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ABSTRACT

Reasoning about uncertain orientations is one of the core problems in many per-
ception tasks such as object pose estimation or motion estimation. In these sce-
narios, poor illumination conditions, sensor limitations, or appearance invariance
may result in highly uncertain estimates. In this work, we propose a novel learn-
ing based representation for orientation uncertainty. Characterizing uncertainty
over unit quaternions with the Bingham distribution allows us to formulate a loss
that naturally captures the antipodal symmetry of the representation. We discuss
the interpretability of the learned distribution parameters and demonstrate the fea-
sibility of our approach on several challenging real-world pose estimation tasks
involving uncertain orientations.

1 INTRODUCTION

Reasoning about uncertain poses and orientations, specifically 3-dimensional (3d) positions and
3-axes orientations, is one of the main inference tasks in computer vision (Sattler et al., 2019),
robotics Glover et al. (2011), aerospace (Crassidis & Markley, 2003), and other fields. Proper rep-
resentation and estimation of uncertainty is important, e.g. when dealing with structural ambiguities
in object pose estimation or coping with sensor corruption while estimating a camera’s ego-motion.

Figure 1: Objects from the T-Less
dataset and the corresponding orienta-
tion uncertainty predicted by the model
trained on the newly proposed Bingham
loss, which is capable of capturing rota-
tional symmetries.

In vision and robotics tasks, high levels of pose uncer-
tainty may occur due to potentially adversarial conditions
that arise in real-world scenarios. A principled approach
to uncertainty quantification allows for better execution of
planning and situation-awareness tasks such as grasping,
tracking, and motion estimation.

When representing uncertainties over poses, the position
can be modeled using a Gaussian distribution. This ap-
proach is well-motivated by the Central Limit Theorem
and widely used in probabilistic deep learning models.
However, this paradigm cannot be as easily applied to
modeling periodic quantities, such as the orientation of
an object). Therefore, Gaussian models become unsuit-
able particularly in learning regimes involving high un-
certainties where one cannot assume local linearity of the
underlying space. In this work, we set out to develop a
principled probabilistic deep learning approach capable
of coping with uncertain orientations.

Currently, most deep learning approaches that predict
poses or rigid-body motions suffer from at least one of
three drawbacks: 1) they do not model the uncertainty
at all and merely focus on the accuracy of the predicted
pose, 2) they make simplifying assumptions not taking
into account that the orientation is defined on a periodic
manifold, making the approach only suitable in low-noise regimes, or 3) even when trying to ac-
count for periodicity, no dependency is assumed between the orientation axes and usually an Euler
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angle-based representation is required. To this point, there are no probabilistic deep learning models
for uncertainty of orientations that take the geometry of the underlying domain into account.

In this work, we close this research gap by proposing a probabilistic deep learning model inspired
by Directional Statistics (Mardia & Jupp, 1999). We present a loss based on the Bingham distri-
bution (Bingham, 1974), an antipodally symmetric distribution on the sphere. With this loss, we
represent uncertain orientations by representing uncertainty over unit quaternions. Our contribu-
tions involve Bingham parameter learning using backpropagation through a Gram-Schmidt method
ensuring orthonormalization, efficient approximate evaluation of the normalization constant of the
Bingham distribution from a lookup table, and backpropagating through an interpolation scheme
during learning. We also discuss interpretability of the Bingham distribution parameters and estab-
lish the feasibility of the approach through extensive evaluations. In summary, this work makes the
following contributions:

• We propose the Bingham loss, a novel loss function for deep learning-based predictions of
orientations and their uncertainty.

• We provide a methodology for making use of the newly proposed loss and its normalization
constant computationally tractable in a deep learning pipeline.

• We demonstrate how our approach outperforms the state-of-the-art on challenging pose and
orientation estimation tasks.

