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ABSTRACT

We tackle the problem of inpainting occluded area in spatiotemporal sequences,
such as cloud occluded satellite observations, in an unsupervised manner. We
place ourselves in the setting where there is neither access to paired nor unpaired
training data. We consider several cases in which the underlying information of the
observed sequence in certain areas is lost through an observation operator. In this
case, the only available information is provided by the observation of the sequence,
the nature of the measurement process and its associated statistics. We propose
an unsupervised-learning framework to retrieve the most probable sequence using
a generative adversarial network. We demonstrate the capacity of our model to
exhibit strong reconstruction capacity on several video datasets such as satellite
sequences or natural videos.

1 INTRODUCTION

We consider the problem of reconstructing missing information from image sequences. The problem
occurs in many different settings and for different types of sequences. For example, in remote sensing
applications, satellite imagery are frequently occluded by meteorological perturbations such as
clouds and rains (Singh & Komodakis, 2018). Recovering missing satellite data is an active research
topic. Approaches range from simple interpolation to sophisticated data assimilation methods. The
latter is often a model-based approach that relies on analytical models of the underlying observed
phenomenon (Ubelmann et al., 2015; Sirjacobs et al., 2011; Lguensat et al., 2017). Model-free data
based methods have also been developed such as DINEOF (Alvera-Azcárate, 2011). Note that for
physical observation modeling problems of this type, there is never any direct supervision available.
Another example concerns natural videos. Here, information can be occluded by moving objects
such as fences (Yamashita et al., 2010), raindrops (Qian et al., 2018), persons (Kim et al., 2019),
stains on photographic films (Tang et al., 2011). Video and image imputation have given rise to a
large body of literature. Recent Deep Learning (DL) advances have motivated the development of
general imputation methods relying on generative models such as GANs (Wang et al., 2018a; Xu
et al., 2019; Kim et al., 2019). They all make use of supervision and require the availability of a
ground truth, which is absent in many real-world problems. Data driven supervised methods have
thus attained impressive results and are able to accurately complete a large missing region. However,
reconstructing the missing information in videos when supervision is unavailable is still an open
problem and there have been only a few works exploring this direction. For example, Newson et al.
(2014) propose a simple but effective method for occlusions in natural videos that replaces occluded
parts with information from their neighborhood.

We consider here unsupervised video reconstruction. We propose a model which can be used on
different types of image sequences, physical or natural videos, and for a large variety of occlusion
processes. Our method does not make any assumption on the nature of the image sequence, it does
not require any prior knowledge like most methods used for physical images do. It is especially well
suited when the occlusion is complex thus forbidding the use of ad hoc techniques, e.g., the patch
method of Newson et al. (2014). The method extends to sequences from ideas recently developed for
still images based on generative networks (Bora et al., 2018; Pajot et al., 2019; Li et al., 2019). This
is up to our knowledge the first attempt to solve the problem of unsupervised video completion using
general ML methods. This method is fully data driven and does not use any hand-defined analytical
prior on the signal. Priors on the unobserved signal are directly learned from the data for solving an
underlying inverse problem. The method is then applicable to a large variety of video signals.

Our main contributions are the following:
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• We propose a new framework and model for large-scale image sequence inpainting learning,
in a fully unsupervised context.

• This model can be used for a variety of image sequences and for different occlusion
processes.

• Extensive evaluations are performed on realistic simulated satellite data and on natural
videos with different occlusion processes.

2 METHOD

2.1 PROBLEM SETTING

We suppose that there exists an unknown spatiotemporal sequence x ∼ pX,x ∈ RC×T×H×W ,
where x is a tensor denoting a C-channel sequence composed of T frames of H ×W pixels. We
denote xt the t-th frame of the sequence and xt2

t1 the subsequence from the t1-th to the t2-th frame
inclusive. With this notation, x = xT

1 . We do not have access to the original signal x but only
to corrupted observation sequences of this signal y ∼ pY,y ∈ RC×T×H×W . Our objective is to
reconstruct x from the corresponding observation y. For example, x can be sea surface temperature
(SST) at successive times while image sequence y is SST measurements via IR satellites occluded
by moving clouds. We will suppose that y is obtained from x via a measurement process modeled
through a stochastic operator F as follows:

y = F (x,m) = x�m+ c · m̄ (1)

wherem ∼ pM is an occlusion mask, generated from a known distribution with the same size as x
and with components in {0, 1}, where 0 holds for a masked pixel. m̄ denotes the complement of
m, � is the element-wise multiplication, all the masked pixels are supposed to be reset to a constant
c which could be 0 or 1 depending on the observation process (see Section 3). Random variables
X and M are assumed to be independent and F is assumed differentiable w.r.t. x. In the following,
we will suppose that one can retrieve the maskm directly from the observation y. This is not very
restrictive since in most situations this is easy to do. We denote T the mask extractor T (y) = m.

