therefore difficult to cope with large-scale statistical models.

(2) Sampling-based Variational inference (SVI), formulates an optimization problem and solves it
approximately via stochastic gradient descent (SGD) (Hinton & Van Camp, 1993; Graves, 2011;
Blundell et al., 2015). The most popular method among all is, Stochastic Gradient Variational Bayes
(SGVB), which approximates Ln(φ) by the average of multiple samples (Blundell et al., 2015).
Before each step of learning or prediction, a number of independent samples of model parameters
{θs}Ss=1 are drawn according to the current estimate of Q, i.e. θs

i.i.d∼ Q. Then both the predictive
function gn(φ) and the loss Ln(φ) can be approximated by

gn(φ) ≈ 1

S

S∑
s=1

Pr[yn|xn, θs] =
1

S

S∑
s=1

fn(θs) (15a)

Ln(φ) ≈ 1

S

S∑
s=1

log (Pr[yn|xn, θs]) =
1

S

S∑
s=1

log (fn(θs)) (15b)

where fn(θ) = Pr[yn|xn, θ] denotes the predictive function given a specific realization θ of the
model parameters. The gradients of Ln(φ) can now be approximated as

∂Ln(φ)

∂φ
≈ 1

S

S∑
s=1

∂Ln(φ)

∂fn(θs)
· ∂fn(θs)

∂θs
· ∂θs
∂φ

(16)

This approach has multiple drawbacks: (1) Repeated sampling suffers from high variance, besides
being computationally expensive in both learning and prediction phases; (2) While gn(φ) is differ-
entiable w.r.t. φ, fn(θ) may not be differentiable w.r.t. θ. One such example is quantized neural
networks, whose backpropagation is approximated by straight through estimator (Bengio et al.,
2013). (3) The partial derivatives ∂θs/∂φ are difficult to compute with complicated reparameteri-
zation tricks (Maddison et al., 2016; Jang et al., 2016).

(3) Deterministic Variational inference (DVI) Wu et al. (2018) Our approach is most similar to Wu
et al. (2018), which observes that if the underlying model is deterministic, i.e. Pr[h(l+1)|h(l),θ(l)]
is a Dirac function

Ln(φ) := Eh(L−1)∼P ; θ(L−1)∼Q
[
log
(
Pr[yn|h(L−1),θ(L−1)]

)]
(17)

Our approach considers a wider scope of problem settings, where the model could be stochastic,
i.e. Pr[h(l+1)|h(l),θ(l)] is an arbitrary function. Furthermore, Wu et al. (2018) considers the case
that the model parameters θ are Gaussian distributed, whose probabilistic propagation is hard to
approximate.

13

Under review as a conference paper at ICLR 2020

Quantized Neural Networks These models can be categorized into two classes: (1) Partially
quantized networks, where only weights are discretized Han et al. (2015); Zhu et al. (2016); (2)
Fully quantized networks, where both weights and hidden units are quantized (Courbariaux et al.,
2015; Kim & Smaragdis, 2016; Zhou et al., 2016; Rastegari et al., 2016; Hubara et al., 2017).
While both classes provide compact size, low-precision neural network models, fully quantized
networks further enjoy fast computation provided by specialized bit-wise operations. In general,
quantized neural networks are difficult to train due to their non-differentiability. Gradient descent
by backpropagation is approximated by either straight-through estimators Bengio et al. (2013) or
probabilistic methods Esser et al. (2015); Shayer et al. (2017); Peters & Welling (2018). Unlike
these papers, we focus on Bayesian learning of fully quantized networks in this paper.

Tensor Networks and Tensorial Neural Networks Tensor networks (TNs) are widely used in
numerical analysis Grasedyck et al. (2013), quantum physiscs Orús (2014), and recently machine
learning Cichocki et al. (2016; 2017) to model interactions among multi-dimensional random ob-
jects. Various tensorial neural networks (TNNs) Su et al. (2018); Newman et al. (2018) have been
proposed that reduce the size of neural networks by replacing the linear layers with TNs. Recently,
Robeva & Seigal (2017) points out the duality between probabilistic graphical models (PGMs) and
TNs. I.e. there exists a bijection between PGMs and TNs. Our paper advances this line of thinking
by connecting hierarchical Bayesian models (e.g. Bayesian neural networks) and hierarchical TNs.

B SUPERVISED LEARNING WITH BAYESIAN NEURAL NETWORKS (BNNS)

The problem settings of general Bayesian model and Bayesian neural networks for supervised learn-
ing are illustrated in Figures 3a and 3b.

...

x1

y1

x2

y2

xN

yN

x

y

θ

1

(a) Graphical model depiction of the problem
setting in Bayesian neural networks.

...

...x

θ(0)

h(1)

θ(1)

h(2)

θ(L−1)

y

1

(b) Graphical model depiction of a Bayesian neural network
as a hierarchical model, where predicting y from x can be
performed iteratively through the hidden variables h(l)’s.

Figure 3: Graphical models.

