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ABSTRACT

The training of stochastic neural network models with binary (±1) weights and
activations via continuous surrogate networks is investigated. We derive, using
mean field theory, a set of scalar equations describing how input signals propagate
through surrogate networks. The equations reveal that depending on the choice
of surrogate model, the networks may or may not exhibit an order to chaos tran-
sition, and the presence of depth scales that limit the maximum trainable depth.
Specifically, in solving the equations for edge of chaos conditions, we show that
surrogates derived using the Gaussian local reparameterisation trick have no crit-
ical initialisation, whereas a deterministic surrogates based on analytic Gaussian
integration do. The theory is applied to a range of binary neuron and weight de-
sign choices, such as different neuron noise models, allowing the categorisation
of algorithms in terms of their behaviour at initialisation. Moreover, we predict
theoretically and confirm numerically, that common weight initialization schemes
used in standard continuous networks, when applied to the mean values of the
stochastic binary weights, yield poor training performance. This study shows that,
contrary to common intuition, the means of the stochastic binary weights should
be initialised close to close to ±1 for deeper networks to be trainable.

1 INTRODUCTION

Recent work in deep learning has used a mean field formalism to explain the empirically well known
impact of initialization on the dynamics of learning Saxe et al. (2013), Poole et al. (2016), Schoen-
holz et al. (2016). From one perspective Poole et al. (2016), Schoenholz et al. (2016), the formalism
studies how signals propagate forward and backward in wide, random neural networks, by mea-
suring how the variance and correlation of input signals evolve from layer to layer, knowing the
distributions of the weights and biases of the network. By studying these moments the authors in
Schoenholz et al. (2016) were able to explain how heuristic initialization schemes avoid the “vanish-
ing and exploding gradients problem” Glorot & Bengio (2010), establishing that for neural networks
of arbirary depth to be trainable they must be initialised at “criticality”, which corresponds to initial
correlation being preserved to any depth. Practically, this line of work provides maximum trainable
depth scales, as well as insight into how different initialization schemes will affect the speed of
learning at the initial stages of training.

In this paper we extend this mean field formalism to two binary neural network approximations
Soudry et al. (2014), Shayer et al. (2017), each of which acts as a smooth surrogate model suitable
for the application of continuous optimization techniques. The problem of learning when the ac-
tivations and weights of a neural network are of low precision has seen renewed interest in recent
years, in part due to the promise of on-chip learning and the deployment of low-power applications
Courbariaux & Bengio (2016). Recent work has opted to train discrete variable networks directly
via backpropagation on a differentiable surrogate network, thus leveraging automatic differentiation
libraries and GPUs. A key to this approach is in defining an appropriate surrogate network as an ap-
proximation to the discrete model, and various algorithms have been proposed Baldassi et al. (2018),
Soudry et al. (2014), Courbariaux & Bengio (2016), Shayer et al. (2017).

Unfortunately, comparisons are difficult to make, since different algorithms may perform better
under specific combinations of optimisation algorithms, initialisations, and heuristics such as drop
out and batch normalization. Therefore a theoretical understanding of the various components of
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the algorithms is desirable. To date, the initialisation of any binary neural network algorithm has not
been studied, although the affect of quantization levels has been explored through this perspective
Blumenfeld et al. (2019). Since all approximations still retain the basic neural network structure of
layerwise processing, crucially applying backpropagation for optimisation, it is reasonable to expect
that signal propagation will also be an important concept for these methods.

The two continuous surrogate models of binary networks that we study make use of the application
of the central limit theorem (CLT) at the receptive fields of each neuron, assuming the binary weights
are stochastic. Specifically, the fields are written in terms of the continuous means of stochastic bi-
nary weights, but with more complicated expressions than for standard continuous networks. The
first approximation, presented in Soudry et al. (2014), and studied in the case of the perceptron
in Baldassi et al. (2018), yields a deterministic surrogate via analytic integration. The ideas be-
hind the approximation are old Spiegelhalter & Lauritzen (1990) but have seen renewed use in the
current context from Bayesian Ribeiro & Opper (2011) Hernández-Lobato & Adams (2015) and
non-Bayesian perspectives Soudry et al. (2014). The second approximation is based on the so called
“local reparameterisation trick”, which combines Monte Carlo sampling with the CLT to yield a dif-
ferentiable network Shayer et al. (2017), Peters & Welling (2018). Note that the algorithm presented
in Shayer et al. (2017) did not consider binary neurons, which we show here to severely limit this
approach.

Our contribution is to successfully apply, in the spirit of Poole et al. (2016), a second level of mean
field theory to analyse two surrogate models. The application of this mean field theory hinges on
the use of self-averaging arguments Mezard et al. (1987). We demonstrate via simulation that the
recursive equations derived for signal propagation accurately describe the behaviour of randomly
initialised networks. Unlike standard continuous networks, it is not always the case that a binary
neural network will have an edge of chaos (EOC). Therefore, for each surrogate, we attempt to
solve the equations for this condition. As we will see, in the case that both neurons and weights
are stochastic and binary (the most difficult case), we will see that an EOC exists for deterministic
surrogate, while it does not exist for the reparameterisation trick based surrogate. We explore other
choices or combinations of binary weights and neurons as well.

In the case that critical initialisations exist, we are also able to derive the depth scales that limit
the maximum trainable depth, similarly to Schoenholz et al. (2016). These scales increase as the
networks are initialised closer to criticality, similarly to standard neural networks. In the stochastic
binary weight models, initialising close to criticality corresponds to the means of the weights being
initialised with strongly broken symmetry, close to ±1. Finally, we demonstrate experimentally
that trainability is indeed delivered with this initialisation, making it possible to train deeper binary
neural networks.

We also discuss the equivalent perspective to signal propagation, as first established in Saxe et al.
(2013), that we are effectively studying how to control the singular value distribution of the input-
output Jacobian matrix of the neural network Pennington et al. (2017) Pennington et al. (2018),
specifically its mean. While for standard continuous neural networks the mean squared singular
value of the Jacobian is directly related to the derivative of the correlation recursion equation, in
the surrogates studied here this is not so. We show that in this case the derivative calculated is only
an approximation of the Jacobian mean squared singular value, but that the approximation error
approaches zero as the layer width goes to infinity. We consider the possibilities in pursuing this
line of work, and other important questions, in the discussion.

2 BACKGROUND

2.1 CONTINUOUS NEURAL NETWORKS AND APPROXIMATIONS TO BINARY NETWORKS

A neural network model is typically defined as a deterministic non-linear function. We consider a
fully connected feedforward model, which is composed ofN `×N `−1 weight matricesW ` and bias
vectors b` in each layer ` ∈ {0, . . . , L}, with elements W `

ij ∈ R and b`i ∈ R. Given an input vector
x0 ∈ RN0 , the network is defined in terms of the following vector equations,

x` = φ`(h`cts), h`cts = W `x`−1 + b` (1)
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where the pointwise non-linearity is, for example, φ`(·) = tanh(·). We refer to the input to a neuron,
such as h`cts, as the pre-activation field.

In the binary neural networks we study, we instead consider stochastic binary weight matrices and
neurons. The idea is to leverage this stochasticity in deriving continuous surrogates. We denote
the matrices as S` with all weights1 S`ij ∈ {±1} being independently sampled Bernoulli variables:
S`ij ∼ Bernoulli(M `

ij), where the probability of flipping is controlled by the mean M `
ij := ES`ij .

The neurons in this model are also Bernoulli variables, controlled by the incoming field h`SB =
S`x`−1 + b` (SB denoting “stochastic binary”). The idea behind several recent papers Soudry et al.
(2014) Baldassi et al. (2018), Shayer et al. (2017), Peters & Welling (2018) is to adapt the mean
of the Bernoulli weights, with the stochastic model essentially used to “smooth out” the discrete
variables and arrive at a differentiable function, open to the application of continuous optimisation
techniques.