Our objective is then to recover the sequence x from the observations y and the corresponding binary
masks m. Adopting a probabilistic viewpoint, we want to select a reconstruction x∗ which is the
most plausible under the posterior distribution pX|Y(·|y).

2.2 MODEL

We formulate the problem as finding the most probable sequence conditioned on observations:

x∗ = arg max
x

log pX|Y(x|y) = arg max
x

log pX(x) + log pY|X(y|x) (2)

The prior term log pX(x) is unknown since we are in an unsupervised setting, while the likelihood
log pY|X(y|x) does not lead to analytical or simple computational solution.

To tackle these issues, let us introduce a mapping G : Y 7→ X, parameterized by a neural network
ϕ and associating measurement y to its estimate x. G will allow us to approximate the underlying
distribution of training sequences. By plugging G(y) into Equation 2, the objective becomes:

G∗ = arg max
G

Ey∼pY [log pX(G(y))︸ ︷︷ ︸
prior

] + Ey∼pY [log pY|X(y|G(y))]︸ ︷︷ ︸
likelihood

(3)

2.3 PRIOR HANDLING

Let us first handle the prior term in Equation 3. We want the distribution induced from G(y) to
be close to pX. In order to do so, we will use an adversarial approach. We will build on the ideas
introduced in Bora et al. (2018); Pajot et al. (2019) for still images. The process is illustrated in Figure
1. For a given observation y, we want to generate an approximation of the unknown true sequence
x̂ ≡ G(y). The prior pX being unknown, the only available information source is the observation y
and the noise prior pM. For a given generated signal x̂, we compute a corrupted version of x̂ through
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ŷ̂y

DfDf

DsDs

real frame fake frame

real sequence fake sequence

m̂̂m ⇠ pM⇠ pM

⇠ pY⇠ pY

…
.

x̂̂x

Figure 1: Schema of our model. Generator G takes a sequence y and outputs an inpainted sequence
x̂; measurement process F takes the inpainted sequence then outputs fake observations ŷ.

the known mask m̂, ŷ ≡ F (x̂, m̂) with m̂ ∼ pM. We will train G to make the distributions of y
and ŷ indistinguishable. In order to succeed, the generator G will have to remove the corruption from
y and recover a sample x̂ from distribution pX. Generator G will then act as an inpainter conditioned
on y. This will enforce the distribution of the reconstructed sequences x̂ to be close to the distribution
of true ones x and maximize the prior term.

A direct application of the adversarial training idea suggests using a discriminator operating directly
on the sequences. We found out that using an additional discriminator on frames worked better than
using a unique one operating on sequences. We then use two discriminators Ds and Df respectively
associated with whole sequences and with individual frames to optimize G. Ds separates sequences
y and ŷ. Df distinguishes real frames yt from fake ones ŷt. The loss function used for training
G,Ds, and Df is:

min
G
L(G) = max

Ds,Df

Ey∼pY,ŷ∼pGY
[logDs(y)+log(1−Ds(ŷ))+

1

T

T∑
t=1

logDf (yt)+log(1−Df (ŷt))]

(4)
with pGY(y) ≡ Em∼pM,x∼pGX

[pY|X,M(y|x,m)], corresponding to the distribution of the corrupted
sequences ŷ generated via the measurement operator F . pGX(x) is the distribution of x̂ induced by G
from y, i.e. x̂ = G(y).

2.4 LIKELIHOOD HANDLING

Let us now handle the likelihood term in Equation 3:

Ey∼pY [log pY|X(y|G(y))]. (5)

This likelihood is maximised when we are able to perfectly reconstruct y from G(y). One way to
ensure this property is to constrain G to directly use y for the non occluded area of the reconstructed
image G(y). This can be easily achieved through the following mapping:

G(y) ≡ ϕ(y)� m̄+ y �m (6)

where ϕ is a NN responsible for reconstructing the missing part of y,m = T (y) is the mask retrieved
from y. G maps Y to X with the help of mask m to ensure that the network will only generate
values for occluded pixel, while keeping all the information from y. To summarize, optimizing the
prior term amounts at training ϕ for inputting the missing pixels while optimizing the likelihood term
is simply achieved by copying the non occluded portion of y.

