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ABSTRACT

In this paper, we study the problem of constrained robust (min-max) optimization in
a black-box setting, where the desired optimizer cannot access the gradients of the
objective function but may query its values. We present a principled optimization
framework, integrating a zeroth-order (ZO) gradient estimator with an alternating
projected stochastic gradient descent-ascent method, where the former only requires
a small number of function queries and the later needs just one-step descent/ascent
update. We show that the proposed framework, referred to as ZO-Min-Max, has
a sub-linear convergence rate under mild conditions and scales gracefully with
problem size. From an application side, we explore a promising connection between
black-box min-max optimization and black-box evasion and poisoning attacks in
adversarial machine learning (ML). Our empirical evaluations on these use cases
demonstrate the effectiveness of our approach and its scalability to dimensions that
prohibit using recent black-box solvers.

1 INTRODUCTION

In numerous real-world applications, one is faced with various forms of adversary that are not
accounted for by standard optimization algorithms. For instance, when training a machine learning
model on user-provided data, malicious users can carry out a data poisoning attack: providing false
data with the aim of corrupting the learned model (Steinhardt et al., 2017; Tran et al., 2018; Jagielski
et al., 2018). At inference time, malicious users can evade detection of multiple models in the form
of adversarial example attacks (Goodfellow et al., 2014; Liu et al., 2016; 2018). Min-max (robust)
optimization is a natural framework to address adversarial (worst-case) robustness (Madry et al.,
2017b; Al-Dujaili et al., 2018b). It converts a standard minimization problem into a composition of
an inner maximization problem and an outer minimization problem.

Min-max optimization problems have been studied for multiple decades (Wald, 1945), and the
majority of the proposed methods assume access to first-order (FO) information, i.e. gradients, to find
or approximate robust solutions (Nesterov, 2007; Gidel et al., 2017; Hamedani et al., 2018; Qian et al.,
2018; Rafique et al., 2018; Sanjabi et al., 2018b; Lu et al., 2019; Nouiehed et al., 2019; Lu et al., 2019;
Jin et al., 2019). In this paper, we focus on design and analysis of black-box (gradient-free) min-max
optimization methods, where gradients are neither symbolically nor numerically available, or they
are tedious to compute (Conn et al., 2009). Our study is particularly motivated by the design of data
poisoning and evasion adversarial attacks from black-box machine learning (ML) or deep learning
(DL) systems, whose internal configuration and operating mechanism are unknown to adversaries.
The extension of min-max optimization from the FO domain to the gradient-free regime is challenging
since the solver suffers from uncertainties in both black-box objective functions and optimization
procedure and do not scale well to high-dimensional problems.

We develop a provable and unified black-box min-max stochastic optimization method by integrating
a query-efficient randomized zeroth-order (ZO) gradient estimator with a computation-efficient
alternating gradient descent-ascent framework, where the former requires a small number of function
queries to build a gradient estimate, and the latter needs just one-step descent/ascent update. Recently,
ZO optimization has attracted increasing attention in solving black-box minimization problems
(Ghadimi & Lan, 2013; Nesterov & Spokoiny, 2015; Duchi et al., 2015; Ghadimi et al., 2016; Shamir,
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2017; Liu et al., 2019). Current studies suggested that ZO methods typically agree with the iteration
complexity of FO methods but encounter a slowdown factor up to a small-degree polynomial of
the problem dimensionality. To the best of our knowledge, it was an open question whether any
convergence rate analysis can be established for black-box min-max optimization.

Contribution. We summarize our contributions as follows. (i) We first identify a class of black-box
attack and robust learning problems which turn out to be min-max black-box optimization problems.
(ii) We propose a scalable and principled framework (ZO-Min-Max) for solving constrained min-
max saddle point problems under both one-sided and two-sided black-box objective functions.
Here the one-sided setting refers to the scenario where only the outer minimization problem is
black-box. (iii) We provide a novel convergence analysis characterizing the number of objective
function evaluations required to attain locally robust solution to black-box min-max problems with
nonconvex outer minimization and strongly concave inner maximization. Our analysis handles
stochasticity in both objective function and ZO gradient estimator, and shows that ZO-Min-Max
yields O(1/T + 1/b + d/q) convergence rate, where T is number of iterations, b is mini-batch
size, q is number of random direction vectors used in ZO gradient estimation, and d is number
of optimization variables. (iv) We demonstrate the effectiveness of our proposal in practical data
poisoning and evasion attack generation problems.1

2 RELATED WORK

FO min-max optimization. Gradient-based methods have been applied with celebrated success to
solve min-max problems such as robust learning (Qian et al., 2018), generative adversarial networks
(GANs) (Sanjabi et al., 2018a), adversarial training (Al-Dujaili et al., 2018b; Madry et al., 2017a),
and robust adversarial attack generation (Wang et al., 2019b). Some of FO methods are motivated by
theoretical justifications based on Danskin’s theorem (Danskin, 1966), which implies that the negative
of the gradient of the outer minimization problem at inner maximizer is a descent direction (Madry
et al., 2017a). Convergence analysis of other FO min-max methods has been studied under different
problem settings, e.g., (Lu et al., 2019; Qian et al., 2018; Rafique et al., 2018; Sanjabi et al., 2018b;
Nouiehed et al., 2019). It was shown in (Lu et al., 2019) that a deterministic FO min-max algorithm
has O(1/T ) convergence rate. In (Qian et al., 2018; Rafique et al., 2018), stochastic FO min-max
methods have also been proposed, which yield the convergence rate in the order of O(1/

√
T ) and

O(1/T 1/4), respectively. However, these works were restricted to unconstrained optimization at the
minimization side. In (Sanjabi et al., 2018b), noncovnex-concave min-max problems were studied,
but the proposed analysis requires solving the maximization problem only up to some small error.
In (Nouiehed et al., 2019), the O(1/T ) convergence rate was proved for nonconvex-nonconcave
min-max problems under Polyak- Łojasiewicz conditions. Different from the aforementioned FO
settings, ZO min-max stochastic optimization suffers randomness from both stochastic sampling in
objective function and ZO gradient estimation, and this randomness would be coupled in alternating
gradient descent-descent steps and thus make it more challenging in convergence analysis.

Gradient-free min-max optimization. In the black-box setup, coevolutionary algorithms were
used extensively to solve min-max problems (Herrmann, 1999; Schmiedlechner et al., 2018). However,
they may oscillate and never converge to a solution due to pathological behaviors such as focusing and
relativism (Watson & Pollack, 2001). Fixes to these issues have been proposed and analyzed—e.g.,
asymmetric fitness (Jensen, 2003; Branke & Rosenbusch, 2008). In (Al-Dujaili et al., 2018c), the
authors employed an evolution strategy as an unbiased approximate for the descent direction of the
outer minimization problem and showed empirical gains over coevlutionary techniques, albeit without
any theoretical guarantees. Min-max black-box problems can also be addressed by resorting to direct
search and model-based descent and trust region methods (Audet & Hare, 2017; Larson et al., 2019;
Rios & Sahinidis, 2013). However, these methods lack convergence rate analysis and are difficult to
scale to high-dimensional problems. For example, the off-the-shelf model-based solver COBYLA
only supports problems with 216 variables at maximum in SciPy Python library (Jones et al., 2001),
which is even smaller than the size of a single ImageNet image. The recent work (Bogunovic et al.,
2018) proposed a robust Bayesian optimization (BO) algorithm and established a theoretical lower
bound on the required number of the min-max objective evaluations to find a near-optimal point.

1Source code will be released.
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However, BO approaches are often tailored to low-dimensional problems and its computational
complexity prohibits scalable application. From a game theory perspective, the min-max solution
for some problems correspond to the Nash equilibrium between the outer minimizer and the inner
maximizer, and hence black-box Nash equilibria solvers can be used (Picheny et al., 2019; Al-Dujaili
et al., 2018a). This setup, however, does not always hold in general. Our work contrasts with the
above lines of work in designing and analyzing black-box min-max techniques that are both scalable
and theoretically grounded.

3 PROBLEM SETUP

In this section, we define the black-box min-max problem and briefly motivate its applications. By
min-max, we mean that the problem is a composition of inner maximization and outer minimization
of the objective function f . By black-box, we mean that the objective function f is only accessible
via point-wise functional evaluations. Mathematically, we have

min
x∈X

max
y∈Y

f(x,y) (1)

where x and y are optimization variables, f is a differentiable objective function, and X ⊂ Rdx
and Y ⊂ Rdy are compact convex sets. For ease of notation, let dx = dy = d. In (1), the objective
function f could represent either a deterministic loss or stochastic loss f(x,y) = Eξ∼p [f(x,y; ξ)],
where ξ is a random variable following the distribution p. In this paper, we consider the stochastic
variant in (1).

We focus on two black-box scenarios in which gradients (or stochastic gradients under randomly
sampled ξ) of f w.r.t. x or y are not accessed.

(a) One-sided black-box: f(x,y) is a white box w.r.t. y but a black box w.r.t. x.

(b) Two-sided black-box: f(x,y) is a black box w.r.t. both x and y.

Motivation of setup (a) and (b). Both setups are well motivated from the design of black-box
adversarial attacks. The formulation of the one-sided black-box min-max problem corresponds to a
particular type of attack, known as black-box ensemble evasion attack, where the attacker generates
adversarial examples (i.e., crafted examples with slight perturbations for misclassification at the
testing phase) and optimizes its worst-case performance against an ensemble of black-box classifiers
and/or example classes. The formulation of two-sided black-box min-max problem represents
another type of attack at the training phase, known as black-box poisoning attack, where the attacker
deliberately influences the training data (by injecting poisoned samples) to manipulate the results of a
black-box predictive model.

Although problems of designing ensemble evasion attack (Liu et al., 2016; 2018; Wang et al., 2019b)
and data poisoning attack (Jagielski et al., 2018; Wang et al., 2019a) have been studied in the literature,
most of them assumed that the adversary has the full knowledge of the target ML model, leading to an
impractical white-box attack setting. By contrast, we provide a solution to min-max attack generation
under black-box ML models. We refer readers to Section 6 for further discussion and demonstration
of our framework on these problems.

4 ZO-MIN-MAX: A FRAMEWORK FOR BLACK-BOX MIN-MAX
OPTIMIZATION

Our interest is in a scalable and theoretically principled framework for black-box min-max problems
of the form (1). To this end, we first introduce a randomized gradient estimator that only requires
a few number of point-wise function evaluations. Based on that, we then propose a ZO alternating
projected gradient method to solve (1) under both one-sided and two-sided black-box setups.