General Bayesian model Formally, the graphical model in Figure 3a implies the joint distribution
of the model parameters θ, the observed dataset D = {(xn, yn)}Nn=1 and any unseen data point
(x,y) is factorized as follows:

Pr[x,y,D,θ] = (Pr[y|x,θ]Pr[x] (Pr[D|θ]))Pr[θ] (18)

=

(
Pr[y|x,θ]Pr[x]

(
N∏
n=1

Pr[yn|xn,θ]Pr[xn]

))
Pr[θ] (19)

where Pr[xi]’s and Pr[x] are identically distributed, and so are the conditional distributions
Pr[yi|xi,θ]’s and Pr[y|x,θ]. In other words, we assume that (1) the samples (xn, yn)’s (and
unseen data point (x,y)) are are identical and independent distributed according to the same data
distribution; and (2) xn (or x) and θ together predict the output yn (or y) according to the same
conditional distribution. Notice that the factorization above also implies the following equations:

Pr[y|x,D,θ] = Pr[y|x,θ] (20a)
Pr[θ|x,D] = Pr[θ|D] (20b)

Without these implications, the posterior predictive distribution Pr[y|x,D] can now expanded as:

Pr[y|x,D] =

∫
θ

Pr[y|x, θ,D]Pr[θ|x,D]dθ =

∫
θ

Pr[y|x, θ]Pr[θ|D]︸ ︷︷ ︸
≈Q(θ; φ)

dθ (21)

14

Under review as a conference paper at ICLR 2020

where we also assume the posterior distribution Pr[θ|D] is (approximately) characterized by a pa-
rameterized distribution Q(θ;φ).

Variational Learning The reason we are learning an approximate posterior Q and not the exact
distribution Pr[θ|D] is that for complex models the latter is intractable to compute. The exact
posterior Pr[θ|D] generally does not take the form of Q(θ;φ) even if its prior Pr[θ] does.

A standard approach to finding a good approximation Q(θ;φ) is variational inference, which finds
φ? such that the KL-divergence KL(Q(θ;φ)||Pr[θ|D]) of Q(θ;φ) from Pr[θ|D] is minimized (or
alternatively the negative KL-divergence is maximized.)

φ? = arg max
φ

(−KL(Q(θ;φ)||Pr[θ|D])) (22)

= arg max
φ

(
−
∫
θ

Q(θ;φ) log

(
Q(θ;φ)

Pr[θ|D]

)
dθ

)
(23)

where Pr[θ|D] is obtained via standard Bayes’ rule, i.e. Pr[θ|D] = Pr[D|θ]Pr[θ]/Pr[D]. Now
we are able to decompose the maximization objective into two terms by plugging the rule into (23):

L(φ) = −
∫
θ

Q(θ;φ) log

(
Q(θ;φ) · Pr[D]

Pr[θ]Pr[D|θ]

)
dθ (24)

=

N∑
n=1

∫
θ

log (Pr[yn|xn, θ])Q(θ;φ)dθ +

∫
θ

Q(θ;φ) log

(
Q(θ;φ)

Pr[θ]

)
dθ + const. (25)

=

N∑
n=1

EQ [log (Pr[yn|xn, θ])]︸ ︷︷ ︸
Ln(φ)

+KL(Q(θ;φ)||Pr[θ])︸ ︷︷ ︸
R(φ)

− log (Pr[D])︸ ︷︷ ︸
const.

(26)

where (1) Ln(φ) is the expected log-likelihood (NLL), which reflects the predictive performance of
the Bayesian model on the data point (xn, yn); and (2)R(φ) is the KL-divergence between Q(θ;φ)
and its prior Pr[θ], which reduces to entropy H(Q) if the prior of θ follows a uniform distribution.

Hierarchical Bayesian Model A Bayesian neural network can be considered as a hierarchical
Bayesian model depicted in Figure 3b, which satisfies the following two assumptions:

Assumption B.1 (Independence of Model Parameters θ(l)). The approximate posterior Q(θ;φ)
over the model parameters θ are partitioned into L disjoint and statistical independent layers
{θ(l)}L−1l=0 (where each φ(l) parameterizes θ(l) in the l-th layer) such that:

Q(θ;φ) =

L−1∏
l=0

Q(θ(l);φ(l)) (27)

Assumption B.2 (Markovianity of Hidden Units h(l)). The hidden variables h = {h(l)}Ll=0 sat-
isfy the Markov property that h(l+1) depends on the input x only through its previous layer h(l):

Pr[h(l+1)|h(: l),θ(: l)] = Pr[h(l+1)|h(l),θ(l)] (28)

where we use short-hand notations h(: l) and θ(: l) to represent the sets of previous layers {h(k)}lk=0

and {θ(k)}lk=0. For consistency, we denote h(0) = x and h(L) = y.

15

Under review as a conference paper at ICLR 2020

Proof of probabilistic prorogation Based on the assumptions above, we now provide a proof for
probabilistic propagation in Equation (1) as follows:

P(h(l+1); ψ(l+1))︷ ︸︸ ︷
Pr[h(l+1)|x] =

∫
θ(: l)

Pr[h(l+1)|x, θ(: l)] Q(θ(: l);φ(: l)) dθ(: l) (29)

=

∫
θ(: l)

(∫
h(l)

Pr[h(l+1)|h(l), θ(l)]Pr[h(l)|x, θ(: l−1)]dh(l)
)
Q(θ(: l);φ(: l)) dθ(: l) (30)

=

∫
h(l),θ(l)

Pr[h(l+1)|h(l), θ(l)]Q(θ(l);φ(l))(∫
θ(: l−1)

Pr[h(l)|x, θ(: l−1)]Q(θ(: l−1);φ(: l−1))dθ(: l−1)
)
dh(l)dθ(l)

(31)

=

∫
h(l),θ(l)

Pr[h(l+1)|h(l), θ(l)]Q(θ(l);φ(l)) Pr[h(l)|x]︸ ︷︷ ︸
P(h(l); ψ(l))

dh(l)dθ(l) (32)

C ALTERNATIVE EVIDENCE LOWER BOUND AND ITS ANALYTIC FORMS

C.1 ALTERNATIVE EVIDENCE LOWER BOUND (PROOF FOR THEOREM 3.1)

The steps to prove the inequality (6) almost follow the ones for probabilistic propagation above:
Ln(φ) = EQ [log(Pr[yn|xn,θ])] (33)

=

∫
θ

log (Pr[yn|xn, θ])Q(θ;φ)dθ (34)