2.5 TRAINING

G is optimized by descending the prior loss and Ds, Df by ascending it. Sequence discriminator Ds

focuses on temporal dependence and coherence of pixel changes. Frame discriminator Df keeps an
eye on spatial feature coherence of observation frames.
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3 EXPERIMENTS

We evaluate our model on four datasets, characteristic of different types of image sequences. The first
one, SST, is a realistic simulation of satellite observations. The other three are natural video datasets:
FaceForensics++, KTH, and BAIR, initially respectively used as benchmarks for forgery detection,
motion detection, and video prediction.

3.1 DATASETS

SST The Sea Surface Temperature dataset used for the experiments includes 2 subsets of GLOBAL
Sea Physical Analysis and Forecasting Product1 from E.U. Copernicus Marine Service Information.
This is a monitor system providing simulated but realistic global ocean SST data, which integrates
satellite-derived and in situ data by assimilation. Our dataset is a part of the hourly mean SST, the
finest timescale we have access to. The data we use is a part of the archive of analysis integrating
real-world data. We retrieved our training-and-validation set and test set respectively from two
different marine regions. Detailed data description and information for accessing the dataset are
provided in Appendix A.

FaceForensics++ (Rössler et al., 2019) This dataset contains 1000 videos of non-occluded face
movements on a static background. It was initially created for forgery detection. In our case, we
extracted the faces from the original unforged videos with face_recognition2, thus keeping
only the changing component of the videos. The faces have been cropped and resized to 64×64.

KTH (Schuldt et al., 2004) A human action dataset containing 2391 video clips of 6 human
actions. The videos have been recorded with 25 subjects in different environments. All frames have
been resized to 64×64.

BAIR Robot Pushing Dataset (Ebert et al., 2017) This dataset contains 44374 videos recorded
by an one-armed robot. It pushes objects and changes movement direction in a stochastic manner.
All videos share similar tabletop with static background. All frames have been resized to 64×64.

3.2 MEASUREMENT PROCESSES

The above datasets provide ground truth videos without corruption. In order to generate corrupted
observation sequences, we simulate different types of occlusion depending on the nature of the
videos. Each corruption process is defined as a stochastic operator F as in Equation 1 with mask
distribution pM. For a given video one then generates a sequence of random masks, one mask being
then associated to each frame of the sequence. Note that except for the Remove-Pixel corruption
process where two successive corruptions are independent, for all processes, the generated corruption
sequences are time-dependent: the corruption pattern at time t will depend on the one at time t− 1.

Cloud This process is specific for the SST dataset. It simulates realistically video cloud masks on
satellite images. Cloud masks are simulated using Liquid Water Path (LWP) data (measured in g/m2),
which characterizes the total amount of liquid water present in the atmosphere between two points.
The LWP data are generated by PyCLES (Pressel et al., 2015)3, a large eddy simulation system. It
simulates the evolution of clouds in time based on a variant of anelastic equations of atmospheric
motion. Collected LWP data record mask videos of clouds. The binary masks are then obtained by
setting the image pixels to 0 when their LWP value is above a threshold. This produces realistic
cloud coverage of the captured regions, see Figure 2a. Pixels occluded by the mask are set to c = 1.
Thresholds are selected in the interval 55 to 80 g/m2 to simulate clouds at different occlusion rates.
Statistics about the occluded area at different thresholds are presented in Table 2a. For simulating
occlusion, for each SST image sequence, we sample randomly a sequence of masks from the LWP
dataset to be applied to the SST sequence.

1http://marine.copernicus.eu/services-portfolio/access-to-products/
2https://github.com/ageitgey/face_recognition
3https://github.com/pressel/pycles
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Raindrops This process is a simplified model of random raindrops between subject and camera,
taking into account a blurring effect when raindrops leave traces during exposure. It generates a set
of white bars, each with a random length θl and a constant width w. Bars move down at a random
speed θv, starting from a random initial position θp. All these values are normalized w.r.t the frame
edge length in ]0, 1[. The number of raindrops is pre-defined. Bars return to the top once completely
out of frame, see Figure 2. Pixels occluded by the mask are reset to c = 1. Note that as for Cloud,
this is a time-dependent measurement process, meaning that two successive masks are correlated.