Randomized gradient estimator. In the ZO setting, we adopt a randomized gradient estimator to
estimate the gradient of a function with the generic form h(x) := Eξ[h(x; ξ)] (Liu et al., 2019; Gao
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et al., 2014),

∇̂xh(x) =
1

bq

∑
j∈I

q∑
i=1

d[h(x + µui; ξj)− h(x; ξj)]

µ
ui, (2)

where d is number of variables, I denotes the mini-batch set of b i.i.d. stochastic samples {ξj}bj=1,
{ui}qi=1 are q i.i.d. random direction vectors drawn uniformly from the unit sphere, and µ > 0
is a smoothing parameter. We note that the ZO gradient estimator (2) involves randomness from
both stochastic sampling w.r.t. ui as well as the random direction sampling w.r.t. ξj . It is known
from (Gao et al., 2014, Lemma 2) that ∇̂xh(x) provides an unbiased estimate of the gradient of
the smoothing function of h rather than the true gradient of h. Here the smoothing function of h is
defined by hµ(x) = Ev[h(x+µv)], where v follows the uniform distribution over the unit Euclidean
ball. Besides the bias, we provide an upper bound on the variance of (2) in Lemma 1.
Lemma 1. Suppose that for all ξ, h(x; ξ) has Lh Lipschitz continuous gradients and the gradient of

h(x; ξ) is upper bounded as ‖∇xh(x; ξ)‖22 ≤ η2 at x ∈ Rd. Then E
[
∇̂xh(x)

]
= ∇xhµ(x),

E
[
‖∇̂xh(x)−∇xhµ(x)‖22

]
≤ 2η2

b
+

4dη2 + µ2L2
hd

2

q
:= σ2(Lh, µ, b, q, d), (3)

where the expectation is taken over all randomness.

Proof: See Appendix A.1. �

In Lemma 1, if we choose µ ≤ 1/
√
d, then the variance bound is given by O(1/b + d/q). In our

problem setting (1), the ZO gradients ∇̂xf(x,y) and ∇̂yf(x,y) follow the generic form of (2) by
fixing y and letting h(·) := f(·,y) or by fixing x and letting h(·) := f(x, ·), respectively.

Algorithmic framework. To solve problem (1), we alternatingly perform ZO projected gradient
descent/ascent method for updating x and y. Specifically, for one-sided ZO min-max optimization,
the ZO projected gradient descent (ZO-PGD) over x yields

x(t) = projX

(
x(t−1) − α∇̂xf

(
x(t−1),y(t−1)

))
, (4)

where t is the iteration index, ∇̂xf denotes the ZO gradient estimate of f w.r.t. x, α > 0 is the
learning rate at the x-minimization step, and projX (a) signifies the projection of a onto X , given by
the solution to the problem minx∈X ‖x− a‖22. For two-sided ZO min-max optimization, in addition
to (4), our update on y obeys the ZO projected gradient ascent (ZO-PGA)

y(t) = projY

(
y(t−1) + β∇̂yf

(
x(t),y(t−1)

))
, (5)

where β > 0 is the learning rate at the y-maximization step. The proposed method is named as
ZO-Min-Max; see Algorithm 1.

Why estimates gradient rather than distribution of function values? Besides ZO optimization
using random gradient estimates, the black-box min-max problem (1) can also be solved using the
Bayesian optimization (BO) approach, e.g., (Bogunovic et al., 2018; Al-Dujaili et al., 2018a). The
core idea of BO is to approximate the objective function as a Gaussian process (GP) learnt from the
history of function values at queried points. Based on GP, the solution to problem (1) is then updated
by maximizing a certain reward function, known as acquisition function. The advantage of BO is
its mild requirements on the setting of black-box problems, e.g., at the absence of differentiability.
However, BO usually does not scale beyond low-dimensional problems since learning the accurate
GP model and solving the acquisition problem takes intensive computation cost per iteration. By
contrast, our proposed method is more efficient, and mimics the first-order method by just using the
random gradient estimate (2) as the descent/ascent direction. In Figure A1, we compare ZO-Min-Max
with the BO based STABLEOPT algorithm proposed by (Bogunovic et al., 2018) through a toy
example shown in (Bogunovic et al., 2018, Sec. 5). As we can see, ZO-Min-Max not only achieves
more accurate solution but also requires less computation time. We refer readers to Appendix B for
details.
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Algorithm 1 ZO-Min-Max to solve problem (1)

1: Input: given x(0) and y(0), learning rates α
and β, the number of random directions q, and
the possible mini-batch size b for stochastic
optimization

2: for t = 1, 2, . . . , T do
3: x-step: perform ZO-PGD (4)
4: y-step:
5: if f(x(t),y) is black box w.r.t. y then
6: perform ZO-PGA (5)
7: else
8: perform PGA using∇yf(x(t),y(t−1))

as ascent direction in (5)
9: end if

10: end for

We finally remark that the convergence analysis
of ZO-Min-Max is more challenging than the
case of FO min-max algorithms. Besides the
inaccurate estimate of the gradient, the stochas-
ticity of the estimator makes the convergence
analysis sufficiently different from the FO deter-
ministic case (Lu et al., 2019; Qian et al., 2018),
since the errors in minimization and maximiza-
tion are coupled as the algorithm proceeds. We
analyze the convergence of ZO-Min-Max in the
next section.

5 CONVERGENCE ANALYSIS

We begin by elaborating on assumptions and
notations used in analyzing the convergence of
ZO-Min-Max (Algorithm 1).

A1: In (1), f(x,y) is continuously differen-
tiable, and is strongly concave w.r.t. y with pa-
rameter γ > 0, namely, given x ∈ X , f(x,y1) ≤ f(x,y2)+∇yf(x,y2)T (y1−y2)− γ

2 ‖y1−y2‖2
for all points y1,y2 ∈ Y . And f is lower bounded by a finite number f∗ and has bounded gradients
‖∇xf(x,y; ξ)‖ ≤ η2 and ‖∇yf(x,y; ξ)‖ ≤ η2 for stochastic optimization with ξ ∼ p. Here ‖ · ‖
denotes the `2 norm. The constraint sets X ,Y are convex and bounded with diameter R.

A2: f(x,y) has Lipschitz continuous gradients, i.e., there existsLx, Ly > 0 such that ‖∇xf(x1,y)−
∇xf(x2,y)‖ ≤ Lx‖x1−x2 ‖ for ∀x1,x2 ∈ X , and ‖∇yf(x1,y) − ∇yf(x2,y)‖ ≤
Ly‖x1−x2 ‖ and ‖∇yf(x,y1)−∇yf(x,y2)‖ ≤ Ly‖y1−y2 ‖ for ∀y1,y2 ∈ Y .

We measure the convergence of ZO-Min-Max by the proximal gradient (Lu et al., 2019; Ghadimi
et al., 2016),

G(x,y) =

[
(1/α) (x−projX (x−α∇xf(x,y)))
(1/β)

(
y−projY(y+β∇yf(x,y))

) ] , (6)

where (x,y) is a first-order stationary point of (1) iff ‖G(x,y)‖ = 0.

In what follows, we delve into our convergence analysis. First, Lemma 2 shows the descent property
of ZO-PGD at the x-minimization step in Algorithm 1.

Lemma 2. (Descent lemma in minimization) Under A1-A2, let (x(t),y(t)) be a sequence generated
by Algorithm 1. When f(x,y) is black-box w.r.t. x, then we have following descent property w.r.t. x:

E[f(x(t+1),y(t))] ≤ E[f(x(t),y(t))]−
(

1

α
− Lx

2

)
E‖∆(t+1)

x ‖2 + ασ2
x + Lxµ

2 (7)

where ∆
(t)
x := x(t)−x(t−1), and σ2

x := σ2(Lx, µ, b, q, d) defined in (3).

Proof: See Appendix A.2.1. �

It is clear from Lemma 2 that updating x leads to the reduced objective value when choosing a
small learning rate α. However, ZO gradient estimation brings in additional errors in terms of
ασ2

x and Lxµ2, where the former is induced by the variance of gradient estimates in (3) and the
latter is originated from bounding the distance between f and its smoothing version; see (25) in
Appendix A.2.

Convergence rate of ZO-Min-Max by performing PGA. We next investigate the convergence of
ZO-Min-Max when FO PGA is used at the y-maximization step (Line 8 of Algorithm 1) for solving
one-sided black-box optimization problems.

Lemma 3. (Descent lemma in maximization) Under A1-A2, let (x(t),y(t)) be a sequence generated
by Algorithm 1 and define the potential function as

P(x(t),y(t),∆(t)
y ) = E[f(x(t),y(t))] +

4 + 4β2L2
y − 7βγ

2β2γ
E‖∆(t)

y ‖2, (8)
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where ∆
(t)
y := y(t)−y(t−1). When f(x,y) is black-box w.r.t. x and white-box w.r.t. y, then we

have the following descent property w.r.t. y:

P(x(t+1),y(t+1),∆(t+1)
y ) ≤P(x(t+1),y(t),∆(t)

y )

−
(

1

2β
−

2L2
y

γ

)
E‖∆(t+1)

y ‖2 +

(
2

γ2β
+
β

2

)
L2
xE‖∆(t+1)

x ‖2, (9)

Proof: See Appendix A.2.2. �

It is shown from (9) that when β is small enough, then the term (1/(2β)− 2L2
y/γ)E‖∆(t+1)

y ‖2 will
give some descent of the potential function after performing PGA, while the last term in (9) will give
some ascent to the potential function. However, such a quantity will be compensated by the descent
of the objective function in the minimization step shown by Lemma 2. Combining Lemma 2 and
Lemma 3, we obtain the convergence rate of ZO-Min-Max in Theorem 1.
Theorem 1. Suppose that A1-A2 hold, the sequence (x(t),y(t)) over T iterations is generated
by Algorithm 1 in which learning rates satisfy β < 1/(4L2

y) and α ≤ min{1/Lx, 1/(Lx/2 +

2L2
x/(γ

2β) + βL2
x/2)}. When f(x,y) is black-box w.r.t. x and white-box w.r.t. y, the convergence

rate of ZO-Min-Max under a uniformly and randomly picked (x(r),y(r)) from {(x(t),y(t))}Tt=1 is
given by

E‖G(x(r),y(r))‖2 ≤ c

ζ

(P1 − f∗ − νR2)

T
+
cασ2

x

ζ
+
cLxµ

2

ζ
(10)

where ζ is a constant independent on the parameters µ, b, q, d and T , Pt := P(x(t),y(t),∆
(t)
y )

given by (8), c = max{Lx + 3/α, 3/β}, ν = min{4 + 4β2L2
y − 7βγ, 0}/(2β2γ), σ2

x is variance
bound of ZO gradient estimate given in (7), and f∗, R, γ, Lx and Ly have been defined in A1-A2.