2 BACKGROUND: BINGHAM DISTRIBUTION FOR UNCERTAIN
ORIENTATIONS

Unit quaternions are a wide-spred representation for object orientation in 3d space. They are more
compact than rotation matrices and, unlike Euler angles, do not suffer from degeneracies such
as Gimbal lock. Additionally, quaternions provide a convenient mathematical notation where the
quaternion product, q1 � q2, of two unit quaternions q1, q2 ∈ H1 results in a concatenation of the
rotations represented by each of the quaternions individually. A full introduction to this representa-
tion is given in Kuipers (1999) and notational aspects are discussed by Sommer et al. (2018). In this
work, a quaternion q1i+q2j+q3k+q4 will be interpreted as a vector q ∈ R4. It is important to note
that the definition of unit quaternions is equivalent to the vector q being of unit length ||q|| = 1.
Furthermore, the quaternions q and −q represent the same orientation. Therefore, representing un-
certain orientations using quaternions requires a probability distribution on the 4d hypersphere that
exhibits antipodal symmetry, i.e. for the density function f(·) of this distribution f(q) = −f(q)
has to hold.

A probability distribution exhibiting these properties was proposed by Bingham (1974). It arises by
conditioning a zero mean Gaussian to unit length. The Bingham Distribution is given in terms of its
p.d.f. as

p(x; M,Z) =
1

N(MZM>)
exp(x>MZM>x) ,

where x ∈ R4 with ||x|| = 1, N(MZM>) is a normalization constant, M ∈ R4×4 orthogonal,
and Z = diag(z1, z2, z3, 0) ∈ R4×4 diagonal, with diagonal entries zi given in an ascending order
and the last entry being zero. We use the notation Bingham(M,Z). The restriction on the range of
the diagonal entries in Z has numerical and representational convenience reasons as it can be shown
that Bingham(M,Z) = Bingham(M,Z + cI) for all c ∈ R with I ∈ R4×4 denoting the identity
matrix. Similarly, changing the order of diagonal entries in Z has no effect on the distribution as
long as the columns in M are permuted accordingly.

In the definition above, the parameters M, Z bear some similarity to the mean and variance of
a Gaussian. The density obtains its maxima at ±M:,4 (the fourth column of M) which can be
thought of as a mean orientation respecting the manifold structure. The diagonal entries of Z can
be interpreted as dispersion parameters and the first three columns of M as the directions of the
dispersion (the Gaussian analog is the orientation of the covariance ellipsoid). Bingham distributions
allow for representation of uniform priors over individual axes or even the entire space making them
superior over the use of Gaussians in any of the usual orientation representations.
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Figure 2: Densities of the Bingham distribution represented for different dimensionality. For the
circular case (a), the density is shown as a function of unit vectors on the plane. For the spherical
case (b), it is shown as a heatmap on a 3d unit sphere. For the 4d case (c), which is of our particular
interest, we visualize the mode of the Bingham in terms of the coordinate system orientation repre-
sented by the corresponding quaternion. Then, we draw samples from the distribution and visualize
each sample as a potential coordinate arrow endpoint for each axis (i.e. each sample drawn from
the Bingham Distribution is represented by three points in the plot). This representation allows to
simultaneously represent the orientation and the corresponding uncertainty.

One of the main challenges of using the Bingham distribution is the computation of its normalization
constant

N(MZM>) =

∫
||q||=1

exp(q>MZM>q) dq ,

which is a Hypergeometric function of matrix argument (Herz, 1955). Evaluating these functions
imposes a high computational burden and is still an area of active research (Koev & Edelman, 2006;
Kume et al., 2013; Koyama et al., 2014; Kume & Sei, 2018). Using the transformation theorem and
the fact that M is orthogonal, the normalization constant can be simplified asN(MZM>) = N(Z),
making it merely a function of the three parameters zi (i = 1, 2, 3) and motivating the use of pre-
computed lookup tables in practice.

Furthermore, to make the uncertainty of a Bingham Distribution more interpretable in practice, we
propose the use of Expected Absolute Angular Deviation (EAAD) which is defined as

EAAD(Z) =

∫
||q||=1

θ(q, e) · p(q; I,Z) dq

where p(·) is the Bingham(I,Z) density, I is the identity matrix, e = [0, 0, 0, 1] is the vector
corresponding to the unit quaternion representing the identity and

θ(q, e) = 2 · arccos(|〈q, e〉|)
denotes the angular distance between q and e. The EAAD describes the expected angular deviation
from the “mean” orientation. It can be loosely thought of as the orientation counterpart to the
standard deviation in Euclidean space. For the same reason as in the normalization constant, the
EAAD computation does not involve the parameter M.