Remove-Pixel This measurement roughly mimics severe damages on vintage films. It masks
randomly a fixed proportion p ∈ ]0, 1[ of pixels at each time step and reset them to c = 0, see
Figure 2. Mask for each frame is generated independently regardless the evolution of time. This is
the only time-independent measurement considered here.

Vertical-Moving-Bar This simple measurement operator generates a vertical white bar crossing
the sequence, very roughly mimicking a fence or any similar obstacle. The bar is generated with
the following distribution parameters: width θw, initial position θp, horizontal constant velocity
θv. These values are in ]0, 1[ as for Raindrops. The moving direction is chosen randomly. The bar
reappears on the opposite side once it reaches the border. Masked pixels in observation are reset to
c = 1. This is a time-dependent measurement.

3.3 BASELINES

Unsupervised Approaches We use two unsupervised baselines, one adapted for SST and the other
one specific of natural videos. The former is DINEOF (Alvera-Azcárate, 2011). This is a state-of-
the-art data-driven completion method in geophysics, and it has been used for SST observations,
chlorophyll, salinity etc. It is a parameter-free interpolation technique based on empirical orthogonal
function (EOF). It adopts an iterative algorithm that calculates at each iteration a truncated decompo-
sition of EOF from known pixels, then replaces the values marked as missing by a reconstruction
from calculated EOF. DINEOF does not make any assumption on the form of missing area and as
such could be used for other domains as well and for different types of complex occlusion processes.
However, DINEOF has been developed for remote sensing and does not ensure the coherence between
different input channels (e.g. for RGB images).

The other one is Newson et al. (2014), one of the very few methods for unsupervised natural video
inpainting. It is representative of patch-based approaches and it is still today state-of-the-art for many
natural video occlusion processes. It searches for the nearest neighbours of occluded area using an
Approximate Nearest Neighbour (ANN) search. The occluded area is reconstructed by assembling
information from these neighbours at multiple scales. The form of the researched patches is supposed
to be rectangular cuboids, e.g. a 5× 5× 5 spatiotemporal tensor, which limits its capability to adapt
to more complex cases like Cloud, Raindrops, Remove-Pixel.

Supervised Approaches As already mentioned, there exists several supervised approaches to
sequence inpainting (Huang et al., 2016; Xu et al., 2019; Kim et al., 2019). In order to evaluate the
performance of our unsupervised method w.r.t. supervised ones, we compared with two supervised
baselines. As our goal is not to beat state-of-the-art supervised techniques, we used two supervised
adaptation of our model, respectively trained using unpaired and paired supervision. They are
described below.

UNPAIRED VARIANT This is a supervised variant of our model in which we have access to unpaired
samples from pX and pY. The model is illustrated in Appendix C. Because we have access to clean x
data, it is then possible to supervise the approximation x̂ = G(y) by discriminating directly between
samples x from the signal distribution and the output of the reconstruction network x̂.

PAIRED VARIANT Here we have access to corrupted-uncorrupted pairs (y,x) from the joint
distribution pY,X. Given the masked image y, the reconstruction is obtained by regressing y to the
associated complete image x using a L1 loss. In order to avoid blurry samples, we add an adversarial
term in the objective, which helps G to produce realistic samples. This model is similar to the
Vid2Vid (Wang et al., 2018b) model, except that they rely on optical flow which is not available in
our case because of the masked regions. The model is illustrated in appendix C.
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(a) SST (b) FaceForensics++

(c) KTH (d) BAIR

Figure 2: Samples from test sets. SST data (a) are masked with Cloud, natural video datasets (b,c,d)
are masked with Remove-Pixel and Raindrops. Sequences are accelerated 3 times to make movements
more visible. Each sample from top row to bottom: observed y, and recovered x̂.

3.4 NETWORK ARCHITECTURE AND TRAINING DETAILS

We use the same networks for all the experiments. For generator G, we use a ResNet-type self-
attention network (Zhang et al., 2019), which is composed of 3D-ResNet blocks and spatial self-
attention layers. Frame discriminator Df is a 2D convolutional NN trained for binary classification.
Sequence discriminator Ds uses the same structure as Df but with 3D convolutions. These networks
can process sequences of any time length. See Appendix B for more details about the networks.