Proof: See Appendix A.2.3. �

We provide the following remarks on Theorem 1.

Remark 1. Recall that ζ = min{c1, c2} (Appendix B.2.3), where c1 = 1/(2β) − 2L2
y/γ and

c2 = 1
α − (Lx

2 +
2L2

x

γ2β +
βL2

x

2 ). Given the fact that Lx and Ly are Lipschitz constants and γ is the
strongly concavity constant, a proper lower bound of ζ thus relies on the choice of the learning rates

α and β. By setting β ≤ γ
8L2

y
and α ≤ 1/(Lx +

4L2
x

γ2β + βL2
x), it is easy to verify that c1 ≥

2L2
y

γ and

c2 ≥ Lx

2 +
2L2

x

γ2β +
βL2

x

2 ≥ Lx

2 +
2L2

x

γ . Thus, we obtain that ζ ≥ min{ 2L
2
y

γ ,
2L2

x

γ + Lx

2 }. This justifies
that ζ has a non-trivial lower bound, which will not make the convergence error bound (10) vacuous
(although the bound has not been optimized over α and β).

Remark 2. It is not wise to set learning rates α and β to extremely small values since c is inversely
proportional to α and β. Thus, we typically choose β = γ

8L2
y

and α = 1/(Lx +
4L2

x

γ2β + βL2
x) in

Remark 1 to guarantee the constant effect of c/ζ.

Remark 3. By setting µ ≤ min{1/
√
d, 1/
√
T}, we obtain σ2

x = O(1/b+ d/q) from Lemma 1, and
Theorem 1 implies that ZO-Min-Max yields O(1/T + 1/b+ d/q) convergence rate for one-sided
black-box optimization. Compared to the FO rate O(1/T ) (Lu et al., 2019; Sanjabi et al., 2018a),
ZO-Min-Max converges only to a neighborhood of stationary points with O(1/T ) rate, where the
size of the neighborhood is determined by the mini-batch size b and the number of random direction
vectors q used in ZO gradient estimation. It is also worth mentioning that such a convergence bias
may exist even in the FO/ZO projected stochastic gradient descent for solving minimization problems
(Ghadimi et al., 2016).

Convergence rate of ZO-Min-Max by performing ZO-PGA. We now focus on the convergence
analysis of ZO-Min-Max when ZO PGA is used at the y-maximization step (Line 6 of Algorithm 1)
for two-sided black-box optimization problems.
Lemma 4. (Descent lemma in maximization) Under A1-A2, let (x(t),y(t)) be a sequence generated
by Algorithm 1 and define the potential function as

P ′(x(t),y(t),∆(t)
y ) = E[f(x(t),y(t))] +

4 + 4(3L2
y + 2)β2 − 7βγ

β2γ
E‖∆(t)

y ‖2. (11)
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When function f(x,y) is black-box w.r.t. both x and y, we have the following descent w.r.t. y:

P ′(x(t+1),y(t+1),∆(t+1)
y ) ≤ P ′(x(t+1),y(t),∆(t)

y )−
(

1

2β
−

6L2
y + 4

γ

)
E‖∆(t+1)

y ‖2

+

(
6L2

x

γ2β
+

3βL2
x

2

)
E‖∆(t+1)

x ‖2 +
7β2γ2 + 28βγ + 12

βγ2
σ2
y +

βγ + 4

4β2γ
µ2d2L2

y, (12)

where σ2
y := σ2(Ly, µ, b, q, d) given in (3).

Proof: See Appendix A.3.1. �

Lemma 4 is analogous to Lemma 3 by taking into account the effect of ZO gradient estimate
∇̂yf(x,y) on the potential function (11). Such an effect is characterized by the terms related
to σ2

y and µ2d2L2
y in (12).

Theorem 2. Suppose that A1-A2 hold, the sequence (x(t),y(t)) over T iterations is generated by
Algorithm 1 in which learning rates satisfy β < γ/(4(3L2

y + 2)) and α ≤ min{Lx, 1/(Lx/2 +

6L2
x/(γ

2β) + 3βL2
x/2)}. When f(x,y) is black-box w.r.t. both x and y, the convergence rate of

ZO-Min-Max under a uniformly and randomly picked (x(r),y(r)) from {(x(t),y(t))}Tt=1 is given by

E‖G(x(r),y(r))‖2 ≤ c

ζ′
P ′1 − f∗ − ν′R2

T
+
cα

ζ′
σ2
x +

(
cb1
ζ′

+ d2L2
y

)
µ2 +

(
cb2
ζ′

+ 2

)
σ2
y,

where ζ ′ is a constant independent on the parameters µ, b, q, d and T , P ′t := P ′(x(t),y(t),∆
(t)
y )

in (11), c has been defined in (10), ν′ =
min{4+4(3L2

y+2)β2−7βγ,0}
β2γ , b1 = Lx +

d2L2
y(4+βγ)

4β2γ and

b2 = 7β2γ2+28βγ+12
βγ2 , σ2

x and σ2
y have been introduced in (7) and (12), and f∗, R, γ, Lx and Ly

have been defined in A1-A2.

Proof: See Appendix A.3.2. �

Following the similar argument in Remark 1 of Theorem 1, one can choose proper learning rates α and
β to obtain valid lower bound on ζ ′. However, different from Theorem 1, the convergence error shown
by Theorem 2 involves an additional error term related to σ2

y and has worse dimension-dependence
on the term related to µ2. The latter yields a more restricted choice of the smoothing parameter µ:
we obtain O(1/T + 1/b+ d/q) convergence rate when µ ≤ 1/(d

√
T ).

6 EXPERIMENTS

In this section, we evaluate the empirical performance of ZO-Min-Max on applications of adversarial
exploration: 1) design of black-box ensemble attack against two neural networks Inception-V3
(Szegedy et al., 2016) and ResNet-50 (He et al., 2016) under ImageNet (Deng et al., 2009), and 2)
design of black-box poisoning attack against a logistic regression model. We compare ZO-Min-Max
with ZO-Finite-Sum and FO-Min-Max, where the former is ZO-PSGD (Ghadimi et al., 2016) to
minimize the finite-sum (average) loss rather than the worst-case (min-max) loss, and the latter is
the FO counterpart of Algorithm 1. We also compare our method with the BO solver for robust
optimization STABLEOPT (Bogunovic et al., 2018) in the data poisoning example of a relatively
small problem size.

Black-box ensemble evasion attack via universal perturbation We consider the scenario in
which the attacker generates adversarial examples against an ensemble of multiple classifiers and/or
image classes (Liu et al., 2016; 2018). More formally, let (z, l) denote a legitimate image z with the
true class label l, and z′ := z + x denote an adversarial example, where x signifies the adversarial
perturbation. Here the natural image z and the perturbed image z + x are normalized to [−0.5, 0.5]d.
Considering I classes of images (each group of images corresponding to the same class li is denoted
by Ωi) and J network models, the adversary is to find the universal perturbation x across I image
classes and J models. The proposed attack problem is given by

minimize
x∈X

maximize
w∈W

f1(x,w) :=
∑J
j=1

∑I
i=1 [wijFij (x; Ωi, li)]− λ‖w − 1/(IJ)‖22, (13)

7
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where x and w ∈ RIJ are optimization variables, and wij denotes the (i, j)th entry of w correspond-
ing to the importance weight of attacking image class i under neural network model j. In problem (13),
X denotes the perturbation constraint, e.g., X = {x | ‖x‖∞ ≤ ε, z + x ∈ [−0.5, 0.5]d,∀z ∈ ∪iΩi},
W = {w | 1Tw = 1,w ≥ 0}, Fij (x; Ωi, li) is the attack loss for attacking the set of images at
class li under model j, and λ > 0 is a regularization parameter. We note that {Fij} in (13) are
black-box functions w.r.t. x since the network models are blind to the adversary, which cannot
perform back-propagation to obtain gradients. By contrast, it is a white-box and strongly concave
function w.r.t. w once the function values of {Fij} are given. Thus, problem (13) belongs to the
one-sided black-box optimization problem.

In our experiments, we consider J = 2 for Inception-V3 and ResNet-50, and I = 2 for two classes,
each of which contains 20 images randomly selected from ImageNet (Deng et al., 2009). We also
specify the attack loss Fij in (13) as the C&W untargeted attack loss (Carlini & Wagner, 2017),

Fij (x; Ωi, li) = (1/|Ωi|)
∑
z∈Ωi

max{gj(z + x)li −max
k 6=li

gj(z + x)k, 0}, (14)

where |Ωi| is the cardinality of the set Ωi, gj(z + x)k denotes the prediction score of class k given
the input z + x using model j. In (13), we also set λ = 5. In Algorithm 1, we set α = 0.05, β =
0.01, q = 10 and µ = 5× 10−3, and use the full batch of image samples in attack generation.
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Figure 1: Convergence performance of ZO-Min-Max in design of black-box ensemble attack. a) Stationary
gap, b) attack loss, and c) importance weights.

In Figure 1, we demonstrate the empirical convergence of ZO-Min-Max to solve problem
(13) from a) the stationary gap ‖G(x,y)‖2 given in (6), b) the attack loss Fij under each
model-class pair, and c) the importance weights w. In Figure 1-(a) and (b), the station-
ary gap decreases as the iteration increases, which is consistent with the reduction in the
attack loss at each MjCi. Here M and C represents network model and image class, re-
spectively. We also compare ZO-Min-Max with ZO-Finite-Sum, where the latter minimizes
the average loss

∑J
j=1

∑I
i=1 Fij over all model-class combinations. As we can see, our

approach significantly improves the worst-case attack performance (corresponding to M1C1).
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Figure 2: Success or failure of our
ensemble attack versus successful
per-image PGD attack.

Here the worst case represents the most robust model-class pair
against the attack. This suggests that ZO-Min-Max takes into
account different robustness levels of model-class pairs through the
design of importance weights w. This can also be evidenced from
Figure 1-(c): M1C1 has the largest weight while M2C2 corresponds
to the smallest weight.