3 DEEP ORIENTATION UNCERTAINTY LEARNING

The Bingham distribution is the main component of the proposed probabilistic framework for rep-
resenting deep learned uncertain orientations. Drawing inspiration from Mixture Density Net-
works (Bishop, 1994), we propose using the Bingham distribution’s negative log-likelihood as a
loss function

L(y,M,Z) = − log p(y; M,Z)

= −y>MZM>y + logN(Z) ,
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Figure 3: The proposed orientation uncertainty estimation pipeline predicts the parameters of a
Bingham distribution for representing uncertain unit quaternions. Backpropagation through an in-
terpolator and use of a lookup table allows for avoiding evaluations of the computationally expensive
Bingham normalization constant.

with M, Z as defined above and y being the orientation label given in the training data. We use a
neural network to learn M and Z, end-to-end, directly from the input data (e.g. RGB images). From
this prediction the point estimate of y is obtained as ŷ = M:,4 as the last column corresponds to the
highest diagonal entry of Z and thus represents one of the modes of the distribution (the other being
−ŷ due to antipodal symmetry).

No costly evaluation of the normalization constant is required and no major computational chal-
lenges arise in the special case where the dispersion parameter Z is known and not predicted by
a neural network. However, as our goal is the modeling of uncertainty, we propose methods for
modeling M and Z as well as backpropagating through N(Z).

3.1 MODELING OF DISTRIBUTION PARAMETERS

In order to obtain predictions M̂ and Ẑ, we require a 19 dimensional output (o ∈ R19) of the pre-
dictor network (3 outputs for Z, 16 outputs for M). On its own, these outputs do not satisfy the
above-mentioned constraints on the Bingham distribution parameters. Thus, we define the differen-
tiable transforms TM : R16 → R4×4 and TZ : R3 → R4×4 that transform these outputs such that
the constraints are satisfied.

The transform TZ is obtained as TZ(o1, o2, o3) = diag(ẑ1, ẑ2, ẑ3, 0) with

ẑ1 = − exp(o1)− exp(o2)− exp(o3) ,

ẑ2 = − exp(o1)− exp(o2) ,

ẑ3 = − exp(o1) ,

and ensures that ẑ1 < ẑ2 < ẑ3.

For computing M̂, we first subdivide o4, . . . , o19 into four vectors vi ∈ R4 (i = 1, . . . , 4). Then,
we apply the Gram-Schmidt orthonormalization method to these vectors according to

m̂1 = Normalize(v1) ,

m̂2 = Normalize(v2 − 〈m̂1,v2〉 · m̂1) ,

m̂3 = Normalize(v3 − 〈m̂1,v3〉 · m̂1 − 〈m̂2,v3〉 · m̂2) ,

m̂4 = Normalize(v4 − 〈m̂1,v4〉 · m̂1 − 〈m̂2,v4〉 · m̂2 − 〈m̂3,v4〉 · m̂3)

with Normalize(x) = x/ ||x||. Finally, the prediction M̂ is obtained as TM(o3, . . . , o19) =

[m̂1, . . . , m̂4], and M̂ is orthogonal by construction.

3.2 BACKPROPAGATION THROUGH THE BINGHAM NORMALIZATION CONSTANT

As mentioned earlier, computation of the Bingham normalization constant is numerically burden-
some. This is also true for its derivatives which can be shown to be proportional to the normalization
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constant of Bingham distributions of higher dimension (Kume & Wood, 2007). Thus, a forward-
backward pass for one single data point requires 4 evaluations of hypergeometric functions, which
is computationally very expensive.

We avoid this by precomputing a lookup table for N(Z) at L different locations ti (with Zi =
diag([t>i , 0]

>). This table is then used to build an interpolator

fN (z) =

L∑
i−1

wiφ(||z− ti||)

with z ∈ R3 and φ denoting a radial basis function. The weights wi can also be precomputed during
generation of the interpolator. Thus, we can approximateN(Z) ≈ fN (z) and∇zN(Z) ≈ ∇zfN (z).
To the best of our knowledge, this is the first time that a lookup table based interpolation mechanism
has been included into the computation graph of a neural network.

4 EXPERIMENTS

In this section we evaluate the proposed Bingham loss on its ability to learn calibrated uncertainty
estimates for orientations. This goes beyond comparing point estimates of orientations; we evaluate
how well the estimated distribution of orientations can explain the data. We will also show that
the Bingham distribution representation is capable of capturing ambiguity and uncertainty in SO(3)
better than state-of-the-art approaches.