=

∫
θ

log

(∫
h(L−1)

Pr[yn, h
(L−1)|xn, θ]dh(L−1)

)
Q(θ;φ)dθ (35)

=

∫
θ

log

(∫
h(L−1)

Pr[yn|h(L−1), θ(L−1)]Pr[h(L−1)|xn, θ(0:L−2)]dh(L−1)
)
Q(θ;φ)dθ (36)

≥
∫
θ

(∫
h(L−1)

log
(
Pr[yn|h(L−1), θ(L−1)]

)
Pr[h(L−1)|xn, θ(0:L−1)]dh(L−1)

)
Q(θ;φ)dθ (37)

=

∫
h(L−1),θ(L−1)

log
(
Pr[yn|h(L−1), θ(L−1)]

)
Q(θ(L−1);φ(L−1))(∫

θ(0:L−2)

Pr[h(L−1)|xn, θ(0:L−2)]Q(θ(0:L−2);φ(0:L−2))dθ(0:L−2)
)
dh(L−1)dθ(L−1)

(38)

=

∫
h(L−1),θ(L−1)

log
(
Pr[yn|h(L−1), θ(L−1)]

)
Q(θ(L−1))Pr[h(L−1)|xn]dh(L−1)dθ(L−1) (39)

= Eh(L−1)∼P ; θ(L−1)∼Q
[
log
(
Pr[yn|h(L−1), θ(L−1)]

)]
(40)

where the key step is the Jensen’s inequality of EQ [log(·)] ≥ log (EQ [·]) in (37).

C.2 SOFTMAX LAYER FOR CLASSIFICATION PROBLEM (PROOF FOR THEOREM 3.2)

In this part, we first prove the alternative evidence lower bound (ELBO) for Bayesian neural net-
works with softmax function as their last layers. Subsequently, we derive the corresponding back-
propagation rule for the softmax layer. Finally, we show a method based on Taylor’s expansion to
approximately evaluate a softmax layer without Monte Carlo sampling.

Proof. Recall that a softmax layer maps the pre-activations from the last hidden layer h = h(L−1) ∈
QK to a categorical distribution 4K−1 over possible classes y ∈ {1, · · · ,K} with a (scaled) soft-
max function.

Pr[y = c|h; s] =
exp(hc/s)∑K
k=1 exp(hk/s)

(41)

16

Under review as a conference paper at ICLR 2020

As we show in Section 4, the distribution of h is assumed as a product of independent Gaussian
distributions, i.e. hk ∼ N (µk, νk)’s are independent of each other, where µk and νk are mean
and variance of hk. Then the lower bound follows by plugging the definitions of Pr[y|h, s] and
Pr[hk|x] into Equation (6).

Ln(φ) ≥
∫
h

log (Pr[yn = c|h; s])Pr[h|x]dh (42)

=

∫
h

log (Pr[yn = c|h; s])

(
K∏
k=1

Pr[hk|x]

)
dh (43)

=

∫
h

(
hc
s
− log

(
K∑
k=1

exp

(
hk
s

)))(K∏
k=1

Pr[hk|x]

)
dh (44)

=
1

s

∫
hc

hcPr[hc|xn]dhc −
∫
h

log

(
K∑
k=1

exp

(
hk
s

))(K∏
k=1

Pr[hk|x]

)
dh (45)

=
µc
s
−
∫
h

log

(
K∑
k=1

exp

(
hk
s

))(K∏
k=1

Pr[hk|x]

)
dh (46)

≤ µc
s
− log

(∫
h

K∑
k=1

exp

(
hk
s

)(K∏
k=1

Pr[hk|x]

)
dh

)
(47)

=
µc
s
− log

(
K∑
k=1

∫
hk

exp

(
hk
s

)
Pr[hk|x]dhk

)
(48)

=
µc
s
− log

(
K∑
k=1

∫
hk

exp

(
hk
s

)
· 1√

2πνk
exp

(
− (hk − µk)2

2νk

)
dhk

)
(49)

=
µc
s
− log

(
K∑
k=1

exp
(µk
s

+
νk
2s2

))
= Ln(φ) (50)

where the last equation follows∫
hk

exp

(
hk
s

)
· 1√

2πνk
exp

(
− (hk − µk)2

2νk

)
dhk (51)

=

∫
hk

1√
2πνk

exp

(
−h

2
k − 2(µk + νk/s)hk + µ2

k

2νk

)
dhk (52)

=

∫
hk

1√
2πνk

exp

(
− (hk − (µk + νk))

2

2νk

)
dhk︸ ︷︷ ︸ · exp

(µk
s

+
νk
2s2

)
(53)

where the under-braced term is unity since it is From Equation (46) to Equation (47), we use the
Jensen’s Inequality to achieve an upper bound for integral of log sum exponential. However, there
are advanced techniques as in Khan (2012) for tighter bounds.

Derivatives of Ln(φ) in (9) In order to use the backpropagation algorithm to obtain the gradients
w.r.t. the parameters from previous layers as in Equation (8), we first need to obtain the derivatives
w.r.t. ψ(L−1) = {µk, νk}Kk=1.

∂Ln(φ)

∂µk
= −1

s

(
exp

(
µk/s+ νk/2s

2
)∑K

k=1 exp (µk/s+ νk/2s2)
− 1[k = c]

)
(54a)

∂Ln(φ)

∂νk
= − 1

2s2

(
exp

(
µk/s+ νk/2s

2
)∑K

k=1 exp (µk/s+ νk/2s2)

)
(54b)

17

Under review as a conference paper at ICLR 2020

Furthermore, the scale s can be (optionally) updated simultaneously with other parameters using the
gradient of Ln(φ).