In Figure 2, we contrast the success or failure (marked by blue or
red in the plot) of attacking each image using the obtained universal
perturbation x with the attacking difficulty (in terms of required
iterations for successful adversarial example) of using per-image
non-universal PGD attack (Madry et al., 2017b). We observe that
the success rate of the ensemble universal attack is around 80% at
each model-class pair, where the failed cases (red cross markers)
also need a large amount of iterations to succeed at the case of per-image PGD attack. And images
that are difficult to attack keep consistent across models; see dash lines to associate the same images
between two models in Figure 2.
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Black-box poisoning attack against logistic regression model Let D = {zi, ti}ni=1 denote the
training dataset, among which n′ � n samples are corrupted by a perturbation vector x, leading to
poisoned training data zi + x towards breaking the training process and thus the prediction accuracy.
The poisoning attack problem is then formulated as

maximize
‖x‖∞≤ε

minimize
θ

f2(x,θ) := Ftr(x,θ;D0) + λ‖θ‖22, (15)

where x and θ are optimization variables, Ftr(x,θ;D0) denotes the training loss over model parame-
ters θ at the presence of data poison x, and λ > 0 is a regularization parameter. Note that problem
(15) can be written in the form of (1) with the objective function−f2(x,θ). Clearly, if Ftr is a convex
loss (e.g., logistic regression or linear regression (Jagielski et al., 2018)), then−f2 is strongly concave
in θ. Since the adversary has no knowledge on the training procedure and data, f2(x,θ) is a two-sided
black-box function. We provide more details on problem (15) in Appendix C. In Algorithm 1, unless
specified otherwise we choose b = 100, q = 5, α = 0.02, β = 0.05, and T = 50000. We report the
empirical results averaged over 10 independent trials with random initialization.
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Figure 3: Empirical performance of ZO-Min-Max in design of poisoning attack: a) stationary gap versus
iterations b) testing accuracy versus iterations (the shaded region represents variance of 10 random trials), c)
testing accuracy versus data poisoning ratio, d) testing accuracy versus regularization parameter λ.

In Figure 3, we present the convergence performance of ZO-Min-Max to generate the data poisoning
attack and validate its attack performance in terms of testing accuracy of the logistic regression model
trained on the poisoned dataset. Unless specified otherwise, we set 15% poisoning ratio and λ = 10−3

for problem (15). Figure 3-(a) shows the stationary gap defined in (6) obtained by ZO-Min-Max
under different number of random direction vectors while estimating gradients (2). As we can see,
a moderate choice of q (e.g., q ≥ 5 in our example) is sufficient to achieve near-optimal solution
compared with FO-Min-Max. However, it suffers from a convergence bias due to the presence of
stochastic sampling, consistent with Theorem 1 and 2. Figure 3-(b) demonstrates the testing accuracy
(against iterations) of the model learnt from poisoned training data, where the poisoning attack is
generated by ZO-Min-Max (black-box attack) and FO-Min-Max (white-box attack). As we can see,
ZO-Min-Max yields promising attacking performance comparable to FO-Min-Max. We can also see
that by contrast with the testing accuracy of the clean model (94% without poison), the poisoning
attack eventually reduces the testing accuracy (below 70%). Furthermore, in Figure 3-(c), we present
the testing accuracy of the learnt model under different data poisoning ratios. As we can see, only
5% poisoned training data can significantly break the testing accuracy of a well-trained model. In

9
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Figure 3-(d), we show the testing accuracy of the poisoned model as the regularization parameter λ
varies. We observe that the poisoned model accuracy could be improved as λ increases, e.g., λ = 1.
However, this leads to a decrease in clean model accuracy (below 90% at λ = 1). This implies a
robustness-accuracy tradeoff. If λ continues to increase, both the clean and poisoned accuracy will
decrease dramatically as the training loss in (15) is less optimized.
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Figure 4: Comparison between ZO-Min-Max and STABLEOPT: training accuracy (left) or testing accuracy
(right) versus optimization time.

In Figure 4, we compare ZO-Min-Max with STABLEOPT (Bogunovic et al., 2018) in terms of testing
accuracy versus computation time. Following (Bogunovic et al., 2018), we present the best accuracy
achieved up to the current time step. As we can see, STABLEOPT is difficult to scale to the problem
of data poisoning generation, while our method reaches a data poisoning attack that induces much
worse testing accuracy within 500 seconds.

7 CONCLUSION

This paper addresses black-box robust optimization problems given a finite number of function
evaluations. In particular, we present ZO-Min-Max: a framework of alternating, randomized gradient
estimation based ZO optimization algorithm to find a first-order stationary solution to the black-box
min-max problem. Under mild assumptions, ZO-Min-Max enjoys a sub-linear convergence rate. It
scales to dimensions that are infeasible for recent robust solvers based on Bayesian optimization.
Furthermore, we experimentally demonstrate the potential application of the framework on real-world
scenarios, viz. black-box evasion and data poisoning attacks.
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APPENDIX

A DETAILED CONVERGENCE ANALYSIS

A.1 PROOF OF LEMMA 1

Before going into the proof, let’s review some preliminaries and give some definitions. Define hµ(x, ξ)
to be the smoothed version of h(x, ξ) and since ξ models a subsampling process over a finite number
of candidate functions, we can further have hµ(x) , Eξ[hµ(x, ξ)] and∇xhµ(x) = Eξ[∇xhµ(x, ξ)]

Recall that in the finite sum setting when ξj parameterizes the jth function, the gradient estimator is
given by

∇̂xh(x) =
1

bq

∑
j∈I

q∑
i=1

d[h(x + µui; ξj)− h(x; ξj)]

µ
ui. (16)

where I is a set with b elements, containing the indices of functions selected for gradient evaluation.

From standard result of the zeroth order gradient estimator, we know

EI
[
Eui,i∈[q]

[
∇̂xh(x)

] ∣∣I] = EI

1

b

∑
j∈I
∇xfµ(x, ξj)

 = ∇xhµ(x). (17)

Now let’s go into the proof. First, we have

E
[
‖∇̂xh(x)−∇xhµ(x)‖22

]
=EI

Eui,i∈[q]


∥∥∥∥∥∥∇̂xh(x)− 1

b

∑
j∈I
∇xfµ(x, ξj) +

1

b

∑
j∈I
∇xfµ(x, ξj)−∇xhµ(x)

∥∥∥∥∥∥
2

2

∣∣∣∣I



≤2EI

Eui,i∈[q]


∥∥∥∥∥∥∇̂xh(x)− 1

b

∑
j∈I
∇xfµ(x, ξj)

∥∥∥∥∥∥
2

2

+

∥∥∥∥∥∥1

b

∑
j∈I
∇xfµ(x, ξj)−∇xhµ(x)

∥∥∥∥∥∥
2

2

∣∣∣∣I

 .

(18)

Further, by definition, given I , ∇̂xh(x) is the average of ZO gradient estimates under q i.i.d. random
directions, each of which has the mean 1

b

∑
j∈I ∇xfµ(x, ξj). Thus for the first term at the right-

hand-side (RHS) of the above inequality, we have

Eui,i∈[q]


∥∥∥∥∥∥∇̂xh(x)− 1

b

∑
j∈I
∇xfµ(x, ξj)

∥∥∥∥∥∥
2

2

∣∣∣∣I
 ≤1

q

2d

∥∥∥∥∥∥1

b

∑
j∈I
∇xf(x, ξj)

∥∥∥∥∥∥
2

+
µ2L2

hd
2

2


≤1

q

(
2dη2 +

µ2L2
hd

2

2

)
(19)

where the first inequality is by the standard bound of the variance of zeroth order estimator and the
second inequality is by the assumption that ‖∇xh(x; ξ)‖2 ≤ η2 and thus ‖ 1b

∑
j∈I ∇xf(x, ξj)‖2 ≤

η2.In addition, we have

EI

Eui,i∈[q]


∥∥∥∥∥∥1

b

∑
j∈I
∇xfµ(x, ξj)−∇xhµ(x)

∥∥∥∥∥∥
2

2

∣∣∣∣I



=EI


∥∥∥∥∥∥1

b

∑
j∈I
∇xfµ(x, ξj)−∇xhµ(x)

∥∥∥∥∥∥
2

2


=

1

b
Eξ
[
‖∇xfµ(x, ξ)−∇xhµ(x)‖22

]
≤ η2

b
(20)
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where the second equality is because ξj are i.i.d. draws from the same distribution as ξ and
E[∇xfµ(x, ξ)] = ∇xhµ(x), the last inequality is because ‖∇xfµ(x, ξ)‖22 ≤ η2 by assumption.
Substituting (19) and (20) into (18) finishes the proof. �

A.2 CONVERGENCE ANALYSIS OF ZO-MIN-MAX BY PERFORMING PGA

In this section, we will provide the details of the proofs. Before proceeding, we have the following
illustration, which will be useful in the proof.

The order of taking expectation: Since iterates x(t),y(t),∀t are random variables, we need to
define

F (t) = {x(t),y(t),x(t−1),y(t−1), . . . ,x(1),y(1)} (21)
as the history of the iterates. Throughout the theoretical analysis, taking expectation means that
we take expectation over random variable at the tth iteration conditioned on F (t−1) and then take
expectation over F (t−1).

Subproblem: Also, it is worthy noting that performing (4) and (5) are equivalent to the following
optimization problem:

x(t) = min
x∈X

〈
∇̂xf(x(t−1),y(t−1)),x−x(t−1)

〉
+

1

2α
‖x−x(t−1) ‖2, (22)

y(t) = max
y∈Y

〈
∇̂yf(x(t),y(t−1)),y−y(t−1)

〉
− 1

2β
‖y−y(t−1) ‖2. (23)

When f(x,y) is white-box w.r.t. y, (23) becomes

y(t) = max
y∈Y

〈
∇yf(x(t),y(t−1)),y−y(t−1)

〉
− 1

2β
‖y−y(t−1) ‖2. (24)

In the proof of ZO-Min-Max, we will use the optimality condition of these two problems to derive
the descent lemmas.

Relationship with smoothing function We denote by fµ,x(x,y) the smoothing version of f w.r.t.
x with parameter µ > 0. The similar definition holds for fµ,y(x,y). By taking fµ,x(x,y) as an
example, under A2 f and fµ,x has the following relationship (Gao et al., 2014, Lemma 4.1):

|fµ,x(x,y)− f(x,y))| ≤ Lxµ
2

2
and ‖∇xfµ,x(x,y)−∇xf(x,y)‖22 ≤

µ2d2L2
x

4
, (25)

|fµ,y(x,y)− f(x,y))| ≤ Lyµ
2

2
and ‖∇yfµ,y(x,y)−∇yf(x,y)‖22 ≤

µ2d2L2
y

4
. (26)

First, we will show the descent lemma in minimization as follows.