The algorithms we study here take the limit of large layer width to model the field h`SB as a Gaussian,
with mean h̄`i :=

∑
jM

`
ijx

`−1
j + b`i and variance Σ`ii =

∑
j 1− (M `

ijx
`−1
j )2. This is the first level

of mean field theory, which we can apply successively from layer to layer by propagating means and
variances to eventually obtain a differentiable function of the M `

ij .

Briefly, the deterministic surrogate of Soudry et al. (2014) and Baldassi et al. (2018) can be derived
as follows. For a finite dataset D = {xµ, yµ}, with yµ the label, we define a cost via

LD(f ;M, b) =
∑
µ∈D

logES,x

[
p(yµ = f(xµ;S, b,x))

]
(2)

with the expectation ES,x[·] over all weights and neurons. This objective might also be recognised as
a marginal likelihood, and so it is reasonable to describe this method as Type II maximum likelihood,
or empirical Bayes. In any case, it is possible to take the expectation via approximate analytic
integration, leaving us with a completely deterministic neural network with, for example, tanh(·)
non-linearities, but with more complicated pre-activation fields than a standard neural network.

The starting point for this approximation comes from rewriting the expectation ES,x

[
p(yµ =

f(xµ;S, b,x))
]

in terms of nested conditional expectations, similarly to a Markov chain, with layers
corresponding to time indices,

ES,x[p(yµ = f(xµ;S, b,x))] =
∑

S`,x` ∀`

p(yµ = f(xµ;S, b,x))p(x`|x`−1,S`)p(S`)

=
∑
SL+1

p(yµ = SL+1xL + bL
∣∣xL)

L−1∏
`=0

∑
x`

∑
S`

p(x`+1|x`,S`)p(S`)

with the distribution of neurons factorising across the layer, given the previous layer, p(x`+1|x`) =∏
i p(x

`+1
i |x`,S`i). The basic idea is to successively marginalise over the stochastic inputs to each

neuron, calculating an approximation of each neuron’s probability distribution, p̂(x`i). The approxi-
mation is based on the well known Gaussian integral of the Gaussian cumulative distribution func-
tion2, see the appendices for details. The steps of the approximation can be written for illustration
as,

p(x`i) =
∑
x`−1

∑
S`

p(x`i |x`−1,S`)p(S`−1)p̂(x`) ≈
∫
h`i

σ(h`ix
`+1
i )N (h`i |h̄`i , (Σ`MF )ii)

≈ σ(κ
h̄`i

(1 + Σ`MF )
1/2
ii

x`i) := p̂(x`i) (3)

1We follow the convention in physics models for ‘spin’ sites S`
ij ∈ {±1}, and also denote a stochastic

binary random variable with bold font.
2This is a slightly more general formulation than that in Soudry et al. (2014), which considered sign acti-

vations, but is otherwise equivalent. We note that the final algorithm derived in Soudry et al. (2014) did not
backpropagate through the variance terms, whereas this was done properly in Baldassi et al. (2018) for binary
networks, and earlier by Hernández-Lobato & Adams (2015) for Bayesian estimation of continuous neural
networks.
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with κ a constant of the integration, approximate or exact. The sigmoidal function σ(·) is typically
cumulative distribution function of either the Gaussian, or the logistic distribution. We discuss this
in more detail shortly, since it determines the form of the neuron non-linearity.

The term ΣMF is the mean field approximation to the covariance between the stochastic binary
pre-activations,

(ΣMF )ij = Cov(h`SB,h
`
SB)ijδij (4)

that is, a diagonal approximation to the full covariance (δij is the Kronecker delta). This approximate
probability is then used as part of the Gaussian CLT applied at the next layer. Importantly, we can
write out the network forward equations analogously to the continuous case,

x`i = φ`(κh`), h`= Σ
− 1

2

MF h̄
`, h̄` = M `x`−1 + b` (5)

We note that the backpropagation algorithm derived in Soudry et al. (2014) was derived from a
Bayesian message passing scheme, but removes all cavity arguments without corrections. As we
have shown this algorithm is easier to derive from an empirical Bayes or maximum marginal like-
lihood formulation. Furthermore, in Soudry et al. (2014) the authors chose not to “backpropagate
through” the variance terms, based on Taylor approximation and large layer width arguments.

The authors of Shayer et al. (2017), Peters & Welling (2018) utilise instead the local reparameter-
isation trick Kingma & Welling (2013) to obtain differentiable networks. The basic idea here is to
rewrite the incoming field h ∼ N (µ, σ2) as h = µ+ σε where ε ∼ N (0, 1). Thus any expectation
over h can be written instead as an expectation over ε. The resulting networks are thus differen-
tiable (with respect to the means and variances forming each Gaussian), albeit not deterministic.
The forward propagation equations for this surrogate are

x`i = φ`(h`), h`= h̄` + ε`Σ
− 1

2

MF , h̄` = M `x`−1 + b` (6)

Given the either the approximately analytically integrated loss function, or the reparameterisation
trick based surrogate, it is possible to perform gradient descent with respect to the M `

ij and b`i .

In the next section move on to a second level of mean field, in order to study how a signal prop-
agates on average in these continuous models, given random initialisation of the M ` and b`. This
is analogous to the approach of Poole et al. (2016) who studied random W ` and b` in the standard
continuous case. The motivation for considering this perspective is that, despite having a very dif-
ferent pre-activation fields, the surrogate models still maintain the same basic architecture, as seen
clearly from the equations equation 31 and equation 6. Therefore, the surrogates are likely to in-
herit the same “training problems” of standard neural networks, such as the vanishing and exploding
gradient problems Glorot & Bengio (2010). Since the dynamic mean field theory of Poole et al.
(2016) provides a compelling explanation of the dynamics of the early stages of learning, via sig-
nal propagation, it is worthwhile to see if this theory can be extended to the non-standard network
definitions.

2.1.1 A NOTE ON THE NON-LINEARITY φ() AND NEURON NOISE MODELS

The form of each neuron’s probability distribution, σ(·) in Equation equation 3 depends on the
underlying noise model. We can express a Bernoulli random variable S ∈ {±1} with S ∼ p(S; θ)
via its latent variable formulation S = sign(θ + αL). In this form θ is referred to as a “natural”
parameter, and the term L is a latent random noise, which determines the form of the probability
distribution σ(·). In turn, this determines the form of the non-linearity since φ(·) = 2σ(·) − 1. In
general the form of φ(·) will impact on the surrogates’ performance, including within and beyond
the mean field description presented here. However, a result following from the analysis in the next
section is that choosing a deterministic binary neuron, ie. the sign(·) function, or a stochastic binary
neuron, reduces to the same propagation equations, up to a scaling constant.

2.2 FORWARD SIGNAL PROPAGATION FOR STANDARD CONTINUOUS NETWORKS

We first recount the formalism developed in Poole et al. (2016). Assume the weights of a standard
continuous network are initialised with W `

ij ∼ N (0, σ2
w), biases b` ∼ N (0, σ2

b ), and input signal
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x0a has zero mean Ex0 = 0 and variance E[x0a · x0a] = q0aa, and with a denoting a particular input
pattern. As before, the signal propagates via equation equation 1 from layer to layer.