Let us now detail the training procedure for each dataset: (a) For SST data, the model is trained on
300 sequences, validated on 66 sequences, and tested on 60 sequences. Each sequence is composed
of 24 frames. We use SST data degraded by cloud masks at LWP threshold 70 g/m2 for training since
they include sufficient information for both SST and cloud dynamics. (b) For FaceForensics++, KTH,
and BAIR, we pick randomly 5% data for validation, another 5% data for test, and keep the remaining
for training. Sequences are truncated or padded to 35 frames to be able to fit into GPU memory.

For time-independent process Remove-Pixel, we use plain pixel value as feature and directly let the
sequence discriminator capture the dynamics. For time-dependent Raindrops, Moving-Vertical-Bar
and Cloud, we further reinforce the sequence discriminator Ds to focus on temporal component by
extracting inter-frame difference features as the underlying dynamics reflected by this feature is more
expressive than plain pixels. Ds will therefore distinguish between φ ≡ [y2 − y1, . . . ,yN − yN−1]

and φ̂ ≡ [ŷ2 − ŷ1, . . . , ŷN − ŷN−1].

We use hinge loss for Equation 4 as in Zhang et al. (2019). Following standard practice, all
three networks are trained using Adam optimizer with a learning rate of 1× 10−4 and (β1, β2) =
(0, 0.999). All networks are initialized with normal distribution with a gain of 0.02. We apply spectral
normalization for all parametric layers. The experiments were made on one NVIDIA GeForce GTX
TITAN X GPU. 4

4Code and video examples are available at: https://sites.google.com/
unsup-video-inpaiting/
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Dataset Method Raindrops Remove-Pixel Vertical-Moving-Bar

FID FVD MAE FID FVD MAE FID FVD MAE

FF++
Ours 43.72 1574.89 .0834±.0187 93.28 1460.02 .0894±.0137 19.12 493.57 .1304±.0972
(1) 75.93 3424.11 .1208±.0272 110.15 3091.67 .0752±.0161 56.58 5775.25 .3286±.0815
(2) —* —* —* —* —* —* 9.04 316.55 .0494±.0501

KTH
Ours 56.56 2522.81 .0380±.0062 56.16 2639.24 .0429±.0037 39.05 588.94 .0711±.0505
(1) 71.69 6400.44 .0522±.0073 82.45 6660.02 .0403±.0040 34.90 3408.19 .0959±.0402
(2) —* —* —* —* —* —* 11.88 354.01 .0268±.0403

BAIR
Ours 27.33 1194.19 .0821±.0153 53.80 2073.90 .0997±.0087 11.55 496.38 .1619±.0590
(1) 89.87 4456.08 .2345±.0274 140.20 4014.17 .1424±.0103 67.06 7361.77 .5579±.0766
(2) —* —* —* —* —* —* 10.31 340.97 .1082±.0873

Table 1: Results for FaceForensics, KTH, and BAIR. Compared with (1) Alvera-Azcárate (2011) and
(2) Newson et al. (2014). *Unable to finish.

3.5 EVALUATION METRICS

Our objective is to find the most plausible sequence. We use as main performance measures of the
generated frames, Fréchet Inception Distance (FID, Heusel et al., 2017) and Fréchet Video Distance
(FVD, Unterthiner et al., 2018). Both compare the activation distribution of the generated samples
from pGX to the real one sampled from pX. These distributions are extracted from activation layers
of NNs, which are pre-trained respectively on natural image classification tasks for FID and video
classification tasks for FVD. The two distances are calculated for the whole sequence including
occluded and non-occluded region. Besides FID and FVD, we also evaluate the reconstruction error
as a complimentary metric. We use for that Mean Average Error (MAE), which indicates the absolute
deviation from the real data. MAE is calculated solely within the occluded area.

4 RESULTS

4.1 COMPARISON WITH BASELINES

LWP
(g/m2)

Occluded
Area (%) FID FVD MAE (°C)

55 79.9± 9.6 32.49 134.40 .1273±.0443
60 69.6±12.8 22.95 79.13 .1047±.0396
65 55.9±15.1 17.75 75.07 .0988±.0378
70 39.5±14.6 8.01 40.76 .0739±.0324
75 24.5±11.5 5.58 30.07 .0698±.0305
80 13.4± 7.8 1.77 9.89 .0497±.0237

All 47.1±11.9 14.76 61.55 .0874±.0347

(a) Results with clouds generated at different
LWP thresholds.