A.2.1 PROOF OF LEMMA 2

Proof: Since f(x,y) has Lx Lipschtiz continuous gradients with respect to x, we have

fµ(x(t+1),y(t)) ≤fµ(x(t),y(t)) + 〈∇xfµ(x(t),y(t)),x(t+1)−x(t)〉+
Lx
2
‖x(t+1)−x(t) ‖2

=fµ(x(t),y(t)) + 〈∇̂xf(x(t),y(t)),x(t+1)−x(t)〉+
Lx
2
‖x(t+1)−x(t) ‖2

+ 〈∇xfµ(x(t),y(t))− ∇̂xf(x(t),y(t)),x(t+1)−x(t)〉. (27)

Recall that

x(t+1) = projX (x(t) − α∇̂xf(x(t),y(t))), (28)

From the optimality condition of x-subproblem (22), we have

〈∇̂xf(x(t),y(t)),x(t+1)−x(t)〉 ≤ − 1

α
‖x(t+1)−x(t) ‖2. (29)

15
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Here we use the fact that the optimality condition of problem (22) at the solution x(t+1) yields
〈∇̂xf(x(t),y(t)) + (x(t+1)−x(t))/α,x(t+1)−x〉 ≤ 0 for any x ∈ X . By setting x = x(t), we
obtain (29).

In addition, we define another iterate generated by∇xfµ(x(t),y(t))

x̂(t+1) = projX (x(t) − α∇xfµ(x(t),y(t))). (30)

Then, we can have

〈∇xfµ(x(t),y(t))− ∇̂xf(x(t),y(t)),x(t+1)−x(t)〉
=〈∇xfµ(x(t),y(t))− ∇̂xf(x(t),y(t)),x(t+1)−x(t)−(x̂(t+1) − x(t))〉

+ 〈∇xfµ(x(t),y(t))− ∇̂xf(x(t),y(t)), x̂(t+1) − x(t)〉. (31)

Due to the fact that Eu[∇̂xf(x(t),y(t))] = ∇xfµ(x(t),y(t)), we further have

Eu[〈∇xfµ(x(t),y(t))− ∇̂xf(x(t),y(t)), x̂(t+1) − x(t)〉] = 0. (32)

Finally, we also have

〈∇xfµ(x(t),y(t))− ∇̂xf(x(t),y(t)),x(t+1)−x(t)−(x̂(t+1) − x(t))〉

≤α
2
‖∇xfµ(x(t),y(t))− ∇̂xf(x(t),y(t))‖2 +

1

2α
‖x(t+1)−x(t)−(x̂(t+1) − x(t))‖2

≤α‖∇xfµ(x(t),y(t))− ∇̂xf(x(t),y(t))‖2 (33)

where the first inequality is due to Young’s inequality, the second inequality is due to non-
expansiveness of the projection operator. Thus

Eu[〈∇xfµ(x(t),y(t))− ∇̂xf(x(t),y(t)),x(t+1)−x(t)−(x̂(t+1) − x(t))〉]
≤Eu[α‖∇xfµ(x(t),y(t))− ∇̂xf(x(t),y(t))‖2] ≤ ασ2

x (34)

where σ2
x := σ2(Lx, b, q, d) which was defined in (3).

Combining all above, we have

E[fµ(x(t+1),y(t))] ≤E[fµ(x(t),y(t))]−
(

1

α
− Lx

2

)
‖x(t+1)−x(t) ‖2 + ασ2, (35)

and we request α ≤ 1/Lx, which completes the proof.

Using |fµ,x(x,y)− f(x,y))| ≤ Lxµ
2

2 , we can get

E[f(x(t+1),y(t))]− Lxµ
2

2
≤ E[fµ(x(t+1),y(t))] ≤ E[f(x(t+1),y(t))] +

Lxµ
2

2
, (36)

so we are able to obtain from (3)

E[f(x(t+1),y(t))] ≤ E[f(x(t),y(t))]−
(

1

α
− Lx

2

)
‖x(t+1)−x(t) ‖2 + ασ2

x + Lxµ
2. (37)

�

Corollary 1.

E
〈
∇̂f(x(t),y(t−1))−∇fµ(x(t),y(t−1)),y(t)−y(t−1)

〉
≤ βσ2

y (38)

σ2
y := σ2(Ly, b, q, d) which was defined in (3).

Proof:

Define

ỹ(t) = projY(y(t) − β∇yfµ(x(t),y(t−1))), (39)

16
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we have

〈∇yfµ(x(t),y(t−1))− ∇̂xf(x(t),y(t−1)),y(t)−y(t−1)〉
=〈∇yfµ(x(t),y(t−1))− ∇̂yf(x(t),y(t−1)),y(t)−y(t−1)−(ỹ(t) − y(t−1))〉

+ 〈∇yfµ(x(t),y(t−1))− ∇̂yf(x(t),y(t−1)), ỹ(t) − y(t−1)〉. (40)

Due to the fact that Eu[∇̂yf(x(t),y(t−1))] = ∇yfµ(x(t),y(t−1)), we further have

Eu[〈∇yfµ(x(t),y(t−1))− ∇̂yf(x(t),y(t−1)), ỹ(t) − y(t−1)〉] = 0. (41)

Finally, we also have

Eu[〈∇yfµ(x(t),y(t−1))− ∇̂yf(x(t),y(t−1)),y(t)−y(t−1)−(ỹ(t) − y(t−1))〉]

≤Eu[
β

2
‖〈∇yfµ(x(t),y(t−1))− ∇̂yf(x(t),y(t−1))‖2 +

1

2β
‖y(t)−y(t−1)−(ỹ(t) − y(t−1))‖2]

≤Eu[β‖∇yfµ(x(t),y(t−1))− ∇̂yf(x(t),y(t−1))‖2] ≤ βσ2
y (42)

where σ2
y := σ2(Ly, b, q, d) which was defined in (3).

�

Next, before showing the proof of Lemma 3, we need the following lemma to show the recurrence of
the size of the successive difference between two iterations.

Lemma 5. Under assumption 1, assume iterates x(t),y(t) generated by algorithm 1. When f(x(t),y)
is white-box, we have

2

β2γ
E‖y(t+1)−y(t) ‖2 − 2

β2γ
E‖y(t)−y(t−1) ‖2 ≤ 2L2

x

βγ2
E‖x(t+1)−x(t) ‖2

+
2

β
E‖y(t+1)−y(t) ‖2 −

(
4

β
−

2L2
y

γ

)
E‖y(t)−y(t−1) ‖2. (43)

Proof: from the optimality condition of y-subproblem (24) at iteration t and t − 1, we have the
following two inequalities:

−〈∇yf(x(t+1),y(t))− 1

β
(y(t+1)−y(t)),y(t+1)−y(t)〉 ≤0, (44)

〈∇yf(x(t),y(t−1))− 1

β
(y(t)−y(t−1)),y(t+1)−y(t)〉 ≤0. (45)

Adding the above inequalities, we can get

1

β
〈v(t+1),y(t+1)−y(t)〉 ≤

〈
∇yf(x(t+1),y(t))−∇yf(x(t),y(t)),y(t+1)−y(t)

〉
+
〈
∇yf(x(t),y(t))−∇yf(x(t),y(t−1)),y(t+1)−y(t)

〉
(46)

where v(t+1) = y(t+1)−y(t)−(y(t)−y(t−1)).

According to the quadrilateral indentity, we know〈
v(t+1),y(t+1)−y(t)

〉
=

1

2

(
‖y(t+1)−y(t) ‖2 + ‖v(t+1) ‖2 − ‖y(t)−y(t−1) ‖2

)
. (47)

17
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Based on the definition of v(t+1), we substituting (47) into (46), which gives

1

2β
‖y(t+1)−y(t) ‖2 ≤ 1

2β
‖y(t)−y(t−1) ‖2 − 1

2β
‖v(t+1) ‖2

+
〈
∇yf(x(t+1),y(t))−∇yf(x(t),y(t)),y(t+1)−y(t)

〉
+
〈
∇yf(x(t),y(t))−∇yf(x(t),y(t−1)),y(t+1)−y(t)

〉
(48)

(a)

≤ 1

2β
‖y(t)−y(t−1) ‖2 +

〈
∇yf(x(t+1),y(t))−∇yf(x(t),y(t)),y(t+1)−y(t)

〉
+
βL2

y

2
‖y(t)−y(t−1) ‖2 − γ‖y(t)−y(t−1) ‖2

(b)

≤ 1

2β
‖y(t)−y(t−1) ‖2 +

γ

2
‖y(t+1)−y(t) ‖2

+
L2
x

2γ
‖x(t+1)−x(t) ‖2 − (γ −

βL2
y

2
)‖y(t)−y(t−1) ‖2 (49)

where in (a) we use the strong concavity of function f(x,y) in y (with parameter γ > 0) and
Young’s inequality, i.e.,

〈∇yf(x(t),y(t))−∇yf(x(t),y(t−1)),y(t+1)−y(t)〉
=〈∇yf(x(t),y(t))−∇yf(x(t),y(t−1)),v(t+1) +y(t)−y(t−1)〉

≤
βL2

y

2
‖y(t)−y(t−1) ‖2 +

1

2β
‖v(t+1) ‖2 − γ‖y(t)−y(t−1) ‖2 (50)

and in (b) we apply the Young’s inequality, i.e.,〈
∇yf(x(t+1),y(t))−∇yf(x(t),y(t)),y(t+1)−y(t)

〉
≤ L2

x

2γ
‖x(t+1)−x(t) ‖2+

γ

2
‖y(t+1)−y(t) ‖2.

(51)
Therefore, we have

1

2β
‖y(t+1)−y(t) ‖2 ≤ 1

2β
‖y(t)−y(t−1) ‖2 +

L2
x

2γ
‖x(t+1)−x(t) ‖2

+
γ

2
‖y(t+1)−y(t) ‖2 −

(
γ −

βL2
y

2

)
‖y(t)−y(t−1) ‖2, (52)

which implies

2

β2γ
‖y(t+1)−y(t) ‖2 ≤ 2

β2γ
‖y(t)−y(t−1) ‖2 +

2L2
x

βγ2
‖x(t+1)−x(t) ‖2

+
2

β
‖y(t+1)−y(t) ‖2 −

(
4

β
−

2L2
y

γ

)
‖y(t)−y(t−1) ‖2. (53)

By taking the expectation on both sides of (53), we can get the results of Lemma 5. �

Lemma 5 basically gives the recursion of ‖∆(t)
y ‖2. It can be observed that term (4/β−2L2

y/γ)‖∆(t)
y ‖

provides the descent of the recursion when β is small enough, which will take an important role in
the proof of Lemma 3 when we quantify the descent in maximization.