∂Ln(φ)

∂s
= −µc

s2
+

∑K
k=1

(
µk/s

2 + νk/s
3
)

exp
(
µk/s+ νk/2s

2
)∑K

k=1 exp (µk/s+ νk/2s2)
(55)

Prediction with Softmax Layer Once we learn the parameters for the Bayesian neural network,
in principle we can predict the distribution of y by evaluating the following equation:

Pr[y = c|x] =

∫
h

Pr[y = c|h, s]Pr[h|x]dh =

∫
h

`c(h)Pr[h|x]dh (56)

(Mean-field assumption) =

∫
h1

· · ·
∫
hK

`c(h)

(
K∏
k=1

Pr[hk|x]

)
dh1 · · · dhk (57)

where we denote the softmax function as `c(h) for simplicity, i.e. `c(h) =
exp(hc/s)/[

∑
k exp(hk/s)]. Unfortunately, the equation above can not be computed in closed

form. The most straight-forward work-around is to approximate the integral by Monte Carlo
sampling: for each hk we draw S samples {hsk}Ss=1 independently and compute the prediction:

Pr[y = c|x] ≈ 1

S

S∑
s=1

`c(h
s), ∀c ∈ [K] (58)

Despite its conceptual simplicity, Monte Carlo method suffers from expensive computation and high
sampling variance. In this paper, we propose an economical and accurate estimate based on Taylor’s
expansion. To begin with, we first expand the function `c(h) by Taylor’s series at the point µ (up to
the second order):

`c(h) = `c(µ) +

[
∂`c
∂h

(µ)

]>
(h− µ) +

1

2
(h− µ)>

[
∂2`c
∂h2

(µ)

]
(h− µ) +O

(
‖h− c‖3

)
(59)

= `c(µ) +

K∑
k=1

[
∂`c
∂hk

(µ)

]
(hk − µk) +

K∑
i=1

K∑
j=1

[
∂2`c
∂hihj

(µ)

]
(hi − µi)(hj − µj) +O

(
‖h− µ‖3

)
(60)

Before we derive the forms of these derivatives, we first show the terms of odd orders do not con-
tribute to the expectation. For example, if `c(h) is approximated by its first two terms (i.e. a linear
function), Equation (57) can be written as

Pr[y = c|x] ≈
∫
h1

· · ·
∫
hK

(
`c(µ) +

K∑
k=1

[
∂`c
∂hk

(µ)

]
(hk − µk)

)(
K∏
k=1

Pr[hk|x]

)
dh1 · · · dhk

(61)

= `c(µ) +

K∑
k=1

[
∂`c
∂hk

(µ)

](∫
hk

(hk − µk)Pr[hk|x]dhk

)
= `c(µ) (62)

where the second term is zero by the symmetry of Pr[hk|x] around µk (or simply the definition of
µk’s). Therefore, the first-order approximation results exactly in a (deterministic) softmax function
of the mean vector µ. In order to incorporate the variance into the approximation, we will need to
derive the exact forms of the derivatives of `c(h). Specifically, the first-order derivatives are obtained
from the definition of `c(h).

∂`c
∂hc

(h) =
1

s
· exp (hc/s)− exp (2hc/s)(∑K

k=1 exp (hk/s)
)2 =

1

s

(
`c(h)− `2c(h)

)
(63a)

∂`c
∂hk

(h) = −1

s
· exp (hc/s) · exp (hk/s)(∑K

k=1 exp (hk/s)
)2 = −1

s
`c(h)`k(h), ∀k 6= c (63b)

18

Under review as a conference paper at ICLR 2020

and subsequently the second-order derivatives from the first ones:

∂2`c
∂h2c

(h) =
1

s

(
∂`c
∂hc

(h)− 2`c(h)
∂`c
∂hc

(h)

)
=

1

s2
(
`c(h)− 3`2c(h) + 2`3c(h)

)
(64a)

∂2`c
∂h2k

(h) = −1

s

(
∂`c
∂hc

(h)`k(h) + `c(h)
∂`k
∂hc

(h)

)
=

1

s2
(
−`c(h)`k(h) + 2`2c(h)`k(h)

)
, ∀k 6= c

(64b)

with these derivatives we can compute the second-order approximation as

Pr[y = c|x] ≈
∫
h1,·,hK

`c(µ) +
1

2

K∑
i=1

K∑
j=1

∂2`c
∂µiµj

(µ)(hi − µi)(hj − µj)

(K∏
k=1

Pr[hk|x]

)
dh1 · · · dhK

(65)

= `c(µ) +
1

2

∂2`c
∂µ2

c

(µ)

∫
hc

(hc − µc)2Pr[hc|x]dhc +
1

2

∑
k 6=c

∂2`c
∂µ2

k

(µ)

∫
hk

(hk − µk)2Pr[hk|x]dhk

(66)

= `c(µ) +
1

2s2
(
`c(µ)− 3`2c(µ) + 2`3c(µ)

)
νc +

1

2s2

∑
k 6=c

(
−`c(µ)`k(µ) + 2`2c(µ)`k(µ)

)
νk

(67)

= `c(µ) +
1

2s2
(
`c(µ)− 2`2c(µ)

)(
νc −

K∑
k=1

`k(µ)νk

)
(68)

Pr[y|x] ≈ `(µ) +
1

2s2
(
`(µ)− `(µ)◦2

)
◦
(
ν − `(µ)>ν

)
(69)

C.3 GAUSSIAN OUTPUT LAYER FOR REGRESSION PROBLEM (PROOF FOR THEOREM 3.3)

In this part, we develop an alternative evidence lower bound (ELBO) for Bayesian neural networks
with Gaussian output layers, and derive the corresponding gradients for backpropagation. Despite
the difficulty to obtain an analytical predictive distribution for the output, we show that its central
moments can be easily computed given the learned parameters.