Method FID FVD MAE (°C)

Ours 8.01 40.76 .0739±.0324
Alvera-Azcárate (2011) 27.99 323.61 .1214±.0248

Newson et al. (2014) —* —* —*

(b) Comparison of results with clouds at LWP
threshold 70 g/m2. *Unable to finish.

Table 2: Results for SST dataset.

Results for SST Data Table 2a shows the results
for SST data with simulated clouds at different oc-
clusion rates. For most occlusion rates, the generated
sequences have an MAE under 0.1°C which is well
below the reference baseline (see Table 2a). They also
have good FID and FVD values, which means that
they are spatially and temporally realistic (See Fig-
ure 2a for examples). For heavily occluded area, our
model can realistically reconstruct the data around
the border, the reconstruction near the center of the
cloud is of lower quality. We compare our results in
Table 2a at 70% occlusion, with DINEOF, the sota
agnostic method for image reconstruction in IR im-
ages. The error reduction w.r.t. DINEOF is about
40% for MAE. We have not been able to obtain re-
sults for Newson et al. (2014) in reasonable time for
such complex masks. Note that Newson et al. (2014)
specifically designed for imputation in natural videos
is not adapted for this type of occlusion.

Results for Videos Table 1 gathers the results obtained for the three natural video datasets with
artificial measurements (Raindrops, Remove-Pixel, and Vertical-Moving-Bar). For all measurements,
the FID and FVD performance obtained by our model are 20%-50% better than DINEOF. This means
that our model better controls the both spatial and the temporal generation quality than DINEOF.
Globally, we achieve better MAE scores notably for color videos with few exceptions (performance
are close for Remove-Pixel). As for Newson et al. (2014), the calculation could not be terminated in a
reasonable time for highly complex measurements such as Raindrops, and Remove-Pixel, which make
searching for cuboid patches in non-occluded area extremely hard. Newson et al. (2014) performs
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better when the form of masks is simple such as the Vertical-Moving-Bars, for which completing
patches could be easily found in neighbour frames. However, the computation time of Newson et al.
(2014) is much longer than our model. Note that reduced computation time was an argument put
forward in their publication. For a 30-frame 64×64 video, Newson et al. (2014) costs on average 1
minute, versus around 1 second by our model.

Method FID FVD MAE

Ours, Unsupervised 43.72 1574.89 .0834±.0187
Unpaired, Supervised 20.86 575.08 .0547±.0105

Paired, Supervised 22.17 720.75 .0555±.0108

Table 3: Comparison with supervised base-
lines for FaceForensics++ with Raindrops.

Comparison with Supervised Baselines Table 3
compares our model with the two supervised (un-
paired and paired) variants described in Section 3.3.
Unsurprisingly, the performance of supervised mod-
els is far better than the ones of our unsupervised
model. We can find out that the access to the ground
truth reduce dramatically all three metrics. By using
supervision, FID is halved and FVD is between two
and three times smaller. The error reduction is smaller with MAE. We also notice that the unpaired
version performs better than the paired one in terms of sequence completion quality (FVD) as the
L1 loss introduces a strong constraint for the reconstruction. This shows to what extent the absence
of ground truth will affect generation quality and the extra difficulty while dealing with partial
observations.

4.2 ABLATION STUDY

Method FID FVD MAE (°C)

Ours 8.01 40.76 .0739±.0324
Recurrent variant 13.29 67.37 .0960±.0431

Static variant 35.91 279.78 .1036±.0047

Table 4: Comparison of results for SST data
for ablation study

We also conduct additional experiments in order to
quantify the importance of the temporal component.

In a first series of experiments, we remove the se-
quence component from our model, i.e. removing the
sequence discriminator Ds and replacing 3D genera-
tor by 2D one generating individually frames. Table 4
shows that our model clearly improves temporal qual-
ity by reducing FVD by a ratio of 7 compared to the
model without the temporal component (denoted Static variant in the table). Note that FID is also
clearly improved by a factor of 4. this gives more evidence that the model is able to exploit temporal
dependency for its image completion task. We provide samples for this part in Appendix D in
Figure 12.