The particular mean field approximation used here replaces each element in the pre-activation field
h`i by a Gaussian random variable whose moments are matched. So we are interested in computing,
from layer to layer, the variance q`aa = 1

N`

∑
i(h

`
i;a)2 from a particular input x0a, and also the

covariance between the pre-activations q`ab = 1
N`

∑
i h

`
i;ah

`
i;b, arising from two different inputs x0a

and x0b with given covariance q0ab. As explained in Poole et al. (2016), assuming the independence
within a layer; Eh`i;ah`j;a = q`aaδij and Eh`i;ah`j;b = q`abδij , it is possible to derive recurrence
relations from layer to layer

q`aa = σ2
w

∫
Dzφ2(

√
q`−1aa z) + σ2

b := σ2
wEφ2(h`−1j,a ) + σ2

b (7)

with Dz = dz√
2π
e−

z2

2 the standard Gaussian measure. The recursion for the covariance is given by

q`ab = σ2
w

∫
Dz1Dz2φ(ua)φ(ub) + σ2

b := σ2
wE
[
φ(h`−1j,a )φ(h`−1j,b )

]
+ σ2

b (8)

where

ua=

√
q`−1aa z1, ub=

√
q`−1bb

(
c`−1ab z1 +

√
1− (c`−1ab )2z2

)
and we identify c`ab as the correlation in layer `. Arguably the most important quantity is the the
slope of the correlation recursion equation or mapping from layer to layer, denoted as χ, which is
given by:

χ =
∂c`ab
∂c`−1ab

= σ2
w

∫
Dz1Dz2φ

′(ua)φ′(ub) (9)

As discussed Poole et al. (2016), when χc∗ = 1 the system is at a critical point where correlations
can propagate to arbitrary depth, corresponding to the edge of chaos. In continuous networks, χ is
equivalent to the mean square singular value of the Jacobian matrix for a single layer Jij =

∂h`i
∂h`−1

j

,

as explained in Poole et al. (2016). Therefore controlling χ will prevent the gradients from either
vanishing or growing exponentially with depth.

In Schoenholz et al. (2016) explicit depth scales for standard neural networks are derived, which
diverge corresponding when χc∗ = 1, thus providing the bounds on maximum trainable depth. We
will not rewrite these continuous depth scales, since these resemble those in this case with which we
now proceed.

3 THEORETICAL RESULTS FOR DETERMINISTIC SURROGATES

3.1 FORWARD SIGNAL PROPAGATION

For the deterinistic surrogate model we assume means initialised from some bounded distribu-
tion M `

ij ∼ P (M = Mij), with mean zero and variance of the means g?iven by σ2
m. For

instance, a valid distribution could be a clipped Gaussian3, or another Bernoulli, for example
P (M) = 1

2δ(M = +σm) + 1
2δ(M = −σm), whose variance is σ2

m. The biases are distributed as
b` ∼ N (0, N`−1σ

2
b ), with the variance scaled by the previous layer width N `−1 since the denomi-

nator of the pre-activation scales with N `−1 as seen from the definition equation 31. Once again we
have input signal x0a, with zero mean Ex0 = 0, and with a denoting a particular input pattern. As-
sume we have a binary neuron averaged appropriately, such that its mean x̄`i := Ep(xi)x`i = φ(h`−1i ),
where the field is given by:

h`i =

∑
jM

`
ijφ(h`−1i ) + b`i√∑

j [1− (M `
ij)

2φ2(h`−1i )]
(10)

3That is, sample from a Gaussian then pass the sample through a function bounded on the interval [−1, 1].
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which we can read from the vector equation equation 31. Note that this corresponds to the deter-
ministic sign(·) neuron case. We actually show in Appendix B that the stochastic and deterministic
binary neuron cases reduce to the same signal propagation equations.

As in the continuous case we are interested in computing the variance q`aa = 1
N`

∑
i(h

`
i;a)2 and

covariance Eh`i;ah`j;b = q`abδij , via recursive formulae. The key to the derivation is recognising that
the denominator is a self-averaging quantity,

lim
N→∞

1

N

∑
j

1− (M `
ij)

2φ2(h`−1i ) = 1− E[(M `
ij)

2φ2(h`−1i )] = 1− σ2
mEφ2(hl−1j,a ) (11)

where we have used the properties that the M `
ij and h`−1i are each i.i.d. random variables at initiali-

sation, and independent Mezard et al. (1987). Following this self-averaging argument, we can take
expectations more readily as shown in the appendices, finding the variance recursion

q`aa =
σ2
mEφ2(hl−1j,a ) + σ2

b

1− σ2
mEφ2(hl−1j,a )

(12)

and then based on this expression for q`aa, and assuming qaa = qbb, the correlation recursion can be
written as

c`ab =
1 + q`aa
q`aa

σ2
mEφ(hl−1j,a )φ(hl−1j,b ) + σ2

b

1 + σ2
b

(13)

The slope of the correlation mapping from layer to layer, when the normalized length of each input
is at its fixed point q`aa = q`bb = q∗(σm, σb), denoted as χ, is given by:

χ =
∂c`ab
∂c`−1ab

=
1 + q∗

1 + σ2
b

σ2
m

∫
Dz1Dz2φ

′(ua)φ′(ub) (14)

where ua and ub are defined exactly as in the continuous case. Refer to the appendices for full
details of the derivation.

3.2 EDGE OF CHAOS CONDITIONS

The edge of chaos in the hyper-parameter space (σ2
b , σ

2
m), for the dynamical equations of the net-

work, is determined as being the condition χ1 = 1, since this determines the stability of the corre-
lation map fixed point c∗ = 1. Note that for the deterministic surrogate this is always a fixed point.
Following the straightforward arguments in Hayou et al. (2019) we take χ1 = 1 we can rearrange
for σ2

m,

χ1 =
σ2
mE[

(
φ′(
√
q∗z)

)2
]

1− σ2
mE[φ2(

√
q∗z)]

= 1 =⇒ σ2
m =

1

E[
(
φ′(
√
q∗z)

)2
] + E[φ2(

√
q∗z)]

(15)

We can then substitute this into the expression for the variance map,

q`aa = σ2
b + (σ2

b + 1)
Eφ2(hl−1j,a )

E[
(
φ′(
√
q∗z)

)2
]

(16)

Thus, in order to find the edge of chaos, as a function of the parameters σ2
m and σ2

b , one must simply
find a value of σ2

b which satisfies the variance map. We solve this numerically, as shown in Figure 4,
for different neuron noise models and hence non-linearities φ(·). We find that the edge of chaos for
all these design choices is close to the point (σ2

m, σ
2
b ) = (1, 0). However, it is not just the singleton

point, as for example in Hayou et al. (2019) for the ReLu case. We plot these edges of chaos in
Appendix
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3.3 ASYMPTOTIC EXPANSIONS AND DEPTH SCALES

In the continuous case, when χ approaches 1, we approach criticality and the rate of convergence to
any fixed point slows. The depth scales, as derived in Schoenholz et al. (2016) provide a quantitative
indicator to the number of layers correlations will survive for, and thus how trainable a network is.
We show here that similar depth scales can be derived for these deterministic surrogates. According
to Schoenholz et al. (2016) it should hold asymptotically that |q`aa−q∗| ∼ exp(− `

ξq
) and |c`ab−c∗| ∼

exp(− `
ξc

) for sufficiently large ` (the network depth), where ξq and ξc define the depth scales over
which the variance and correlations of signals may propagate. Writing q`aa = q∗ + ε`, we can show
that:

ε`+1 =
ε`

1 + q∗
[
χ1 +

1 + q∗

1 + σ2
b

σ2
w

∫
Dzφ′′(

√
q∗z)φ(

√
q∗z)

]
+O((ε`)2) (17)

We can similarly expand for the correlation c`ab = c∗+ ε`, and if we assume q`aa = q∗, we can write

ε`+1 = ε`
[ 1 + q∗

1 + σ2
b

σ2
m

∫
Dzφ′(u1)φ′(u2)

]
+O((ε`)2) (18)

The depth scales we are interested in are given by the log ratio log ε`+1

ε`
. As discussed in Schoenholz

et al. (2016), we are most interested in the correlation depth scale,

ξ−1c = − log
[ 1 + q∗

1 + σ2
b

σ2
m

∫
Dzφ′(u1)φ′(u2)

]
= − logχ (19)

The arguments used in the original derivation Schoenholz et al. (2016) carry over to this case in a
straightforward manner, albeit with more tedious algebra.