We investigate characteristics and behavior by training neural-networks on two head-pose datasets,
IDIAP (Odobez, 2003) and UPNA (Ariz et al., 2016), as well as the object pose dataset T-LESS Ho-
dan et al. (2017). We show the capability of calibrated uncertainty estimation by applying artificial
label-noise to IDIAP and UPNA and observe that the Bingham parametrization allows to accurately
predict uncertainty. While calibrated uncertainty estimation is important, we demonstrate advanced
capabilities in the face of object orientation ambiguity on the T-LESS dataset by visualizing the
predicted distributions for different orientation ambiguous objects, e.g. symmetric, and comparing
to objects with clear orientation.

4.1 ARCHITECTURE AND EXPERIMENTAL SETUP

We seek to estimate the Bingham distribution parameters directly from image data. Our pipeline is
shown in Figure 3 and begins with an image input into a convolutional encoder, in our case a stan-
dard ResNet-18 network followed by a fully connected layer, populating the entries of o1, o2, o3 and
v1, v2, v3, v4. Subsequently, Z is computed by constrained diagonalization of o1, o2, o3, and Gram-
Schmidt orthonormalization of v1, v2, v3, v4 yields M, as described in Section 3.1. To evaluate the
Bingham loss, the normalizerN(Z) needs to be queried from the RBF lookup table, Section 3.2. Au-
tomatic differentiation of the lookup table enables us to back-propagate through the entire pipeline.
All models were implemented in PyTorch and optimized with the Adam optimizer.

We create the lookup table by numerical integration. More precisely, we use Scipy’s tplquad
method to compute a triple integral for each Z in the table. We set the relative error tolerance to 1e-3
and the absolute error tolerance to 1e-7. The actual computed integral is

N(Z) =

∫ 2π

0

∫ π

0

∫ π

0

exp
(
t(φ1, φ2, φ3)

>Z t(φ1, φ2, φ3)
)
· sin(φ1)2 · sin(φ2) dφ1 dφ2 dφ3 ,

with

t(φ1, φ2, φ3) =

sin(φ1) · sin(φ2) · sin(φ3)sin(φ1) · sin(φ2) · cos(φ3)
sin(φ1) · cos(φ2)

cos(φ1)


to account for a transformation of coordinates from unit quaternions to 4d spherical coordinates.
Because we use the Bingham log likelihood as our optimization objective, we compute the logarithm
before the interpolation to avoid failure at locations where the interpolator wrongly outputs negative
values.
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UPNA IDIAP
EAAD MAAD LL EAAD MAAD LL

Bingham 0.10 0.11 4.70 0.10 0.09 4.49
Von Mises 0.13 0.11 3.69 0.12 0.09 2.08

Table 1: Bingham and Von Mises prediction performance on raw UPNA and IDIAP datasets. While
both models are on par in terms of prediction performance, the high likelihood and lower difference
between EAAD and MAAD indicate that the Bingham loss better captures the underlying noise.

4.2 BASELINE

We compare our work with the approach proposed by Prokudin et al. (2018). It also uses a loss based
on directional statistics, more precisely based on the Von Mises distribution which is a circular
analog of the normal distribution. In order to apply this approach to our setting, orientations are
modeled with Euler angles. The loss then consists of the sum of log-likelihoods for each angle.
While this approach can properly account for periodicity of the underlying data, we expect it to fail
in cases where the underlying uncertainty is not axis aligned due to not considering the dependencies
between uncertain rotation axes.

4.3 EVALUATION METRICS

To evaluate error metrics over predicted orientations, it is unsuitable to compute the RMSE over an-
gles, since these do not sufficiently consider the spherical nature of the underlying data. Instead, we
make use of the Mean Absolut Angular Deviation (MAAD) which has also been used by Prokudin
et al. (2018). It is based on the angular distance between two angles defined above and provides an
intuition following the axis-angle representation. We also compute the EAAD to provide an intu-
ition of the quality of the results. Additionally, the difference between EAAD and MAAD serves as
an indicator of the quality of the predicted uncertainty. For the cases of the von Mises distribution
parameters, EAAD computation is carried out in a similar way as for the Bingham defined above.
For the purposes of evaluation, EAAD is computed over the average of the concentration parame-
ters. Finally, the quality of the respective model is measured in terms of log-likelihood to indicate
the goodness of an individual fit.