Regression: Gaussian Layer When QNNs are used in regression problems, the output layer
needs to map the discretized hidden units h ∈ QI back to a continuous prediction y ∈ R. One
common choice is a linear function: y = w>h + ε, where w ∈ RI is a continuous-valued vec-
tor and ε ∼ N (0, s) represents the uncertainty of the prediction. Therefore, the Gaussian layer
characterized by φ(L−1) = {w, s} and computes a distribution of y as:

Pr[y|h;w, s] =
1√
2πs

exp

(
− (y − w>h)2

2s

)
(70)

Let µi = E [hi|x] and νi = V [hi|x] denote the mean and variance of hi,

and use µ = [µ1, · · · , µI]> ∈ RI and ν = [ν1, · · · , νI]> ∈ RI to represent the vectors of mean and
variance. Now we are ready to prove Equation (10) by plugging the definition of Pr[y|h;w, s] into
Equation (6).

Ln(φ) ≥
∑
h1

· · ·
∑
hI

log (Pr[y|h1, · · · , hI ;w, s])

(
I∏
i=1

Pr[hi|xn]

)
(71)

= −
∑
h1

· · ·
∑
hI

(
y −

∑I
i=1 wihi

)2
2s

+
log(2πs)

2

(I∏
i=1

Pr[hi|xn]

)
(72)

= − 1

2s

∑
h1

· · ·
∑
hI

(
y −

I∑
i=1

wihi

)2(I∏
i=1

Pr[hi|xn]

)
− log(2πs)

2
(73)

19

Under review as a conference paper at ICLR 2020

where the long summation in the first term can be further simplified with notations of µ and ν:

∑
h1

· · ·
∑
hI

(
y −

I∑
i=1

wihi

)2(I∏
i=1

Pr[hi|xn]

)
(74)

=
∑
h1

· · ·
∑
hI

y2 − 2y

I∑
i=1

wihi +

I∑
i=1

w2
i h

2
i +

I∑
j=1

∑
k 6=j

wjwkhjhk

(I∏
i=1

Pr[hi|xn]

)
(75)

=y2 − 2y

I∑
i=1

wi

(∑
hi

hiPr[hi|x]

)
+

I∑
i=1

w2
i

(∑
hi

h2iPr[hi|xn]

)

+

I∑
j=1

∑
k 6=j

wjwk

∑
hj

hjPr[hj |xn]

(∑
hk

hkPr[hk|xn]

) (76)

=y2 − 2y

I∑
i=1

wiµi +

I∑
i=1

w2
i (µ

2
i + νi) +

I∑
j=1

∑
k 6=j

wjwkµjµk (77)

=y2 − 2y

I∑
i=1

wiµi +

I∑
i=1

w2
i νi +

 I∑
j=1

wjµj

(I∑
k=1

wkµk

)
(78)

=y2 − 2y w>µ+ (w◦2)>ν +
(
w>µ

)2
(79)

=(y − w>µ)2 + (w◦2)>ν (80)

where w◦2 denotes element-wise square, i.e. w◦2 = [w2
1, · · · , w2

I]
>. Thus, we show that Ln(φ) is

bounded by Ln(φ), completing the proof of theorem 3.3:

Ln(φ) ≥ − (y − w>µ)2 + (w◦2)>ν
2s

− log(2πs)

2
= Ln(φ) (81)

Derivatives of Ln(φ) in Equation (10) It is not difficult to show that the gradient of Ln(φ) can
be easily backpropagated through the last layer. Actually, we only need to show the derivatives of
Ln(φ) w.r.t. µ and ν:

∂Ln(φ)

∂µ
= − (y − w>µ)w

s
(82a)

∂Ln(φ)

∂ν
= −w

◦2

2s
(82b)

with which the gradients of Pr[hi|xn]’s are then obtained similar to Equation (113). Furthermore,
the parameters of the Gaussian output layer can be updated along with all other parameters based on
their gradients:

∂Ln(φ)

∂w
= − (y − w>µ)µ+ (w ◦ ν)

s
(83a)

∂Ln(φ)

∂s
= − 1

2s
+

(y − w>µ)2 + (w◦2)>ν
2s2

(83b)

Prediction with Gaussian Layer Once we determine the parameters for the last layer, in principle
we can compute the predictive distribution Pr[y|x] for the output y given the input x according to

Pr[y|x] =
∑
h

Pr[y|h;w, s]Pr[h|x] =
∑
h1

· · ·
∑
hI

Pr[y|h;w, s]

(
I∏
i=1

Pr[hi|x]

)

=
∑
h1

· · ·
∑
hI

1√
2πs

exp

−
(
y −

∑I
i=1 wihi

)2
2s

(I∏
i=1

Pr[hi|x]

)
(84)

20

Under review as a conference paper at ICLR 2020

Unfortunately, exact computation of the equation above for arbitrary output value y is intractable in
general. However, the central moments of the predictive distribution Pr[y|x] are easily accessible:
consider we interpret the prediction as y = w>h+ ε, where ε ∼ N (0, s) its mean and variance can
be easily computed as

E [y|x] = w>E [h] = w>µ (85a)

V [y|x] = (w◦2)>V [h] + V [ε] = (w◦2)>ν + s (85b)

Furthermore, if we denote the (normalized) skewness and kurtosis of hi as γi and κi:

γi = E
[
(hi − µi)3|x

]
/ν

3/2
i =

∑
hi

(hi − µi)3Pr[hi|x]/ν
3/2
i (86a)

κi = E
[
(hi − µi)4|x

]
/ν2i =

∑
hi

(hi − µi)4Pr[hi|x]/ν2i (86b)

Then the (normalized) skewness and kurtosis of the prediction y are also easily computed with the
vectors of γ = [γ1, · · · , γI]> ∈ RI and κ = [κ1, · · · , κI] ∈ RI .