Then, we can quantify the descent of the objective value by the following descent lemma.

A.2.2 PROOF OF LEMMA 3

Proof: let f ′(x(t+1),y(t+1)) = f(x(t+1),y(t+1))−1(y(t+1)) and 1(y) denote the indicator function
with respect to the constraint of y. From the optimality condition of sub-problem y in (23), we have

∇yf(x(t+1),y(t))− 1

β
(y(t+1)−y(t))− ξ(t+1) = 0 (54)
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where ξ(t) denote the subgradient of 1(y(t)). Since function f ′(x,y) is concave with respect to y,
we have
f ′(x(t+1),y(t+1))− f ′(x(t+1),y(t)) ≤ 〈∇yf(x(t+1),y(t)),y(t+1)−y(t)〉 − 〈ξ(t),y(t+1)−y(t)〉

(a)
=

1

β
‖y(t+1)−y(t) ‖2 − 〈ξ(t) − ξ(t+1),y(t+1)−y(t)〉

=
1

β
‖y(t+1)−y(t) ‖2 +

〈
∇yf(x(t+1),y(t))−∇yf(x(t),y(t−1)),y(t+1)−y(t)

〉
− 1

β

〈
v(t+1),y(t+1)−y(t)

〉
(55)

where in (a) we use ξ(t+1) = ∇yf(x(t+1),y(t))− 1
β (y(t+1)−y(t)) . The last two terms of (55) is

the same as the RHS of (46). We can apply the similar steps from (48) to (49). To be more specific,
the derivations are shown as follows: First, we know

f ′(x(t+1),y(t+1))− f ′(x(t+1),y(t)) ≤ 1

β
‖y(t+1)−y(t) ‖2

+
〈
∇yf(x(t+1),y(t))−∇yf(x(t),y(t−1)),y(t+1)−y(t)

〉
− 1

β

〈
v(t+1),y(t+1)−y(t)

〉
. (56)

Then, we move term 1/β〈v(t+1),y(t+1)−y(t)〉 to RHS of (55) and have

f(x(t+1),y(t+1))− f(x(t+1),y(t))

≤ 1

2β
‖y(t+1)−y(t) ‖2 +

1

2β
‖y(t)−y(t−1) ‖2 − 1

2β
‖v(t+1) ‖2

+
〈
∇yf(x(t+1),y(t))−∇yf(x(t),y(t)),y(t+1)−y(t)

〉
+
〈
∇yf(x(t),y(t))−∇yf(x(t),y(t−1)),y(t+1)−y(t)

〉
≤ 1

2β
‖y(t+1)−y(t) ‖2 +

〈
∇yf(x(t+1),y(t))−∇yf(x(t),y(t)),y(t+1)−y(t)

〉
+
βL2

y

2
‖y(t)−y(t−1) ‖2 − γ‖y(t)−y(t−1) ‖2

(a)

≤ 1

β
‖y(t+1)−y(t) ‖2 +

1

2β
‖y(t)−y(t−1) ‖2

+
βL2

x

2
‖x(t+1)−x(t) ‖2 − (γ −

βL2
y

2
)‖y(t)−y(t−1) ‖2 (57)

where in (a) we use

〈∇yf(x(t+1),y(t))−∇yf(x(t),y(t))〉 ≤ βL2
x

2
‖x(t+1)−x(t) ‖2 +

1

2β
‖y(t+1)−y(t) ‖2 (58)

which is different from (51); also y(t),y(t+1) ∈ Y so have f ′(x(t+1),y(t+1)) = f(x(t+1),y(t+1))
and f ′(x(t+1),y(t)) = f(x(t+1),y(t)).

Combing (53), we have

f(x(t+1),y(t+1)) +

(
2

β2γ
+

1

2β

)
‖y(t+1)−y(t) ‖2 − 4

(
1

β
−
L2
y

2γ

)
‖y(t+1)−y(t) ‖2

≤f(x(t+1),y(t)) +

(
2

β2γ
+

1

2β

)
‖y(t)−y(t−1) ‖2 − 4

(
1

β
−
L2
y

2γ

)
‖y(t)−y(t−1) ‖2

−

(
1

2β
−

2L2
y

γ

)
‖y(t+1)−y(t) ‖2 +

(
2L2

x

γ2β
+
βL2

x

2

)
‖x(t+1)−x(t) ‖2. (59)

By taking the expectation on both sides of (53), we can get the results of Lemma 3. �

Next, we use the following lemma to show the descent of the objective value after solving x-
subproblem by (4).
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A.2.3 PROOF OF THEOREM 1

Proof:

From Lemma 3, we know

E[f(x(t+1),y(t+1))] +

(
2

β2γ
+

1

2β

)
E[‖y(t+1)−y(t) ‖2]

− 4

(
1

β
−
L2
y

2γ

)
E[‖y(t+1)−y(t) ‖2] ≤ E[f(x(t+1),y(t))]

+

(
2

β2γ
+

1

2β

)
E[‖y(t)−y(t−1) ‖2]− 4

(
1

β
−
L2
y

2γ

)
E[‖y(t)−y(t−1) ‖2]

−

(
1

2β
−

2L2
y

γ

)
E[‖y(t+1)−y(t) ‖2] +

(
2L2

x

γ2β
+
βL2

x

2

)
E[‖x(t+1)−x(t) ‖2]. (60)

Combining Lemma 2, we have

E[f(x(t+1),y(t+1))] +

(
2

β2γ
+

1

2β

)
E
[
‖y(t+1)−y(t) ‖2

]
− 4

(
1

β
−
L2
y

2γ

)
E
[
‖y(t+1)−y(t) ‖2

]
≤ E[f(x(t),y(t))] +

(
2

β2γ
+

1

2β

)
E
[
‖y(t)−y(t−1) ‖2

]
− 4

(
1

β
−
L2
y

2γ

)
E
[
‖y(t)−y(t−1) ‖2

]
−

(
1

2β
−

2L2
y

γ

)
︸ ︷︷ ︸

c1

E
[
‖y(t+1)−y(t) ‖2

]

−
(

1

α
−
(
Lx
2

+
2L2

x

γ2β
+
βL2

x

2

))
︸ ︷︷ ︸

c2

E
[
‖x(t+1)−x(t) ‖2

]
+ ασ2

x + Lxµ
2. (61)

If

β <
γ

4L2
y

and α <
1

Lx

2 +
2L2

x

γ2β +
βL2

x

2

, (62)

then we have that there exist positive constants c1 and c2 such that

P(x(t+1),y(t+1),∆(t+1)
y )− P(x(t),y(t),∆(t)

y )

≤− c1E
[
‖y(t+1)−y(t) ‖2

]
− c2E

[
‖x(t+1)−x(t) ‖2

]
+ ασ2

x + Lxµ
2

≤− ζ
(
E
[
‖y(t+1)−y(t) ‖2

]
+ E

[
‖x(t+1)−x(t) ‖2

])
+ ασ2

x + Lxµ
2 (63)

where ζ = min{c1, c2}.
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From (6), we can have

‖G(x(t),y(t))‖

≤ 1

α
‖x(t+1)−x(t) ‖+

1

α
‖x(t+1)−projX (x(t)−α∇xf(x(t),y(t)))‖+

1

β
‖y(t+1)−y(t) ‖

+
1

β
‖y(t+1)−projY(y(t) +β∇yf(x(t),y(t))‖

(a)

≤ 1

α
‖x(t+1)−x(t) ‖

+
1

α
‖projX (x(t+1)−α(∇xf(x(t),y(t)) +

1

α
(x(t+1)−x(t)))− projX (x(t)−α∇xf(x(t),y(t)))‖

+
1

β
‖y(t+1)−y(t) ‖

+
1

β
‖projY(y(t+1) +β(∇yf(x(t+1),y(t))− 1

β
(y(t+1)−y(t)))− projY(y(t) +β∇yf(x(t),y(t)))‖

(b)

≤ 3

α
‖x(t+1)−x(t) ‖+ ‖∇yf(x(t+1),y(t)))−∇yf(x(t),y(t)))‖+

3

β
‖y(t+1)−y(t) ‖

(c)

≤
(

3

α
+ Lx

)
‖x(t+1)−x(t) ‖+

3

β
‖y(t+1)−y(t) ‖

where in (a) we use x(t+1) = projX (x(t+1)−α∇f(x(t+1),y(t))− (x(t+1)−x(t))); in (b) we use
nonexpansiveness of the projection operator; in (c) we apply the Lipschitz continuous of function
f(x,y) with respect to x and y under assumption A2. Therefore, we can know that there exist a
constant c = max{Lx + 3

α ,
3
β } such that

‖G(x(t),y(t))‖2 ≤ c
(
‖x(t+1)−x(t) ‖2 + ‖y(t+1)−y(t) ‖2

)
. (64)

After applying the telescope sum on (63) and taking expectation over (64), we have

1

T

T∑
t=1

E‖G(x(t),y(t))‖2 ≤ c

ζ

(
P1 − PT+1

T
+ ασ2

x + Lxµ
2

)
. (65)

Recall from A1 that f ≥ f∗ and Y is bounded with diameter R, therefore, Pt given by (8) yields

Pt ≥ f∗ +

(
min{4 + 4β2L2

y − 7βγ, 0}
2β2γ

)
R2, ∀t. (66)

And let (x(r),y(r)) be uniformly and randomly picked from {(x(t),y(t))}Tt=1, based on (65) and
(66), we obtain

Er[E‖G(x(r),y(r))‖2] =
1

T

T∑
t=1

E‖G(x(t),y(t))‖2 ≤ c

ζ

(
P1 − f∗ − νR2

T
+ ασ2

x + Lxµ
2

)
,

(67)

where recall that ζ = min{c1, c2}, c = max{Lx + 3
α ,

3
β } and ν =

min{4+4β2L2
y−7βγ,0}

2β2γ .