4 THEORETICAL RESULTS FOR REPARAMETERIZATION TRICK SURROGATES

4.1 FORWARD SIGNAL PROPAGATION

The pre-activation field for the perturbed surrogate with both stochastic binary weights and neurons
is given by,

hli,a =
1√
N

∑
j

M l
ijφ(hl−1j,a ) + bli + ε`i,a

1√
N

√∑
j

1− (M l
ij)

2φ2(hl−1j,a ) (20)

where we recall that ε ∼ N (0, 1). The non-linearity φ(·) can of course be derived from any valid
binary Bernoulli neuron model. Appealing to the same self-averaging arguments used in the previous
section, we find the variance map to be

q`aa = E
[
(hli,a)2

]
= E

( 1√
N

∑
j

ml
ijφ(hl−1j,a ) + bli +

1√
N
ε`i,a

√∑
j

1− (ml
ij)

2φ2(hl−1j,a )

)2


(21)

= σ2
mEφ2(hl−1j,a ) + σ2

b + (1− σ2
mEφ2(hl−1j,a )) = 1 + σ2

b (22)

Interestingly, we see that the variance map does not depend on the variance of the means of the binary
weights. This is a counter intuitive result, not immediately obvious from the pre-activation field
definition. In the covariance map however, we do not have such simplification, since the perturbation
εi,a in uncorrelated between inputs a and b, thus we recover Equation equation 8 similarly for the
standard continuous case. Thus the correlation map is given by

clab =
σ2
mEφ(hl−1j,a )φ(hl−1j,a ) + σ2

b

1 + σ2
b

(23)
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Figure 1: Dynamics of the variance and correlation maps, with simulations of a network of width
N = 1000, 50 realisations, for various hyperparameter settings: σ2

m ∈ {0.2, 0.5, 0.99} (blue, green
and red respectively). (a) variance evolution, (b) correlation evolution. (c) correlation mapping (cin
to cout), with σ2

b = 0.001

4.2 EDGE OF CHAOS CONDITIONS

For an edge of chaos to exist, we of course require that c∗ = 1 to be a fixed point, as well as for
the system to be marginally stable, χ1 = 1. Here we argue that these conditions cannot be met
simultaneously. Specifically, from the correlation map we have a fixed point c∗ = 1 if and only if

σ2
m =

1

E[φ2(hl−1j,a )]
(24)

However, for any valid function φ(z), the expectation E[φ2(z)] ≤ 1. For example, consider φ(z) =
tanh(κz) for any finite κ. This means that c∗ = 1 can not be a fixed point, and thus there is no
edge of chaos for this model. Of course, as κ→∞, and φ(z) becomes the sign(z) function, c∗ = 1
is in fact always a fixed point, however the sign(z) function does not have a derivative defined
appropriately for a gradient descent procedure.

Likewise, since we have for χ the same expression as Equation equation 9, then considering the
condition χ1 = 1, we find

σ2
m =

1

E[(φ′(hl−1j,a ))2]
(25)

this expression cannot be satisfied unless φ(z), which is bounded between ±1, has derivative iden-
tically equal to one (recall the preactivations are assumed to be zero mean Gaussian). Thus, neither
condition can be met and there is no edge of chaos. In the appendices we include the case of contin-
uous neurons and binary weights, where an edge does exist.

5 NUMERICAL AND EXPERIMENTAL RESULTS

5.1 SIMULATIONS

We now move on to simulations of random networks, of the deterministic surrogate. In the appen-
dices we present results for the reparameterisation trick based surrogate, but for the remainder of the
paper we focus on the approximation which has an edge of chaos. We first verify that the theory ac-
curately predicts the average behaviour of randomly initialised networks. In Figure 1 we see that the
average behaviour of random networks are well predicted by the mean field theory. The estimates
of the variance and correlation from simulations of random neural networks provided some input
signals are plotted. The dotted lines correspond to empirical means, the shaded area corresponds to
one standard deviation, and solid lines are the theoretical prediction. We see strong agreement in
both the variance and correlation plots. In Appendix D we present the variance and correlation depth
scales as a function of σm, and different curves corresponding to different bias variance values σb.

5.2 TRAINING PERFORMANCE FOR DIFFERENT MEAN INITIALISATION σ2
m

Here we test experimentally the predictions of the mean field theory by training networks to overfit
a dataset in the supervised learning setting, having arbitrary depth and different initialisations. We
consider first the performance of the deterministic surrogate, not its corresponding binary network.

8
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Figure 2: Training performance of the continuous surrogate network, for different depth (in steps of
5 layers, up to L = 70), against the variance of the means σ2

m. Overlaid is a curve proportional to
the correlation depth scale.

We use the MNIST dataset with reduced training set size (25%) and record the training performance
(percentage of the training set correctly labeled) after 20 epochs of gradient descent over the training
set, for various network depths L < 70 and different mean variances σ2

m ∈ [0, 1). The optimizer
used was Adam Kingma & Ba (2014) with learning rate of 2×10−4 chosen after simple grid search,
and a batch size of 64.

We see that the experimental results match the correlation depth scale derived, with a similar pro-
portion to the standard continuous case of 6ξc being the maximum possible attenuation in signal
strength before trainability becomes difficult, as described in Schoenholz et al. (2016).

The reason we see the trainability not diverging in Figure 2 is that training time increases with
depth, on top of requiring smaller learning rates for deeper networks, as described in detail in Saxe
et al. (2013). The experiment here used the same number of epochs regardless of depth, meaning
shallower networks actually had an advantage over deeper networks.

We should note that this theory does not specify for how many steps of training the effects of the
initialisation will persist, that is, for how long the network remains close to criticality. Therefore, the
number of steps we trained the network for is an arbitrary choice, and thus the experiments validate
the theory in a more qualitative than quantitative way. Results were similar for other optimizers, in-
cluding SGD, SGD with momentum, and RMSprop. Note that these networks were trained without
dropout, batchnorm or any other heuristics.

In Figure 3 we present the training performance for the deterministic surrogate and its counter-
part binary networks, both deterministic and stochastic. Once again, we test our algorithms on the
MNIST dataset and plot results after 5 epochs. We see that the performance of the stochastic net-
work matches more closely the performance of the continuous surrogate, especially as the number
of samples increases, from N = 5 to N = 100 samples.

We can report that the number of samples necessary to achieve better classification, at least for more
shallow networks, appears to depends on the number of training epochs. In some way, this is a
sensible relationship, since during the course of training we might expect the means of the weights
to polarise, moving closer to the bounds ±1. Likewise, from experience continuous with neural
networks, the neurons, which initially have zero mean pre-activations, are expected to “saturate”
during training, that is, they become either always “on” (+1) or “off” (−1). A stochastic network
being “closer” to deterministic would require fewer samples overall. We can again report that this
phenomena was observed. In the discussion we elaborate on what further experiments and analysis
may be required to understand this problem.

6 DISCUSSION

In this paper we have theoretically studied, based on self-averaging arguments, binary neural net-
work algorithms using dynamic mean field theory, following the analysis recently developed for
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Figure 3: Training performance of the continuous surrogate and its binary counterparts after train-
ing on the MNIST dataset for 5 epochs. Top left: performance of the continuous surrogate. Top
right: deterministic binary network. Bottom row: the performance of the stochastic binary network,
averaged over 5 and 100 Monte Carlo samples (left and right, respectively).

standard continuous neural networks Schoenholz et al. (2016). This first study of a continuous sur-
rogate networks has yielded results of practical significance, revealing that these networks have poor
trainability when initialised away from ±1, as is common practice.

One interesting problem this paper opens up is in understanding the relationship between the surro-
gate networks and the binary counterparts. Interesting results were uncovered for the binary neural
networks corresponding to the trained surrogate, both binary and stochastic. It was seen that during
training, when evaluating the deterministic and stochastic binary counterparts concurrently with the
surrogate, the performance of both binary networks is worse than the continuous model, especially
as depth increases. The stochastic binary network was seen to outperform the deterministic binary
network, which makes sense since the objective optimised is the expectation over an ensemble of
stochastic binary networks.