γ[y|x] =
E
[
(y − w>µ)3|x

]
V [y|x]

3/2
=

(w◦3)>(γ ◦ ν◦3/2)

[(w◦2)>ν + s]
3/2

(87a)

κ[y|x] =
E
[
(y − w>µ)4|x

]
V [y|x]

2 =
(w◦4)>(κ ◦ ν◦2) + s(w◦2)>ν

[(w◦2)>ν + s]
2 (87b)

D PROBABILISTIC PROPAGATION IN BAYESIAN QUANTIZED NETWORKS
(BQNS)

D.1 LAYERS IN NEURAL NETWORKS

Linear Layers Linear layers (followed by a nonlinear transformations σ(·)) are the most important
building blocks in neural networks, which include fully-connected and (depth-wise) convolutional
layers. A linear layer is parameterized by a set of vectors θ(l) = {θ(l)j }Jj=1, and maps h(l) ∈ RI to
h(l+1) ∈ RJ with inner products:

h
(l+1)
j = σ

 ∑
i∈I(j)

θ
(l)
ji · h

(l)
i

 = σ

 ∑
i∈I(j)

u
(l)
ji

 = σ
(
v
(l+1)
j

)
(88)

where u(l)
ji = θ

(l)
ji · h

(l)
i and v(l+1)

j =
∑
i∈I(j) u

(l)
ji . Notice (1) u(l)

ji only depends on two variables

θ
(l)
ji and h(l)

i ; and (2) h(l+1)
j depends on v(l+1)

j through an nonlinear function, both of which can be

easily computed. The remaining problem is therefore how to compute v(l+1)
j from {u(l)

ji }Ii=1, or in
general summation of multiple discrete random variables.

Pooling Layers We also derive fast algorithms for max pooling layer and probabilistic pooling
layer. For each output unit, (1) a max pooling layer picks the maximum value from a number of
input units, i.e. h(l+1)

j = maxi∈I(j) h
(l)
i , i ∈ I(j); while (2) a probabilistic pooling layer selects

the value randomly with a uniform distribution. For both cases, the predictive distribution of h(l+1)
j

can be computed ∀, q ∈ Q as:

Max: P (h
(l+1)
j ≤ q) =

∏
i∈I(j)

P (h
(l)
i ≤ q) (89)

Prob: P (h
(l+1)
j = q) =

∑
i∈I(j)

P (h
(l)
i = q)

|I(j)|
(90)

where P (h
(l)
i ≤ q) is the culminative mass function of P . Complexities for both layers are O(ID).

21

Under review as a conference paper at ICLR 2020

D.2 DISCRETE FOURIER TRANSFORM (PROOF FOR THEOREM 4.2)

In the part, we prove the convolution theorem for discrete random variables and show how discrete
Fourier transform (DFT) (indeed fast Fourier transform (FFT)) greatly accelerates the computation
of additions. In order to apply DFT neural networks, we also derive its backpropagation rule.

Proof of Convolution Theorem Consider two independent discrete random variables u1 ∈
[b1, B1], u2 ∈ [b2, B2] and their sum v = u1 + u2 ∈ [b, B], where b = b1 + b2 and
B = B1 + B2. Denote the probability vectors (i.e. probability mass functions) of u1, u2 and
v as P1 ∈ 4B1−b1 , P2 ∈ 4B2−b2 and P ∈ 4B−b respectively, then the entries in P are computed
with P1 and P2 by standard convolution as follows:

P (v) =

B1∑
u1=b1

P1(u1)P2(v − u1) =

B2∑
u2=b2

P1(v − u2)P2(u2), ∀v ∈ {b, · · · , B} (91)

The relation above is usually denoted as P = P1 ∗ P2, where ∗ is the symbol for convolution. Now
define the characteristic functions C, C1, and C2 as the discrete Fourier transform (DFT) of the
probability vectors P , P1 and P2:

C(f) =

B∑
v=b

P (v) exp

(
−j2π

R
(v − b)f

)
, f ∈ [R] (92a)

Ci(f) =

Bi∑
ui=bi

Pi(ui) exp

(
−j2π

R
(ui − bi)f

)
, f ∈ [R] (92b)

where R controls the resolution of the Fourier transform, typically chosen as R = B − b + 1
(i.e. the range of possible values). In this case, the characteristic functions are complex vectors of
same length R, i.e. C,C1, C2 ∈ CR, and we denote the (functional) mappings as C = F(P) and
Ci = Fi(Pi). Given a characteristic function, its original probability vector can be recovered by
inverse discrete Fourier transform (IDFT):

P (v) =
1

R

R−1∑
f=0

C(f) exp

(
j
2π

R
(v − b)f

)
, ∀v ∈ {b, · · · , B} (93a)

Pi(ui) =
1

R

R−1∑
f=0

Ci(f) exp

(
j
2π

R
(ui − bi)f

)
, ∀ui ∈ {bi, · · · , Bi} (93b)

which we denote the inverse mapping as P = F−1(C) and Pi = F−1i (Ci). Now we plug the con-
volution in Equation (91) into the characteristic function C(f) in (92a) and rearrange accordingly:

C(f) =

B∑
v=b

(
B1∑

u1=b1

P1(u1)P2(v − u1)

)
exp

(
−j2π

R
(v − b)f

)
(94)

(Let u2 = v − u1) =

B1∑
u1=b1

B2∑
u2=b2

P1(u1)P2(u2) exp

(
−j2π

R
(u1 + u2 − b)f

)
(95)

(Since b = b1 + b2) =

[
B1∑

u1=b1

P1(u1) exp

(
−j2π

R
(u1 − b1)f

)]
[

B2∑
u2=b2

P2(u2) exp

(
−j2π

R
(u2 − b2)f

)] (96)