4.4 CALIBRATED UNCERTAINTY ESTIMATION

We evaluate the distribution fit on the head pose datasets UPNA and IDIAP, which consist of head
images from a video of several people inside a room. Each image is annotated with head orientation
given by pan, tilt and roll angles. We use these datasets as they provide accurate labels and allow for
carrying out experiments involving artificial label noise.

The results for the raw dataset are shown in Table 1 which indicates the general performance for
point estimates, indicated by MAAD, of the Bingham distribution remains on a similar level as the
Von Mises distribution. In this setting most motions of the subjects’ heads are aligned with the
gravity axis allowing both distributions to successfully capture the noise. However, the Bingham
still attains a higher log-likelihood and a smaller gap between MAAD and EAAD.

To estimate how well the predicted uncertainties are calibrated, we add artificial noise by drawing
random perturbations from the Bingham distribution with varying z1, z2 and z3 parameters. Both
UPNA and IDIAP contain only negligible amounts of noise, such that the amount of label noise
should be reflected in the mean estimated noise to high accuracy. An evaluation of uncertainty and
label noise is shown in Table 2. The Bingham uncertainty parameters closely match the label noise
parameters. For the case of no noise, the Bingham uncertainty parameters approximate the highest
certainty levels represented in the lookup table. Thus, the maximum and minimum values in the
lookup table automatically become the bounds of what certainty levels can be represented by the
proposed loss.
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-z1 -z2 -z3 EAAD -z1 -z2 z3 EAAD -z1 -z2 -z3 EAAD -z1 -z2 -z3 EAAD -z1 -z2 -z3 EAAD
Label noise No noise 0 20 20 20 0.52 250 150 50 0.22 150 100 75 0.23 300 300 300 0.13
UPNA 497 497 497 0.10 19 19 19 0.54 186 105 63 0.23 130 114 74 0.23 303 300 295 0.13

±0.4 ±0.4 ±0.5 ±78 ±30 ±15 ±35 ±10 ±14 ±16 ±16 ±17
IDIAP 499 499 499 0.10 19 19 18 0.55 167 164 47 0.24 93 87 76 0.25 300 294 280 0.13

±0.5 ± 0.5 ±0.3 ±17 ±20 ±3 ±8 ±8 ±7 ±24 ±25 ±35

Table 2: Testing accuracy of uncertainty calibration. We perturb the labels with noise sampled from
the Bingham distribution with M equal to the identity and varying z1, z2, z3. The figures represent
the different noise distributions.

4.5 HANDLING AMBIGUOUS DATA

In order to investigate the suitability of the proposed model for handling ambiguous data, we use
of the T-Less dataset. The T-Less dataset includes RGB and depth images of 30 different objects
taken from different cameras. The objects in this dataset are textureless and exhibit rotational as
well as other symmetries. While the rotational symmetric objects may be explicitly modeled with
the proposed loss, other objects would require a multi-modal approach. We, however, do not use a
Mixture Density Network version of the Bingham and Von Mises losses in order to evaluate how
both approaches perform in the presence of this uncertainty.

From the T-Less dataset we use the Kinect RGB images for orientation estimation. To that end, we
only use images of single objects from the training set, which we, in turn, split into training, test, and
validation sets. We use these images in two experiments. First we try to predict object orientation
directly from the images. Second, we add blur to each image using a uniform 10px×10px kernel to
evaluate an even more challenging scenario. Due to this setup, we expect both methods to perform
poorly on the orientation prediction task. We are interested in whether the resulting uncertainty
estimates will properly capture that failure.

The results are visualized in Table 3. As expected, both approaches are on average far off in terms
of the true orientation. While Von Mises performs better on the MAAD, we observe that there is
a larger difference between the MAAD and EAAD values for the Von Mises distribution than the
Bingham distribution. This indicates that the uncertainty estimates of the Von Mises distribution may
be overconfident. On the other hand the Bingham distribution better captures the uncertainty over
individual axes. One interesting insight is that allowing for uniform distributions over individual
non-aligned periodic axes can make it hard for the learning method to pick up on the proper pose
and thus may require pre-training on the pure pose estimation task in such regimes.