A study of random binary networks, included in the Appendices, and published recently Blumen-
feld et al. (2019) for a different problem, showed that binary networks are always in a chaotic phase.
However, when evaluating any binary network which is trained by some algorithm (eg. gradient
descent on a given surrogate model), signals will of course propagate forwards through the corre-
sponding binary network. This network will either be deterministic or stochastic. In either case, it
makes sense that the closer one is to the early stages of the training process, the closer the signal
propagation behaviour is to the randomly initialised case. Consider for a moment the signal propa-
gation behaviour of a continuous network that has been trained, and this is not in its initially random
state. This means that, as far as the mean field theory is concerned, the self-averaging behaviour,
including any central limit behaviour, cannot be assumed to hold. However, clearly the networks
are still performing some useful information processing, and thus are not in either the completely
ordered case (asymptotic correlation c∞ = 1) nor the chaotic case (c∞ = 0). As said, it makes sense
that the closer one is to the early stages of the training process, the closer the signal propagation be-
haviour will reflect the randomly initialised case. That is, correlations do not propagate, since there
is no edge of chaos condition. However, it is possible that as training progresses the signal propaga-
tion behaviour binary counterparts of these surrogates might approach the signal propagation of the
trained surrogate model. This may explain the difference in the performance between the surrogate
model and its binary counterparts (deterministic or stochastic) early in training, a difference which
appears to decrease as training progresses.
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A DERIVATION OF DETERMINISTIC SURROGATE NETWORKS

A.1 INTEGRATING OVER STOCHASTIC OR DETERMINISTIC BINARY NEURONS

The form of each neuron’s probability distribution depends on the underlying noise model. We can
express a Bernoulli random variable S ∈ {±1} with S ∼ p(S; θ) via its latent variable formulation,

S = sign(θ + αL) (26)

In this form θ is referred to as a “natural” parameter, from the statistics literature on exponential
families. The term L is a latent random noise, which determines the form of the probability distribu-
tion. We also introduce a scaling α to control the variance of the noise, so that as α→ 0 the neuron
becomes a deterministic sign function. Letting α = 1 for simplicity, we see that the probability of
the Bernoulli variable taking a positive value is

p(S = +1) =

∫ −θ
−∞

p(L)dL (27)

where p(L) is the known probability density function for the noise L. The two common choices of
noise models are Gaussian or logistic noise. The Gaussian of course has shifted and scaled erf(·)
function as its cumulative distribution. The logistic random variable has the classic “sigmoid” or
logistic function as its CDF, σ(z) = 1

1+e−z .

Thus, the probability of a the variable being positive is a function of the CDF. In the Gaussian case,
this is Φ(θ). By symmetry, the probability of p(S = −1) = Φ(−θ). Thus, we see the probability
distribution for the Bernoulli random variable in general is the CDF of the noise L, and we write
p(S) = Φ(Sθ). In the logistic noise case, we have p(S) = σ(Sθ)

For the stochastic neurons, the natural parameter is the incoming field h`i =
∑
j S

`
i,jx

`−1
j + b`i . As-

suming this is approximately Gaussian in the large layer width limit, we can successively marginalise
over the stochastic inputs to each neuron, calculating an approximation of each neuron’s probability
distribution, p̂(x`i). This approximation is then used in the central limit theorem for the next layer,
and so on.

For the case of neurons with latent Gaussian noise as part of the Bernoulli model, the integration
over the pre-activation field (assumed to be Gaussian) is exact. Explicitly,

p(x`i) =
∑
x`−1

∑
S`

p(x`i |x`−1,S`)p(S`−1)p̂(x`)

≈
∫

Φ(x`ih
`
i)N (h`i |h̄`i , (Σ`MF )ii)

= Φ

(
h̄`i√

1 + 2(Σ`MF )ii

x`i

)
:= p̂(x`i) (28)

where Φ(·) is the CDF of the Gaussian distribution. We have again ΣMF denoting the mean field
approximation to the covariance between the stochastic binary pre-activations. The Gaussian ex-
pectation of the Gaussian CDF is a known identity, which we state in more generality in the next
section, where we also consider neurons with logistic noise.
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This new approximate probability distribution p̂(x`i) can then used as part of the Gaussian CLT
applied at the next layer, since it determines the means of the neurons in the next layer,

Ex`i = 2Φ

(
h̄`i√

1 + (Σ`MF )ii

x`i

)
− 1 (29)

If we follow these setps from layer to layer, we see that we are actually propagating approximate
means for the neurons, combined non-linearly with the means of the weights. Given the approxi-
mately analytically integrated loss function, it is possible to perform gradient descent with respect
to the means and biases, M `

ij and b`i .

In the case of deterministic sign() neurons we obtain particularly simple expressions. In this case
the “probability” of a neuron taking, for instance, positive is just Heaviside step function of the
incoming field. Denoting the Heaviside with Θ(·), we have

p(x`i) =
∑
x`−1

∑
S`

p(x`i |x`−1,S`)p(S`−1)p̂(x`−1)

≈
∫

Θ(x`ih
`
i)N (h`i |h̄`i , (Σ`MF )ii)

≈ Φ

(
h̄`i

(Σ`MF )
− 1

2
ii

x`i

)
:= p̂(x`i) (30)

We can write out the network forward equations for the case of deterministic binary neurons, since
it is a particularly elegant result. In general we have

x̄`i = φ(ηh`), h`= Σ
− 1

2

MF h̄
`, h̄` = M `x`−1 + b` (31)

where φ(·) = erf(·) is the mean of the next layer of neurons, being a scaled and shifted version of
the neuron’s noise model CDF. The constant is η = 1√

2
, standard for the Gaussian CDF to error

functin conversion.

A.2 EXACT AND APPROXIMATE GAUSSIAN INTEGRATION OF SIGMOIDAL FUNCTIONS

We now present the integration of stochastic neurons with logistic as well as Gaussian noise as
part of their latent variable models. The logistic case is an approximation built on the Gaussian
case, motivated by approximating the logistic CDF with the Gaussian CDF. The reason we may be
interested in using logistic CDFs, rather than just considering latent Gaussian noise models which
integrate exactly, is not justified in any rigorous or experimental way. Any such analysis would likely
consider the effect of the tails of the logistic versus the Gaussian distributions, where the logistic
tails are much heavier than those of the Gaussian. One historic reason for considering the logistic
function, we note, is the prevalence of logistic-type functions (such as tanh(·)) in the neural network
literature. The computational cost of evaluating either logistic or error functions is similar, so there
is no motivation from the efficiency side. Instead it seems a historic preference to have logistic type
functions used with neural networks.

As we saw in the previous subsection, the integration over the analytic probability distribution for
each neuron gave a function which allows us to calculate the means of the neurons in the next layer.
Therefore, we directly calculate the expression for the means.

The Gaussian integral of the Gaussian CDF was used in the previous section to derive the exact
probability distribution for the Bernoulli neuron in the next layer. The result is well known, and can
be stated in generality as follows,∫ ∞

−∞
Φ(ay)

e−
(y−x)2

2σ2

√
2πσ2

dy = Φ(
x√

1 + a2σ2
) (32)

We can integrate a logistic noise Bernoulli neuron using this result as well. The idea is to approx-
imate the logistic noise with a suitably scaled Gaussian noise. However, since the overall network
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approximation results in propagating means from layer to layer, we can equivalently need to approx-
imate the tanh(·) with the with the erf . Specifically, if we have f(x;α) = tanh( xα ), an approxima-
tion is g(x;α) = erf(

√
π

2α x), by requiring equality of derivatives at the origin. In order to establish
this, consider

f ′(0;α) = (1− tanh2(0/α)
1

α
=

1

α
(33)

and
d erf(x;σ)

dx
|x=0 =

2√
πσ2

e−x
2/σ2

|x=0 =
2√
πσ2

(34)

Equating these, gives σ2 = 4α2

π , thus σ = 2α√
π

.