= C1(f) · C2(f) (97)

The equation above can therefore be written asC = C1◦C2, where we use ◦ to denote element-wise
product. Thus, we have shown summation of discrete random variables corresponds to element-wise
product of their characteristic functions. This result can be easily extended to multiple variables case:

22

Under review as a conference paper at ICLR 2020

Let v ∈ [b, B] be the sum of I independent discrete random variables ui ∈ [bi, Bi] (therefore b =∑I
i=1 bi andB =

∑I
i=1Bi) and accordingly define their probability vectors P , Pi and characteristic

functions C, Ci, then the probability mass function of v can be computed as

P = P1 ∗ P2 ∗ · · · ∗ PI (98)

= F−1 (Fi(P1) ◦ F2(P2) ◦ · · · ◦ FI(PI)) (99)

If the convolution is computed naively according to (98), the time complexity is O(IR2). However,
if FFT is adopted per (99), the complexity will be reduced to O(IR logR).

Backpropagation When fast Fourier transform is used to accelerate additions in Bayesian quan-
tized networks, we need to derive the corresponding backpropagation rule, i.e. equations that relate
∂L/∂P to {∂L/∂Pi}Ii=1. For this purpose, we break the computation in Equation (99) into three
steps, and compute the derivative for each of these steps.

Ci = Fi(Pi) =⇒ ∂L
∂Pi

= R · F−1i
(
∂L
∂Ci

)
(100a)

C = C1 ◦ · · · ◦ CI =⇒ ∂L
∂Ci

=
C

Ci
◦ ∂L
∂C

(100b)

P = F−1(C) =⇒ ∂L
∂C

= R−1 · F
(
∂L
∂P

)
(100c)

where in (100b) we use C/Ci to denote element-wise division. Since Pi lies into real domain, we
need to project the gradients back to real number in (100c). Putting all steps together:

∂L
∂Pi

= <
{
F−1i

(
C

Ci
◦ F

(
∂L
∂P

))}
,∀i ∈ [I] (101)

D.3 LYAPUNOV CENTRAL LIMIT APPROXIMATION (PROOF OF THEOREM 4.3)

In this part, we show that Lyapunov central limit approximation accelerates probabilistic propagation
(therefore also probabilistic backpropagation) in linear layers. For simplicity, we only consider
fully-connected layer here, but the derived algorithm equally applies to other linear layers, including
various types of convolutional layer. Again, to use the algorithm in neural networks, we will need
to derive the corresponding backpropagation equation for each step in the forward pass.

Proof of Equations (102a) and (102b)

µ̃
(l+1)
j =

∑
i∈I(j)

m
(l)
ij µ

(l)
i (102a)

ν̃
(l+1)
j =

∑
i∈I(j)

(
m

(l)
ji

2
ν
(l)
i + µ

(l)
i

2
vji + ν

(l)
i vji

)
(102b)

Recall that we have defined the mean and variance of h(l)
i and θ(l)ji as:

E
[
h
(l)
i |xn

]
= µ

(l)
i , E

[
θ
(l)
ji

]
= m

(l)
ji (103a)

V
[
h
(l)
i |xn

]
= ν

(l)
i , V

[
θ
(l)
ji

]
= v

(l)
ji (103b)

23

Under review as a conference paper at ICLR 2020

With these notations, the Equations can be proved directly by definitions:

µ̃
(l+1)
j = E

[
I∑
i=1

θ
(l)
ji h

(l)
i

]
=

I∑
i=1

E
[
θ
(l)
ji h

(l)
i

]
(104)

=

I∑
i=1

E
[
θ
(l)
ji

]
E
[
h
(l)
i

]
=

I∑
i=1

m
(l)
ji µ

(l)
i (105)

ν̃
(l+1)
j = V

[
I∑
i=1

θ
(l)
ji h

(l)
i

]
=

I∑
i=1

V
[
θ
(l)
ji h

(l)
i

]
(106)

=

I∑
i=1

(
E
[
θ
(l)
ji

2]
E
[
h
(l)
i

2]
− E

[
θ
(l)
ji

]2
E
[
h
(l)
i

]2)
(107)

=

I∑
i=1

[(
m

(l)
ji

2
+ v

(l)
i

)(
µ
(l)
i

2
+ ν

(l)
ji

)
−m(l)

ji

2
µ
(l)
i

2]
(108)

=

I∑
i=1

(
m

(l)
ji

2
ν
(l)
i + v

(l)
ji µ

(l)
i

2
+ v

(l)
ji ν

(l)
i

)
(109)

For fully-connected layers, these two equations can be concisely written in matrix forms:

µ̃(l+1) = M (l)µ(l) (110a)

ν̃(l+1) =
(
M (l)◦2

)
ν(l) + V (l)

(
µ(l)◦2 + ν(l)

)
(110b)

Backpropagation With matrix forms, the backpropagation rule that relates ∂L/∂ψ̃(l+1) =
{∂L/∂µ̃(l+1), ∂L/∂ν̃(l+1)} to ∂L/∂φ(l) = {∂L/∂M (l), ∂L/∂V (l)} and ∂L/∂ψ(l) =
{∂L/∂µ(l), ∂L/∂ν(l)} can be derived with matrix calculus.