5 DISCUSSION AND RELATED WORK

Quantifying and representing uncertainty by and in neural networks has been a subject of extensive
research initially focused on modeling probability distribution parameters (Nix & Weigend, 1994)
and mixture distributions (Bishop, 1994) as neural network outputs. More recent approaches fo-
cus on improving understanding of the underlying uncertainties (Kendall & Gal, 2017), providing
scalable techniques for estimating predictive uncertainty (Lakshminarayanan et al., 2017), and sta-
bilizing training to avoid mode collapse (Makansi et al., 2019). The present work is orthogonal to
these approaches in the sense that it focuses on proper modeling of the underlying geometric domain
and coping with a computationally demanding normalization constant.

Handling of poses and orientations has been extensively studied in the context of Bayesian filtering
for applications such as spacecraft attitude estimation Crassidis & Markley (2003) and ego-motion
estimation Bloesch et al. (2015), where one can often assume the underlying uncertainties to be
small. This allows for leveraging local-linearity and using the Gaussian distribution. Recently,
methods based on directional statistics enabled modeling of high uncertainty levels for inferring
orientations (Gilitschenski et al., 2016) and full poses (Glover et al., 2011; Glover & Kaelbling,
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Method Log-likelihood MAAD EAAD
Von Mises -0.12 0.48 0.33
Bingham 2.82 1.57 1.58

Von Mises w. blur -9.17 1.92 0.56
Bingham w. blur 1.92 2.05 1.58

Table 3: Results on the T-Less dataset

2014; Srivatsan et al., 2016) by using the Bingham Distribution. Drawing inspiration from these
results, this work extends the applicability of these approaches to probabilistic deep learning models.

Particularly in computer vision, deep learning has been applied to spherical regression and pose
estimation problems (Liao et al., 2019; Huang et al., 2018). These applications involve inferring
object (Brachmann et al., 2014; Hodaň et al., 2018; Li et al., 2018b;a; Manhardt et al., 2019; Sun-
dermeyer et al., 2018; Tekin et al., 2018; Wang et al., 2019b;a), body (Yang et al., 2019), and camera
poses (Clark et al., 2017; Sattler et al., 2019; Wang et al., 2017; 2018). In all of these scenarios there
is a multitude of sources for potentially high uncertainties such as the use of low-resolution data
(e.g. tracking pose of distant pedestrians), absence of textures (e.g. when operating on depth data),
or motion blur (e.g. due to high speeds in ego-motion estimation). However, most of the existing
approaches merely focus on inferring the pose but do not account for the underlying uncertainty.
The representation proposed in our work closes this gap by allowing for neural networks to output
well-calibrated orientation uncertainty estimates.

Only few approaches consider modeling the uncertainty of orientations for deep learning based pose
estimation. PoseRBPF by Deng et al. (2019) discretizes the orientation space into over 190 000
bins and learns a codebook to allow for tractable inference. In contrast to that approach, we do
not require an a priori discretization and can directly obtain interpretable estimates. Similarly to us,
Prokudin et al. (2018) propose a loss based on directional statistics. By making use of the Von Mises
distribution, their work can properly account for periodicity of circular data. However, as we have
shown in our evaluations, this approach cannot properly take dependencies between different axis
into account and, thus, struggles when the underlying uncertainty is not axis aligned.

6 CONCLUSION

In this work, we introduced the Bingham loss, a loss function based on the Bingham distribution that
enables neural networks to predict uncertainty over unit quaternions and thus predict uncertain ori-
entations. This work enables the use of highly symmetric objects and ambiguous sensor data in the
context of pose and orientation estimation with uncertainty predictions. In addition, we demonstrate
how to cope with intractable likelihoods in deep learning pipelines by using non-linear interpolation
and lookup tables as part of the computation graph.

The presented approach is directly usable together existing probabilistic deep learning techniques,
e.g., as part of a Bingham mixture density model. The choice of parametrization representation
remains one of the main design decision in pose and orientation estimation pipelines. Our work
supports the case for using quaternions over other parametrizations for deep learning. It also mo-
tivates further research on how to properly model dependencies between uncertain periodic and
non-periodic quantities.
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