The proof is now complete. �

A.3 CONVERGENCE ANALYSIS OF ZO-MIN-MAX BY PERFORMING ZO-PGA

Before showing the proof of Lemma 4, we first give the following lemma regarding to recursion of
the difference between two successive iterates of variable y.
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Lemma 6. Under assumption 1, assume iterates x(t),y(t) generated by algorithm 1. When function
f(x(t),y) is black-box, we have

2

β2γ
E‖y(t+1)−y(t) ‖2 ≤ 2

β2γ
E‖y(t)−y(t−1) ‖2 +

2

β
E‖y(t+1)−y(t) ‖2

+
6L2

y

βγ2
E‖x(t+1)−x(t) ‖2 −

(
4

β
−

6L2
y + 4

γ

)
E‖y(t)−y(t−1) ‖2

+
4σ2

y

βγ

(
3

γ
+ 4β

)
+
µ2d2L2

y

β2γ
. (68)

From the optimality condition of y-subproblem in (23) at iteration t and t− 1, we have

−
〈
∇̂yf(x(t+1),y(t))− 1

β
(y(t+1)−y(t)),y(t+1)−y(t)

〉
≤0, (69)〈

∇̂yf(x(t),y(t−1))− 1

β
(y(t)−y(t−1)),y(t+1)−y(t)

〉
≤0. (70)

Adding the above inequalities and applying the definition of v(t+1), we can get
1

β
〈v(t+1),y(t+1)−y(t)〉 ≤

〈
∇̂yf(x(t+1),y(t))− ∇̂yf(x(t),y(t)),y(t+1)−y(t)

〉
︸ ︷︷ ︸

I

+
〈
∇̂yf(x(t),y(t))− ∇̂yf(x(t),y(t−1)),y(t+1)−y(t)

〉
︸ ︷︷ ︸

II

. (71)

Next, we will bound E[I] and E[II] separably as follows.

First, we give an upper bound of E[I] as the following,

E
〈
∇̂yf(x(t+1),y(t))− ∇̂yf(x(t),y(t)),y(t+1)−y(t)

〉
≤ 3

2γ
E‖∇̂yf(x(t+1),y(t))−∇yfµ,y(x(t+1),y(t))‖2 +

γ

6
E‖y(t+1)−y(t) ‖2

+
3

2γ
E‖∇yfµ,y(x(t+1),y(t))−∇yfµ,y(x(t),y(t))‖2 +

γ

6
E‖y(t+1)−y(t) ‖2

+
3

2γ
E‖∇yfµ,y(x(t),y(t))− ∇̂fy(x(t),y(t))‖2 +

γ

6
E‖y(t+1)−y(t) ‖2

≤
3σ2

y

γ
+

3L2
x

2γ
E‖x(t+1)−x(t) ‖2 +

γ

2
E‖y(t+1)−y(t) ‖2 (72)

where Lemma 1 is used.

Second, we need to give an upper bound of E[II] as follows:

〈∇̂f(x(t),y(t))− ∇̂f(x(t),y(t−1)),y(t+1)−y(t)〉
=〈∇̂f(x(t),y(t))− ∇̂f(x(t),y(t−1)),v(t+1) +y(t)−y(t−1)〉

=
〈
∇f(x(t),y(t))−∇f(x(t),y(t−1)),y(t)−y(t−1)

〉
+
〈
∇fµ,y(x(t),y(t))−∇f(x(t),y(t)),y(t)−y(t−1)

〉
+
〈
∇̂f(x(t),y(t))−∇fµ,y(x(t),y(t)),y(t)−y(t−1)

〉
−
〈
∇fµ,y(x(t),y(t−1))−∇f(x(t),y(t−1)),y(t)−y(t−1)

〉
−
〈
∇̂f(x(t),y(t−1))−∇fµ,y(x(t),y(t−1)),y(t)−y(t−1)

〉
+ 〈∇̂f(x(t),y(t))− ∇̂f(x(t),y(t−1)),v(t+1)〉.
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Next, we take expectation on both sides of the above equality and obtain

E〈∇̂f(x(t),y(t))− ∇̂f(x(t),y(t−1)),y(t+1)−y(t)〉
(a)

≤

(
3βL2

y

2
+ β

)
‖y(t)−y(t−1) ‖2 +

1

2β
‖v(t+1) ‖2 − γ‖y(t)−y(t−1) ‖2

+
µ2d2L2

y

4β
+ 4βσ2

y (73)

where in (a) we use the fact that 1) γ-strong concavity of f with respect to y:〈
∇f(x(t),y(t))−∇f(x(t),y(t−1)),y(t)−y(t−1)

〉
≤ −γ‖y(t)−y(t−1) ‖2; (74)

and the facts that 2) smoothing property (26) and Young’s inequality

E
〈
∇fµ,y(x(t),y(t))−∇f(x(t),y(t)),y(t)−y(t−1)

〉
≤
µ2d2L2

y

8β
+
β

2
‖y(t)−y(t−1) ‖2; (75)

and the fact that 3) the ZO estimator is unbiased according to Lemma 1

E
〈
∇̂f(x(t),y(t))−∇fµ,y(x(t),y(t)),y(t)−y(t−1)

〉
= 0; (76)

and

E
〈
∇fµ,y(x(t),y(t−1))−∇f(x(t),y(t−1)),y(t)−y(t−1)

〉
≤
µ2d2L2

y

8β
+
β

2
‖y(t)−y(t−1) ‖2;

(77)
and from Corollary 1 we have

E
〈
∇̂f(x(t),y(t−1))−∇fµ,y(x(t),y(t−1)),y(t)−y(t−1)

〉
≤ βσ2

y; (78)

and

E〈∇̂f(x(t),y(t))− ∇̂f(x(t),y(t−1)),v(t+1)〉

≤3β

2
E‖∇fµ,y(x(t),y(t))− ∇̂f(x(t),y(t))‖2 +

1

6β
‖v(t+1) ‖2

+
3β

2
E‖∇fµ,y(x(t),y(t))−∇fµ,y(x(t),y(t−1))‖2 +

1

6β
‖v(t+1) ‖2

+
3β

2
E‖∇fµ,y(x(t),y(t−1))− ∇̂f(x(t),y(t−1))‖2 +

1

6β
‖v(t+1) ‖2

≤3βσ2
y +

1

2β
‖v(t+1) ‖2 +

3βL2
y

2
‖y(t)−y(t−1) ‖2. (79)

Then, from (71), we can have

1

2β
E‖y(t+1)−y(t) ‖2 ≤ 1

2β
E‖y(t)−y(t−1) ‖2 − 1

2β
E‖v(t+1) ‖2

+
3σ2

y

γ
+

3L2
x

2γ
E‖x(t+1)−x(t) ‖2 +

γ

2
E‖y(t+1)−y(t) ‖2

+
〈
∇̂f(x(t),y(t))− ∇̂f(x(t),y(t−1)),y(t+1)−y(t)

〉
≤ 1

2β
E‖y(t)−y(t−1) ‖2 +

γ

2
E‖y(t+1)−y(t) ‖2

+
3L2

y

2γ
E‖x(t+1)−x(t) ‖2 −

(
γ −

(
3βL2

y

2
+ β

))
E‖y(t)−y(t−1) ‖2

+
3σ2

y

γ
+ 4βσ2

y +
µ2d2L2

y

4β
, (80)
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which implies
2

β2γ
E‖y(t+1)−y(t) ‖2 ≤ 2

β2γ
E‖y(t)−y(t−1) ‖2 +

2

β
E‖y(t+1)−y(t) ‖2

+
6L2

y

βγ2
E‖x(t+1)−x(t) ‖2 −

(
4

β
−

6L2
y + 4

γ

)
E‖y(t)−y(t−1) ‖2

+
4σ2

y

βγ

(
3

γ
+ 4β

)
+
µ2d2L2

y

β2γ
. (81)

A.3.1 PROOF OF LEMMA 4

Proof: Similarly as A.2.2, let f ′(x(t+1),y(t+1)) = f(x(t+1),y(t+1))− 1(y(t+1)), 1(·) denotes the
indicator function and ξ(t) denote the subgradient of 1(y(t)). Since function f ′(x,y) is concave with
respect to y, we have

f ′(x(t+1),y(t+1))− f ′(x(t+1),y(t)) ≤ 〈∇f(x(t+1),y(t)),y(t+1)−y(t)〉 − 〈ξ(t),y(t+1)−y(t)〉
(a)
=

1

β
‖y(t+1)−y(t) ‖2 − 〈ξ(t) − ξ(t+1),y(t+1)−y(t)〉

=
1

β
‖y(t+1)−y(t) ‖2 +

〈
∇̂f(x(t+1),y(t))− ∇̂f(x(t),y(t−1)),y(t+1)−y(t)

〉
− 1

β

〈
v(t+1),y(t+1)−y(t)

〉
(82)

where in (a) we use ξ(t+1) = ∇̂f(x(t+1),y(t))− 1
β (y(t+1)−y(t)). Then, we have

Ef(x(t+1),y(t+1))− Ef(x(t+1),y(t)) +
1

β

〈
v(t+1),y(t+1)−y(t)

〉
≤ 1

β
‖y(t+1)−y(t) ‖2 +

〈
∇̂f(x(t+1),y(t))− ∇̂f(x(t),y(t−1)),y(t+1)−y(t)

〉
.

Applying the steps from (73) to (80), we can have

Ef(x(t+1),y(t+1))− Ef(x(t+1),y(t))

≤ 1

β
E‖y(t+1)−y(t) ‖2 +

1

2β
E‖y(t)−y(t−1) ‖2 −

(
γ −

(
3βL2

y

2
+ β

))
‖y(t)−y(t−1) ‖2

+
3βL2

x

2
E‖x(t+1)−x(t) ‖2 + 7βσ2

y +
µ2d2L2

y

4β
(83)

where we use

E
〈
∇̂yf(x(t+1),y(t))− ∇̂yf(x(t),y(t)),y(t+1)−y(t)

〉
≤3βσ2

y +
3βL2

x

2
E‖x(t+1)−x(t) ‖2 +

1

2β
E‖y(t+1)−y(t) ‖2. (84)

Combing (81), we have

Ef(x(t+1),y(t+1)) +

(
2

β2γ
+

1

2β

)
E‖y(t+1)−y(t) ‖2 −

(
4

β
−

6L2
y + 4

γ

)
E‖y(t+1)−y(t) ‖2

≤Ef(x(t+1),y(t)) +

(
2

β2γ
+

1

2β

)
E‖y(t)−y(t−1) ‖2 −

(
4

β
−

6L2
y + 4

γ

)
E‖y(t)−y(t−1) ‖2

−

(
1

2β
−

6L2
y + 4

γ

)
E‖y(t+1)−y(t) ‖2 +

(
6L2

x

γ2β
+

3βL2
x

2

)
E‖x(t+1)−x(t) ‖2.