∂L
∂M (l)

=

(
∂L

∂µ̃(l+1)

)
µ(l)> + 2M (l) ◦

[(
∂L

∂ν̃(l+1)

)
ν(l)
>
]

(111a)

∂L
∂V (l)

=

(
∂L

∂ν̃(l+1)

)(
µ(l)◦2

)>
(111b)

∂L
∂µ(l)

= M (l)>
(

∂L
∂µ̃(l+1)

)
+ 2µ(l) ◦

[
V (l)>

(
∂L

∂ν̃(l+1)

)]
(111c)

∂L
∂ν(l)

=
(
M (l)◦2

)>(∂L
∂ν̃(l+1)

)
(111d)

Notice these equations do not take into account the fact that V (l) implicitly relates to M (l) (i.e. v(l)ji
is defined upon m(l)

ji). Therefore, we need to adjust the backpropagation rule for the probabilities:

denote Q(l)
ji (d) = Q(θ

(l)
ji = Q(d);φ

(l)
ji).

∂L
∂Q(l)(d)

=

(
∂L

∂M (l)
+

∂L
∂V (l)

· ∂V
(l)

∂M (l)

)
∂M (l)

∂Q(l)(d)
+

∂L
∂V (l)

· ∂ν

∂Q(l)(d)
(112)

= Q(d) · ∂L
∂M (l)

+ 2(Q(d)−M (l)) ◦
(

∂L
∂V (l)

)
(113)

Lastly, we derive the backpropagation rules for binary neural networks with sign activations. Let
p
(l+1)
j denote the probability that the hidden unit h(l+1)

j is ”activated” Pr[h
(l+1)
j = 1|x], ∂L/p(l+1)

j

24

Under review as a conference paper at ICLR 2020

relates to {∂L/∂µ̃(l+1)
j , ∂L/∂ν̃(l+1)

j } as:

∂p
(l+1)
j

∂µ̃
(l+1)
j

= N

 µ̃
(l+1)
j√
ν̃
(l+1)
j

 (114a)

∂p
(l+1)
j

∂ν̃
(l+1)
j

= − 1

2
[
ν̃
(l+1)
j

]3/2 · N
 µ̃

(l+1)
j√
ν̃
(l+1)
j

 (114b)

E EXPERIMENTAL RESULTS ON FULLY-CONNECTED NEURAL NETWORKS

10−4 10−3
101.5

102

102.5

λ level of model uncertainty

N
L

L

BNN
E-QNN
BQN

(a) NLL MNIST

10−4 10−3

103

104

λ level of model uncertainty

N
L

L

BNN
E-QNN
BQN

(b) NLL FMNIST

10−4 10−3

102.5

103

103.5

λ level of model uncertainty

N
L

L

BNN
E-QNN
BQN

(c) NLL KMNIST

10−4 10−3

1

2

3

4

λ level of model uncertainty

Pe
rc

en
ta

ge
E

rr
or

BNN
E-QNN
BQN

(d) Error MNIST

10−4 10−3

12

14

16

18

20

22

λ level of model uncertainty

Pe
rc

en
ta

ge
E

rr
or

BNN
E-QNN
BQN

(e) Error FMNIST

10−4 10−3

6

8

10

12

14

λ level of model uncertainty

Pe
rc

en
ta

ge
E

rr
or

BNN
E-QNN
BQN

(f) Error KMNIST

Figure 4: Comparison of the predictive performance of our BQNs against the E-QNN as well as the
non-quantized BNN trained by SGVB on a MLP. Negative log-likelihood (NLL) which accounts for
uncertainty and 0-1 test error which doesn’t account for uncertainty are displayed.

25

Under review as a conference paper at ICLR 2020

10−4 10−3

20

40

60

80

100

120

140

λ level of model uncertainty

N
L

L

Monte Carlo Sampling
Analytical Inference
Difference

(a) NLL MNIST

10−4 10−3

100

200

300

400

500

λ level of model uncertainty

N
L

L

Monte Carlo Sampling
Analytical Inference
Difference

(b) NLL FMNIST

10−4 10−3

100

200

300

400

λ level of model uncertainty

N
L

L

Monte Carlo Sampling
Analytical Inference
Difference

(c) NLL KMNIST

10−4 10−3

1

2

3

λ level of model uncertainty

Pe
rc

en
ta

ge
E

rr
or

Monte Carlo Sampling
Analytical Inference
Difference

(d) Error MNIST

10−4 10−3
0

5

10

λ level of model uncertainty

Pe
rc

en
ta

ge
E

rr
or

Monte Carlo Sampling
Analytical Inference
Difference

(e) Error FMNIST

10−4 10−3

2

4

6

8

10

λ level of model uncertainty

Pe
rc

en
ta

ge
E

rr
or

Monte Carlo Sampling
Analytical Inference
Difference

(f) Error KMNIST

Figure 5: Illustration of mean-field approximation and tightness of alternative ELBO on a MLP.
The performance gap between our analytical inference and the Monte Carlo Sampling is displayed.

26

	Introduction
	Bayesian Neural Networks
	Problem Setting
	The Prediction Problem
	The Learning Problem

	Proposed Learning Method for Bayesian Neural Networks
	Alternative Evidence Lower Bound
	Analytic Forms of and

	Bayesian Quantized Networks (BQNs)
	Probabilistic Propagation as Tensor Contractions
	Approximate Propagation via Rank-1 Tensor CP Decomposition
	Fast Algorithms for Tensor Contractions

	Experiments
	Analysis of Results

	Conclusion
	Related Work
	Supervised Learning with Bayesian neural networks (BNNs)
	Alternative Evidence Lower Bound and its Analytic Forms
	Alternative Evidence Lower Bound (Proof for Theorem 3.1)
	Softmax Layer for Classification Problem (Proof for Theorem 3.2)
	Gaussian Output Layer for Regression Problem (Proof for Theorem 3.3)

	Probabilistic Propagation in Bayesian Quantized Networks (BQNs)
	Layers in Neural Networks
	Discrete Fourier Transform (Proof for Theorem 4.2)
	Lyapunov Central Limit Approximation (Proof of Theorem 4.3)

	Experimental Results on Fully-connected Neural Networks