Our model generates a frame at time t, x̂t from a whole sequence of observations y. In a second
series of experiments, we conditioned the generation of frames x̂t only on past observations. We
feed past observations into a convolutional RNN (we used GRU in our experiments) and generate the
reconstructed frame, still denoted G(y) by abuse of notation, from the last hidden state of the RNN,
which encodes all past observations. The spatial discriminator operates as before, while the sequence
discriminator operates on past observations only, instead of the full sequence of observations in our
model. See Appendix C for an illustration and for further description. Results in Table 4 - Recurrent
variant, show that using only past observations makes the completion less realistic and less accurate,
but it still clearly outperforms the model without time dependency.

5 RELATED WORK

There is currently, up to our knowledge, no other learning-based approach trying to solve the problem
of spatiotemporal data completion in a purely unsupervised manner. We will review below related
contributions for image and video reconstruction, data assimilation, and domain translation.

Image Reconstruction Video or more generally spatiotemporal sequence completion can be con-
sidered as an extension of image completion problems. the first attempts for image completion and
inpainting were all supervised. Xie et al. (2012) uses convolutional NNs for regressing observations
to ground truth images. This typically produces blurry outputs. To overcome this issue, some authors
introduce textures (Yang et al., 2016), while many others make use of GANs (Pathak et al., 2016;
Yu et al., 2018). More recently, unsupervised approaches have been developed by considering only
corrupted images. Ulyanov et al. (2017); Lehtinen et al. (2018) show that it is possible to learn the
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underlying data distribution and to reconstruct images from observations when a model of observation
process is given or when the noise is zero-mean. Such restrictive hypothesis have been removed in
the seminal work of Bora et al. (2018). They introduce AmbientGAN to unconditionally generate
data distribution without supervision from corrupted observations under the assumption that the
stochastic measurement process is known. MisGAN (Li et al., 2019) extend this idea and to learn
jointly the mask and the original data distributions. Both contributions objective is data generation
and not completion like we do here. Pajot et al. (2019) propose to conditionally recover images
from corrupted observations only by solving a maximum a posteriori (MAP) estimation problem,
implemented with an adversarial framework. This is limited to still images.

Video Inpainting Video inpainting has been mainly considered in a supervised framwork. Object-
based (Cheung et al., 2006) and patch-based (Newson et al., 2014) approaches introduced before the
deep learning era generally rely on prior segmentation of moving objects and background or strong
assumptions on video content. Flow-based methods have been used to model spatial appearance
and local pixel movement between consecutive frames. Huang et al. (2016) propose to guide non-
parametric patch-based optimization with forward and backward optical flow. Xu et al. (2019); Kim
et al. (2019) try to resolve the problem through neural optical flow estimation, which requires extra
pre-trained network. More recently end-to-end learning approaches have been proposed. For example,
Wang et al. (2018a) propose frame-level generation decomposition by combining a video inpainter
with a frame-wise refinement inpainter. Extensions of image inpainting methods are also proposed in
Chang et al. (2019). All these learning-based methods are trained with supervision and have been
developed for natural videos.

Data Assimilation for Remote Sensing For remote sensing applications, optimal Interpolation
(OI) is widely used in operational products (Donlon et al., 2012). It produces a linear estimate for the
occluded area. Model-based assimilation methods (Ubelmann et al., 2015) rely on explicit physical
dynamic priors and demand significant computational power. Purely data-driven methods based on
empirical orthogonal functions (EOF, Beckers & Rixen, 2003) use basically matrix factorization to
achieve temporal interpolation. Recent advances in Analog Data Assimilation (AnDA, Lguensat
et al., 2017; Fablet et al., 2018) combine analog forecasting methods with data-driven assimilation
using implicit knowledge of dynamical prior. These methods rely either on interpolation or exploit
some priors on the nature of the underlying process. Recently, learning methods have started to be
exploited in this field. Shibata et al. (2017) propose to apply learning-based frame-level inpainting
enhanced with optical flow using simple assumptions on pixel movement. In a later paper, Shibata
et al. (2018), they recover the missing data using an adversarial approach to supervise on some extra
occluded area w.r.t the original partial observations. This approach still reconstruct data frame by
frame.

Domain Translation Reconstruction can also be considered as a translation problem between
two domains, incomplete observations and full unobserved data. For images, Pix2Pix (Isola et al.,
2016) utilizes GANs to project data from domain A to domain B with paired data. CycleGAN (Zhu
et al., 2017) propose to use two generator-discriminator pairs to model the transformation between
two domains. For videos, Wang et al. (2018b) propose Vid2Vid by adding a multi-scale temporal
discriminator in Pix2Pix to supervise the optical flow. RecycleGAN (Bansal et al., 2018) is based
on the idea of CycleGAN by adding a temporal transformation in both domains. However, these
methods require full data from the two domains, and sometimes the supervision on motion, when no
supervision is available in our setting.