The approximate integral over the Bernoulli neuron mean is then∫ ∞
−∞

f(y;α)
e−

(y−x)2

2σ2

√
2πσ2

dy ≈
∫ ∞
−∞

erf(

√
π

2α
y)
e−

(y−x)2

2σ2

√
2πσ2

dy (35)

= erf(

√
π

2αγ
x) (36)

with γ =

√
1 +

πσ2

2α2
(37)

If we so desire, we can approximate this again with a tanh(·) using the tanh(·) to erf(·) approxi-
mation in reverse. The scale parameter of this tanh(·) will be α2 = π

4αγ . If α = 1 as is standard,
then

erf(

√
π

2γ
x) ≈ tanh(

πx

4γ
) (38)

B EQUIVALENCE OF DETERMINISTIC AND STOCHASTIC NEURONS FOR
DETERMINISTIC SURROGATE

Assume a stochastic neuron with some latent noise, as per the previous appendix, with mean x̄`i :=

Ep(xi)x`i = φ(h`−1i ). The field is given by

h`i =
1√
2

∑
jM

`
ijφ(h`−1i ) + b`i√

1 + 2
∑
j [1− (M `

ij)
2φ2(h`−1i )]

(39)

We see that the expression for the variance of the field simplifies as follows,

q`aa = E(h`i)
2 =

1

2

∑
jM

`
ijφ(h`−1i ) + b`i

1 + 2
∑
j [1− (M `

ij)
2φ2(h`−1i )]

(40)

=
1

2

N(σ2
mEφ2(hl−1j,a ) + σ2

b )

1 + 2(N −Nσ2
mEφ2(hl−1j,a ))

(41)

=
1

2

σ2
mEφ2(hl−1j,a ) + σ2

b

2(1− σ2
mEφ2(hl−1j,a ))

(42)

By similar steps, we find that in the deterministic binary neuron case, we would obtain the same
expression, albeit with a different scaling constant. This is easily seen by inspection of the field term
in the deterministic neuron case,

h`i =
1√
2

∑
jM

`
ijφ(h`−1i ) + b`i√∑

j [1− (M `
ij)

2φ2(h`−1i )]
(43)

which again was derived in the previous appendix.
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C DERIVATION OF SIGNAL PROPAGATION EQUATIONS IN DETERMINISTIC
SURROGATE NETWORKS

Here we present the derivations for the signal propagation in the continuous network models studied
in the paper.

C.1 VARIANCE PROPAGATION

We first calculate the variance given a signal:

qlaa =
1

Nl

∑
i

(
hli,a
)2

= E
[(
hli,a
)2]

(44)

Where for us:

hli,a =

∑
jm

l
ijφ
(
hl−1j,a

)
+ bli√∑

j

(
1−

(
ml
ij

)2
φ2
(
hl−1j,a

)) (45)

and

mij ∼ N
(
0, σ2

m

)
bi ∼ N

(
0, Nl−1σ

2
b

)
(46)

E
[(
hli,a
)2]

= E




∑
jm

l
ijφ
(
hl−1j,a

)
+ bli√∑

j

(
1−

(
ml
ij

)2
φ2
(
hl−1j,a

))


2 =

E
[(∑

jm
l
ijφ
(
hl−1j,a

)
+ bli

)2]
Nl−1 −

∑
j

(
ml
ij

)2
φ2
(
hl−1j,a

)
=

∑
j σ

2
mEφ2

(
hl−1j,a

)
+Nl−1σ

2
b

Nl−1

(
1− 1

Nl−1

∑
j

(
ml
ij

)2
φ2
(
hl−1j,a

)) =
Nl−1σ

2
mEφ2

(
hl−1j,a

)
+Nl−1σ

2
b

Nl−1
(
1− σ2

mEφ2
(
hl−1j,a

))
=
σ2
mEφ2

(
hl−1j,a

)
+ σ2

b

1− σ2
mEφ2

(
hl−1j,a

) (47)

Where, Eφ2
(
hl−1j,a

)
can be written explicitly, taking into account that hl−1j,a ∼ N (0, qaa):

E
[
φ2
(
hlj,a

)]
=

∫
Dhlj,aφ2

(
hlj,a

)
=

∫
dhlj,a

1
√

2πE
[(
hlj,a

)2]exp

− (
hlj,a

)2
2E
[(
hlj,a

)2]
φ2

(
hlj,a

)

=

∫
dhlj,a

1√
2πqlaa

exp

(
−
(
hlj,a

)2
2qlaa

)
φ2
(
hlj,a

)
(48)

We can now perform the following change of variable:

zlj,a =
hlj,a√
qlaa

(49)

Then:

E
[
φ2
(
hlj,a

)]
=

1√
2πqlaa

√
qlaa

∫
dzlj,aexp

(
−
(
zlj,a
)2

2

)
φ2
(√

qlaaz
l
j,a

)
=

1√
2π

∫
dz exp

(
−z

2

2

)
φ2
(√

qlaaz

)
=

∫
Dzφ2

(√
qlaaz

)
(50)
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qlaa = E
[(
hli,a
)2]

=
σ2
m

∫
Dzφ2

(√
ql−1aa z

)
+ σ2

b

1− σ2
m

∫
Dzφ2

(√
ql−1aa z

) (51)

In the first layer, input neurons are not stochastic: they are samples drawn from the Gaussian distri-
bution x0 ∼ N

(
0, q0

)
:

C.1.1 CORRELATION PROPAGATION

To determine the correlation recursion we start from its definition:

clab =
qla,b√
qlaaq

l
bb

, (52)

where qlab represents the covariance of the pre-activations hli,a and hli,b, related to two distinct input
signals and therefore defined as:

qlab =
1

Nl

∑
i

hli,ah
l
i,b = E

[
hli,ah

l
i,b

]
. (53)

Replacing the pre-activations with their expressions provided in eq. (45) and taking advantage of
the self-averaging argument, we can then write:

clab =
σ2
mE

[
φ
(
hl−1j,a

)
φ
(
hl−1j,b

)]
+ σ2

b√
qlaa
(
1− σ2

mE
[
φ2
(
hl−1j,a

)])√
qlbb

(
1− σ2

mE
[
φ2
(
hl−1j,b

)]) . (54)

At this point, given that qlaa and qlbb quite quickly approach the fixed point, we can conveniently as-
sume qlaa = qlbb. Moreover, exploiting eq.(51), we can finally write the expression for the correlation
recursion:

clab =
1 + qlaa
qlaa

σ2
mE

[
φ
(
hl−1j,a

)
φ
(
hl−1j,b

)]
+ σ2

b

1 + σ2
b

. (55)

C.2 DERIVATION OF THE SLOPE OF THE CORRELATIONS AT THE FIXED POINT

To check the stability at the fixed point, we need to compute the slope of the correlations mapping
from layer to layer at the fixed point:

χ|q∗ =
∂clab
∂cl−1ab

=
1 + q∗
q∗

σ2
m

1 + σ2
b

∂

∂cl−1ab

E
[
φ
(
hl−1j,a

)
φ
(
hl−1j,b

)]
|q∗

=
1 + q∗
q∗

σ2
m

1 + σ2
b

∂

∂cl−1ab

∫
DzaDzbφ (ua)φ (ub) |q∗

, (56)

where we get rid of σb because independent from cl−1ab . Replacing the definition of ua and ub
provided in the continuous model, we can explicitly compute the derivative with respect to cl−1ab :
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χ =
1 + q∗
q∗

σ2
m

1 + σ2
b

(A−B) , (57)

where we have defined A and B as:

A =
√
q∗

∫
DzaDzbφ

(√
ql−1aa za

)
φ′
(√

ql−1bb

(
cl−1ab za +

√
1−

(
cl−1ab

)2
zb

))
za

B =
√
q∗

∫
DzaDzbφ

(√
ql−1aa za

)
φ′
(√

ql−1bb

(
cl−1ab za +

√
1−

(
cl−1ab

)2
zb

))
cl−1ab√

1−
(
cl−1ab

)2 zb.
(58)

We can focus on B first. Integrating by parts over zb we get:

B =
√
q∗

∫
DzaDzbφ

(√
ql−1aa za

)
∂

∂za
φ′
(√

ql−1bb

(
cl−1ab za +

√
1−

(
cl−1ab

)2
zb

))
. (59)

Then, integrating by parts over za, we the get:

B =
√
q∗

∫
DzaDzbφ

(√
ql−1aa za

)
φ′
(√

ql−1bb

(
cl−1ab za +

√
1−

(
cl−1ab

)2
zb

))
za+

− q∗
∫
DzaDzbφ′

(√
ql−1aa za

)
φ′
(√

ql−1bb

(
cl−1ab za +

√
1−

(
cl−1ab

)2
zb

))
.