+
µ2d2L2

y

β

(
1

4
+

1

βγ

)
+

(
7β +

4

βγ

(
3

γ
+ 7β

))
σ2
y. (85)

�
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A.3.2 PROOF OF THEOREM 2

Proof: From (37), we know the “descent” of the minimization step, i.e., the changes from
P ′(x(t),y(t),∆

(t)
y ) to P ′(x(t+1),y(t),∆

(t)
y ). Combining the “descent” of the maximization step by

Lemma 4 shown in (85), we can obtain the following:

P ′(x(t+1),y(t+1),∆(t+1)
y )

≤P ′(x(t),y(t),∆(t)
y )−

(
1

2β
−

6L2
y + 4

γ

)
︸ ︷︷ ︸

a1

E
[
‖y(t+1)−y(t) ‖2

]
(86)

−
(

1

α
−
(
Lx
2

+
6L2

x

γ2β
+

3βL2
x

2

))
︸ ︷︷ ︸

a2

E
[
‖x(t+1)−x(t) ‖2

]

+ µ2

(
Lx +

d2L2
y

β

(
1

4
+

1

βγ

))
︸ ︷︷ ︸

b1

+ασ2
x +

(
7β +

4

βγ

(
3

γ
+ 4β

))
︸ ︷︷ ︸

b2

σ2
y.

When β, α satisfy the following conditions:

β <
γ

4(3L2
y + 2)

, and α <
1

Lx

2 +
6L2

x

γ2β +
3βL2

x

2

, (87)

we can conclude that there exist b1, b2 > 0 such that

P ′(x(t+1),y(t+1),∆(t+1)
y )

≤P ′(x(t),y(t),∆(t)
y )− a1E

[
‖y(t+1)−y(t) ‖2

]
− a2

[
‖x(t+1)−x(t) ‖2

]
+ b1µ

2 + ασ2
x + b2σ

2
y

≤− ζ ′E
[
‖y(t+1)−y(t) ‖2 + ‖x(t+1)−x(t) ‖2

]
+ b1µ

2 + ασ2
x + b2σ

2 (88)

where ζ ′ = min{a1, a2}.
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From (6), we can have

E‖G(x(t),y(t))‖

≤ 1

α
E‖x(t+1)−x(t) ‖+

1

α
E‖x(t+1)−projX (x(t)−α∇xf(x(t),y(t)))‖

+
1

β
E‖y(t+1)−y(t) ‖+

1

β
E‖y(t+1)−projY(y(t) +β∇yf(x(t),y(t))‖

(a)

≤ 1

α
E‖x(t+1)−x(t) ‖+

1

β
E‖y(t+1)−y(t) ‖

+
1

α
E‖projX (x(t+1)−α(∇̂xf(x(t),y(t)) +

1

α
(x(t+1)−x(t)))− projX (x(t)−α∇xf(x(t),y(t)))‖

+
1

β
E‖projY(y(t+1) +β(∇̂yf(x(t+1),y(t))− 1

β
(y(t+1)−y(t)))− projY(y(t) +β∇yf(x(t),y(t)))‖

(b)

≤ 3

α
E‖x(t+1)−x(t) ‖+ E‖∇̂xf(x(t),y(t)))−∇xf(x(t),y(t)))‖

+
3

β
E‖y(t+1)−y(t) ‖+ E‖∇̂yf(x(t+1),y(t))−∇yf(x(t),y(t))‖

≤ 3

α
E‖x(t+1)−x(t) ‖+ E‖∇̂xf(x(t),y(t)))−∇xfµ,y(x(t),y(t)))‖

+ E‖∇xfµ,y(x(t),y(t)))−∇xf(x(t),y(t)))‖

+
3

β
E‖y(t+1)−y(t) ‖+ E‖∇̂yf(x(t+1),y(t))−∇yfµ,y(x(t+1),y(t))‖

+ E‖∇yfµ,y(x(t+1),y(t))−∇yfµ,y(x(t),y(t))‖
+ E‖∇yfµ,y(x(t),y(t))−∇yf(x(t),y(t))‖

(c)

≤
(

3

α
+ Lx

)
E‖x(t+1)−x(t) ‖+

3

β
E‖y(t+1)−y(t) ‖+ 2σ2

y + µ2d2L2
y

where in (a) we use the optimality condition of x(t)-subproblem; in (b) we use nonexpansiveness
of the projection operator; in (c) we apply the Lipschitz continuous of function f(x,y) under
assumption A2.

Therefore, we can know that

E
[
‖G(x(t),y(t))‖2

]
≤ c

(
‖x(t+1)−x(t) ‖2 + ‖y(t+1)−y(t) ‖2

)
+ 2σ2

y + µ2d2L2
y. (89)

After applying the telescope sum on (88) and taking expectation over (89), we have

1

T

T∑
t=1

E
[
‖G(x(t),y(t))‖2

]
≤ c

ζ ′
P1 − PT+1

T
+
cb1
ζ ′
µ2 +

cασ2
x

ζ ′
+
cb2
ζ ′
σ2
y + 2σ2

y + µ2d2L2
y. (90)

Recall from A1 that f ≥ f∗ and Y is bounded with diameter R, therefore, Pt given by (11) yields

Pt ≥ f∗ +

(
min{4 + 4(3L2

y + 2)β2 − 7βγ, 0}
β2γ

)
R2, ∀t. (91)

And let (x(r),y(r)) be uniformly and randomly picked from {(x(t),y(t))}Tt=1, based on (91) and
(90), we obtain

Er
[
E
[
‖G(x(r),y(r))‖2

]]
=

1

T

T∑
t=1

E
[
‖G(x(t),y(t))‖2

]
≤ c

ζ ′
P1 − f∗ − ν′R2

T
+
cb1
ζ ′
µ2 +

cασ2
x

ζ ′
+
cb2
ζ ′
σ2
y + 2σ2

y + µ2d2L2
y (92)

where recall that ζ ′ = min{a1, a2}, c = max{Lx + 3
α ,

3
β }, and ν′ =

min{4+4(3L2
y+2)β2−7βγ,0}
β2γ .

The proof is now complete. �
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B TOY EXAMPLE IN (BOGUNOVIC ET AL., 2018): ZO-MIN-MAX VERSUS BO

We review the example in (Bogunovic et al., 2018) as below,

maximize
x∈C

minimize
‖δ‖2≤0.5

f(x− δ) := −2(x1 − δ1)6 + 12.2(x1 − δ1)5 − 21.2(x1 − δ1)4

−6.2(x1 − δ1) + 6.4(x1 − δ1)3 + 4.7(x1 − δ1)2 − (x2 − δ2)6

+11(x2 − δ2)5 − 43.3(x2 − δ2)4 + 10(x2 − δ2) + 74.8(x2 − δ2)3

−56.9(x2 − δ2)2 + 4.1(x1 − δ1)(x2 − δ2) + 0.1(x1 − δ1)2(x2 − δ2)2

−0.4(x2 − δ2)2(x1 − δ1)− 0.4(x1 − δ1)2(x2 − δ2),
(93)

where x ∈ R2, and C = {x1 ∈ (−0.95, 3.2), x2 ∈ (−0.45, 4.4)}.
Problem (93) can be equivalently transformed to the min-max setting consistent with ours

minimize
x∈C

maximize
‖δ‖2≤0.5

−f(x− δ). (94)

The optimality of solving problem (93) is measured by regret versus iteration t,

Regret(t) = minimize
‖δ‖2≤0.5

f(x∗ − δ)−minimize
‖δ‖2≤0.5

f(x(t) − δ), (95)

where minimize‖δ‖2≤0.5 f(x∗ − δ) = −4.33 and x∗ = [−0.195, 0.284]T (Bogunovic et al., 2018).

In Figure A1, we compare the convergence performance and computation time of ZO-Min-Max with
the BO based approach STABLEOPT proposed in (Bogunovic et al., 2018). Here we choose the
same initial point for both ZO-Min-Max and STABLEOPT. And we set the same number of function
queries per iteration for ZO-Min-Max (with q = 1) and STABLEOPT. We recall from (2) that the
larger q is, the more queries ZO-Min-Max takes. In our experiments, we present the best achieved
regret up to time t and report the average performance of each method over 5 random trials. As we
can see, ZO-Min-Max is more stable, with lower regret and less running time. Besides, as q becomes
larger, ZO-Min-Max has a faster convergence rate. We remark that BO is slow since learning the
accurate GP model and solving the acquisition problem takes intensive computation cost.
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Figure A1: Comparison of ZO-Min-Max against STABLEOPT (Bogunovic et al., 2018): a) Convergence
performance; b) Computation time (seconds).

C EXPERIMENT SETUP ON POISONING ATTACK

In our experiment, we generate a synthetic dataset that contains n = 1000 samples (zi, ti).
We randomly draw the feature vector zi ∈ R100 from N (0, I), and determine ti = 1 if
1/(1 + e−(z

T
i θ∗+νi)) > 0.5. Here we choose θ∗ = 1 as the ground-truth model parameters,

and νi ∈ N (0, 10−3) as random noise. We randomly split the generated dataset into the train-
ing dataset Dtr (70%) and the testing dataset Dte (30%). We specify our learning model as the
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logistic regression model for binary classification. Thus, the loss function in problem (15) is
chosen as Ftr(x,θ;Dtr) := h(x,θ;Dtr,1) + h(0,θ;Dtr,2), where Dtr = Dtr,1 ∪ Dtr,2, Dtr,1 rep-
resents the subset of the training dataset that will be poisoned, |Dtr,1|/|Dtr| denotes the poisoning
ratio, h(x,θ;D) = −(1/|D|)

∑
(zi,ti)∈D[ti log(h(x,θ; zi)) + (1 − ti) log(1 − h(x,θ; zi))], and

h(x,θ; zi) = 1/(1 + e−(ai+x)T θ). In problem (15), we also set ε = 2 and λ = 10−3. In Algo-
rithm 1, unless specified otherwise we choose the the mini-batch size b = 100, the number of random
direction vectors q = 5, the learning rate α = 0.02 and β = 0.05, and the total number of iterations
T = 50000. We report the empirical results over 10 independent trials with random initialization.

28


	Introduction
	Related Work
	Problem Setup
	ZO-Min-Max: A Framework for Black-Box Min-Max Optimization
	Convergence Analysis
	Experiments 
	Conclusion
	Detailed Convergence Analysis
	Proof of Lemma 1 
	Convergence Analysis of ZO-Min-Max by Performing PGA
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Theorem 1

	Convergence Analysis of ZO-Min-Max by Performing ZO-PGA
	Proof of Lemma 4
	Proof of Theorem 2


	Toy Example in bogunovic2018adversarially: ZO-Min-Max versus BO
	Experiment Setup on Poisoning Attack