(60)

Replacing A and B in eq. (57), we then obtain the closest expression for the stability at the variance
fixed point, namely:

χ|q∗ =
1 + q∗
1 + σ2

b

σ2
m

∫
DzaDzbφ′ (ua)φ′ (ub) (61)

C.3 VARIANCE DEPTH SCALE

As pointed out in the main text, it should hold asymptotically that:

|ql+1
aa − q∗| ∼ exp

(
− l + 1

ξq
,

)
(62)

with ξq defining the variance depth scale. To compute it we can expand over small perturbations
around the fixed point, namely:

ql+1
aa = q∗ + εl

=
σ2
m

∫
Dzφ2

(√
q∗ + εlz

)
+ σ2

b

1− σ2
m

∫
Dzφ2

(√
q∗ + εlz

) . (63)

Expanding the square root for small εl, we can then write:
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ql+1
aa '

σ2
m

∫
Dzφ2

(√
q∗z + εl

2
√
q∗
z
)

+ σ2
b

1− σ2
m

∫
Dzφ2

(√
q∗z + εl

2
√
q∗
z.
) (64)

We can now expand the activation function φ around small perturbations and then computing the
square getting rid of higher order terms in εl, thus finally obtaining:

ql+1
aa ' q∗ +

1 + q∗√
q∗

σ2
m

∫
Dzφ

(√
q∗z
)
φ′
(√
q∗z
)
z

1− σ2
m

∫
Dzφ2

(√
q∗z
) εl (65)

Comparing this expression with the one in eq. (63), we can then write:

εl+1 ' 1 + q∗√
q∗

σ2
m

∫
Dzφ

(√
q∗z
)
φ′
(√
q∗z
)
z

1− σ2
m

∫
Dzφ2

(√
q∗z
) εl. (66)

Integrating by parts over z, we then obtain:

εl+1 '

[
(1 + q∗)

σ2
m

∫
Dzφ′

(√
q∗z
)
φ′
(√
q∗z
)

+
∫
Dzφ′′

(√
q∗z
)
φ
(√
q∗z
)

1− σ2
m

∫
Dzφ2

(√
q∗z
) ]

εl. (67)

Given that it holds eq. (51), and noticing that χ evaluated at the correlation fixed point c∗ = 1 is
given by:

χ|c∗=1 =
σ2
m

1 + σ2
b

(1 + q∗)

∫
Dz [φ′ (

√
q∗z)]

2
, (68)

we can finally get:

εl+1 '
[
χ|c∗=1 +

σ2
m (1 + q∗)

1 + σ2
b

∫
Dzφ′′ (√q∗z)φ (

√
q∗z)

]
εl

1 + q∗
. (69)

Given that we expect (62) to hold asymptotically, that is:

εl+1 ∼ exp
(
− l + 1

ξq

)
, (70)

we can finally obtain the variance depth scale:

ξ−1q = log (1 + q∗)− log
(
χ|c∗=1 +

σ2
m (1 + q∗)

1 + σb

∫
Dzφ′′ (√q∗z)φ (

√
q∗z)

)
. (71)

D SUPPLEMENTARY FIGURES

D.1 EDGE OF CHAOS SIMULATIONS: DETERMINISTIC SURROGATE CASE

We see in Figure 4 that the edges exist in the plane, for but σ2
b > 10−20 all the corresponding mean

variances σ +m2 > 1 which is not possible.
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Figure 4: Edges of chaos for the deterministic surrogate model, for stochastic binary weights and
stochastic or deterministic binary neurons. Presented is the edge of chaos in the (σ2

m, σ
2
b ), for both

the a) stochastic neuron case with φ(z) = erf( 1
4 z), b) the deterministic sign neuron case with

φ(z) = erf( 1
2 ·), and (c) the logistic based stochastic neuron, with tanh() approximation. We see

all edges are above σ2 = 1 for all but small σ2
b << 1.
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Figure 5: Depth scales as σ2
m is varied. (a) The depth scale controlling the variance propagation

of a signal (b) The depth scale controlling correlation propagation of two signals. Notice that the
correlation depth scale ξc only diverges as σ2

m → 1, whereas for standard continuous networks,
there are an infinite number of such points, corresponding to various combinations of the weight and
bias variances.
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D.2 DEPTH SCALES

We see in Figure 5 the depth scales for the deterministic surrogate. Note the divergence as one
expects following the simulations in Figure 4.

D.3 JACOBIAN MEAN SQUARED SINGULAR VALUE AND MEAN FIELD GRADIENT
BACKPROPAGATION

An alternative perspective on critical initialisation, to be contrasted with the forward signal prop-
agation theory, is that we are simply attempting to control the mean squared singular value of the
input-output Jacobain matrix of the entire network, which we can decompose into the product of
single layer Jacobian matrices. In standard networks, the single layer Jacobian mean squared singu-
lar value is equal to the derivative of the correlation mapping χ as established in Poole et al. (2016).
For the Gaussian model studied here this is not true, and corrections must be made to calculate the
true mean squared singular value. This can be seen by observing the terms arising from denominator
of the pre-activation field,

J`ij =
∂h`i,a

∂h`−1j,a

=
∂

∂h`j

(
h̄`i,a√

Σ`ii

)
= φ′(h`i,a)

[ M `
ij√

Σ`ii
+ (M `

ij)
2

h̄`i,a
(Σ`ii)

3/2
φ(h`i,a)

]
(72)

Since Σii is a quantity that scales with the layer width N`, it is clear that when we consider squared
quantities, such as the mean squared singular value, the second term, from the derivative of the
denominator, will vanish in the large layer width limit. Thus the mean squared singular value of the
single layer Jacobian approaches χ. We will proceed as if χ is the exact quantity we are interested
in controlling.The analysis involved in determining whether the mean squared singular value is well
approximated by χ essentially takes us through the mean field gradient backpropagation theory as
described in Schoenholz et al. (2016). This idea provides complementary depth scales for gradient
signals travelling backwards.

E REPARAMETERISATION TRICK SURROGATE

E.1 SIGNAL PROPAGATION EQUATIONS

The signal propagation equations for the case of continuous neurons and stochastic binary weights
yields the variance map,

qaa = Eφ2(hl−1j,a ) + σ2
b (73)

Thus, once again, the variance map does not depend on the variance of the means of the binary
weights. The covariance map however does retain a dependence on σ2

m,

qlab = σ2
mEφ(hl−1j,a )φ(hl−1j,a ) + σ2

b (74)

with the same expression as before. The correlation map is given by

clab =
σ2
mEφ(hl−1j,a )φ(hl−1j,a ) + σ2

b

Eφ2(hl−1j,a ) + σ2
b

(75)

and we have the derivative of the correlation map given by

χ = σ2
mEφ′(hl−1j,a )φ′(hl−1j,b ) (76)

E.2 DETERMINING THE EDGE OF CHAOS

Since the mean variance σ2
m does not appear in the variance map, we must once again consider

different conditions for the edge of chaos. Specifically, from the correlation map we have a fixed
point c∗ = 1 if and only if

σ2
m = 1 (77)
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Figure 6: Training performance of the perturbed surrogate networks: a) evaluation of continuous sur-
rogate, b) evaluation of corresponding the binary model (non-stochastic). Maximum depth L = 30,
steps of L = 2, after ten epochs on reduced MNIST training set (10%), using SGD with momentum.
Non-linearity used was tanh(·) (with κ = 1), and divergence in trainability of continuous surrogate
is observed for hyperparameter setting of (σ2

m, σ
2
b ) = (1, 0)

In turn, the edge of chaos condition χ1 = 1 holds if

E[(φ ′(hl−1j,a ))2] =
1

σ2
m

= 1 (78)

Thus, to find the edge of chaos, we need to find a value of qaa = Eφ2(hl−1j,a ) + σ2
b that satisfies

this final condition. In the case that φ(·) = tanh(·), then the function (φ ′(hl−1j,a ))2 ≤ 1, taking the
value 1 at the origin only, this requires qaa → 0. Thus the ‘edge of chaos’ is the singleton point
(σ2
b , σ

2
m) = (0, 1). This is confirmed by experiment, as we report in the subsequent sections.

It is of course possible to investigate this perturbed surrogate for different Bernoulli noise models.
For example, given different noise scaling κ, as in the previous chapter, there will be a corresponding
σ2
b that satisfy the edge of chaos condition. We leave such an investigation to future work, given the

case of binary weights and continuous neurons does not appear to be of a particular interest over the
binary neuron case. In the next section we present experiments confirming the success of the ‘edge
of chaos’ initialisation for the perturbed surrogate with continuous neurons.

E.3 EXPERIMENTS

As we see in Figures 6 and 7, the edge of chaos for the tanh(·) non-linearity occurs only at the
singleton point (σ2

b , σ
2
m) = (0, 1). Presented are simulations for varying σ2

m, with fixed σ2
b = 0.

As in the previous chapter, we compare the continuous and binary surrogate performance, at training
time Figure 6, and test time Figure 7. Once again, we observe the depth scale divergence in the
continuous surrogate, but the binary network corresponding to the adapted means does not perform
to similar depths. This effect was observed for different conditions, such as longer training time,
larger network width and different gradient step sizes.
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Figure 7: Test performance of the perturbed surrogate networks: a) evaluation of continuous sur-
rogate, b) evaluation of corresponding the binary model (non-stochastic). Results corresponding to
experiment presented in Figure 6.

F SIGNAL PROPAGATION OF BINARY NETWORKS

F.1 FORWARD SIGNAL PROPAGATION

In this neural network, it should be understood that all neurons are simply sign(·) functions of their
input, and all weights W `

ij ∈ {±1} are randomly distributed according to

P (W `
ij = +1) = 0.5 (79)

(80)

thus maintaining a zero mean.

The pre-activation field is given by

h`i =
1√
N`−1

∑
j

W `
ij sign(h`−1j ) + b`i (81)

So, the length map is:

q`aa =

∫
Dz(sign(

√
q`−1aa z)2) + σ2

b (82)

= 1 + σ2
b (83)

Interestingly, this is the same value as for the perturbed Gaussian with stochastic binary weights and
neurons.

The covariance evolves as

q`ab =

∫
Dz1Dz2 sign(ua) sign(ub) + σ2

b (84)

we again have a correlation map:

c`ab = (c`−1ab , q`−1aa , q`−1bb , b, σb) =

∫
Dz1Dz2 sign(ua) sign(ub) + σ2

b√
q`−1aa q`−1bb

(85)
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We can find this correlation in closed form. First we rewrite our integral with h, for a joint density
p(ha, hb), and then rescale the ha such that the variance is 1, so that dha =

√
qaadva∫

dhadhb sign(ha) sign(hb)p(ha, hb) =

∫
dvadvb sign(va) sign(vb)p(va, vb) (86)

=
(
2P (v1 > 0, v2 > 0)− 2P (v1 > 0, v2 < 0)

)
(87)

where p(va, vb) is a joint with the same correlation cab (which is now equal to its covariance), and
the capital P (v1, v2) corresponds to the (cumulative) distribution function. A standard result for
standard bivariate normal distributions with correlation ρ,

P (v1 > 0, v2 > 0) =
1

4
+

sin−1(ρ)

2π
, P (v1 > 0, v2 < 0) =

cos−1(ρ)

2π
(88)

So we then have that∫
dhadhbφ(ha)φ(hb)p(ha, hb) =

√
qaaqbb

(1

2
+

sin−1(c`−1ab )

π
−

cos−1(c`−1ab )

π

)
(89)

Thus the correlation map is:

c`ab =

(
1
2 +

sin−1(c`−1
ab )

π − cos−1(c`−1
ab )

π

)
+ σ2

b√
q`−1aa q`−1bb

(90)

=
2
π sin−1(c`−1ab ) + σ2

b√
q`−1aa q`−1bb

(91)

Since, from before we have qaa = 1 + σ2
b , we then obtain

c`ab =
2
π sin−1(c`−1ab ) + σ2

b

1 + σ2
b

(92)

Recall that sin−1(1) = π
2 , so we have that c∗ = 1 is a fixed point always.

We will now derive its slope, denoted as χ =
∂c`ab
∂c`−1
ab

, but by first integrating over the φ() = sign()

non-linearities, and then taking the derivative.

Now we are in a place to take the derivative :

χ =
∂c`ab
∂c`−1ab

=
2

π

1√
q`−1aa q`−1bb

1√
1− (c`−1ab )2

=
2

π

1

(1 + σ2
b )

1√
1− (c`−1ab )2

(93)

We can see that the derivative χ diverges at c`ab = 1, meaning that there is no ‘edge of chaos’ for this
system. This of course means that correlations will not propagate to arbitrary depth in deterministic
binary networks, as one might have expected.

F.2 STOCHASTIC WEIGHTS AND NEURONS

We begin again with the variance map,

qlaa = E
[
(hli,a)2

]
(94)

where in this the field is given by

hli,a =
1√
N

∑
j

W l
ijxhl−1

j,a
+ bli (95)

where xhl−1
j,a

denotes a Bernoulli neuron whose natural parameter is the pre-activation from the
previous layer.
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The expectation for the length map is defined in terms of nested conditional expectations, since we
wish to average over all random elements in the forward pass,

q`aa = EhEx|hxhl−1
j,a

+ σ2
b (96)

= 1 + σ2
b (97)

Once again, this is the same value as for the perturbed Gaussian with stochastic binary weights and
neurons.

Similarly, the covariance map gives us,

qlab = E
[
hli,ah

l
i,b

]
(98)

= Eha,hbExb|haExb|hbxhl−1
j,a
xhl−1

j,b
+ σ2

b = Eφ(hl−1j,a )φ(hl−1j,a ) + σ2
b (99)

with phi(·) being the mean function, or a shifted and scaled version of the cumulative distribution
function for the Bernoulli neurons, just as in previous Chapters. This expression is equivalent to the
perturbed surrogate for stochastic binary weights and neurons, with a mean variance of σ2

m = 1.
Following the arguments for that surrogate, no edge of chaos exists.

F.3 STOCHASTIC BINARY WEIGHTS AND CONTINUOUS NEURONS

In this case, as we show in the appendix, the resulting equations are

q`aa = Eφ2(hl−1j,a ) + σ2
b (100)

qlab = Eφ(hl−1j,a )φ(hl−1j,a ) + σ2
b (101)

which are, once again, the same as for the perturbed surrogate in this case, with σ2
m = 1. This means

that this model does have an edge of case, at the point (σ2
m, σ

2
b ) = (1, 0).

F.4 CONTINUOUS WEIGHTS AND STOCHASTIC BINARY NEURONS

Similar arguments to the above show that the equations for this case are exactly equivalent to the
perturbed surrogate model. This means that no edge of chaos exists in this case either.

G MISCELLANEOUS COMMENTS

G.1 REMARK: VALDITY OF THE CLT FOR THE FIRST LEVEL OF MEAN FIELD

A legitimate immediate concern with initialisations that send σ2
m → 1 may be that the binary

stochastic weights S`ij are no longer stochastic, and that the variance of the Gaussian under the
central limit theorem would no longer be correct. First recall the CLT’s variance is given by
Var(h`SB) =

∑
j(1 − m2

jx
2
j ). If the means mj → ±1 then variance is equal in value to∑

jm
2
j (1 − x2j ), which is the central limit variance in the case of only Bernoulli neurons at ini-

tialisation. Therefore, the applicability of the CLT is invariant to the stochasticity of the weights.
This is not so of course if both neurons and weights are deterministic, for example if neurons are
just tanh() functions.
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