6 CONCLUSION

We have proposed a GAN-based framework to complete partially observed spatiotemporal data. Our
model utilizes a generator to complete missing pixels in observation sequences with the help of two
discriminators classifying real and generated observation sequences. We show that our model is
able to complete spatiotemporal data without ground truth supervision when we have a stochastic
model of the occlusion process. Our results for SST data and natural videos show that the recovered
sequences are realistic, especially when the occluded area is highly complex.
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Module Nb. Input
Channel

Nb. Output
Channel Activation

Encoder

1 3D ResNet block Cimg Cbase ReLU*

2 3D ResNet block Cbase 16Cbase ReLU*

3 3D ResNet block 16Cbase 16Cbase ReLU*

Decoder

4 3D ResNet block 16Cbase 8Cbase ReLU*

5 3D ResNet block 8Cbase 4Cbase ReLU*

6 3D ResNet block 4Cbase 2Cbase ReLU*

7 Spatial Self-Attention 2Cbase 2Cbase ReLU*

8 3D ResNet block 2Cbase Cbase ReLU*

9 3D Batch Norm. 2Cbase 2Cbase ReLU
10 3D Conv. Cbase Cimg tanh

(a) Generator structure. Kernel size 3, stride 1.
*Activation inside the module

Module Nb. Input
Channel

Nb. Output
Channel

Spatial
Stride Activation

1 2D/3D Conv. Cimg Cbase 2 LeakyReLU†

2 2D/3D Conv. Cbase 2Cbase 2 LeakyReLU†

3 2D/3D Conv. 2Cbase 4Cbase 2 LeakyReLU†

4 2D/3D Conv. 4Cbase 8Cbase 2 LeakyReLU†

5 2D/3D Conv. 8Cbase 8Cbase 2 LeakyReLU†

6 2D/3D Conv. 8Cbase 8Cbase 2 LeakyReLU†

7 2D/3D Conv. 8Cbase 8Cbase 1 LeakyReLU†

8 2D/3D Conv. 8Cbase 8Cbase 1 —

(b) PatchGAN Discriminator. Kernel size 3.
Stride of temporal dimension is always 1. 2D
convolution for frame discriminator Df , 3D for
sequence one Ds. †Negative slope 0.2.

Table 5: Architecture of networks.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. CoRR, abs/1703.10593, 2017. URL http://
arxiv.org/abs/1703.10593.

A SUPPLEMENTARY INFORMATION ON SST DATASET

GLOBAL Sea Physical Analysis and Forecasting Product is a monitor system providing simulated
but realistic global ocean SST data. In analysis engine, it integrates satellite-derived and in situ data
by assimilation from OSTIA SST system (OSTIA, The Operational Sea Surface Temperature and
Sea Ice Analysis, Donlon et al., 2012). The analysis is based on a sophisticated ocean model, NEMO
ocean engine (Nucleus for European Modeling of the Ocean, Gurvan et al., 2017), a state-of-the-art
modelling framework of ocean related physics. Oceanic output variables of this product are hourly,
daily and monthly means of temperature, salinity, currents, sea surface height, etc.

Our dataset is a subset of global-analysis-forecast-phy-001-024-hourly-t-u-v-
ssh, which includes hourly mean Sea Temperature at sea level height, i.e. SST. The data we
use is a part of the archive of analysis integrating real-world data. Training-and-validation set is
hourly SST in 2018 (2018-01-01 00:30 to 2018-12-31 23:30) on a marine region of 64×64 pixels
(20°-25.25°N, 34.75°-40°W, in North Atlantic Ocean). Test set corresponds to the data of the
first 60 days of 2019 (2019-01-01 00:30 to 2019-03-01 23:30) in another region of the same size
(14.75°-20°S, 14.75°-20°W, in South Atlantic Ocean). To obtain the dataset, check out the product via
http://marine.copernicus.eu/services-portfolio/access-to-products/
?option=com_csw&view=details&product_id=GLOBAL_ANALYSIS_FORECAST_
PHY_001_024, then enter the criteria above for each subset.

B ARCHITECTURE DETAILS

We detail the architecture of networks utilized in our experiments in this section.

Generator Table 5a lists modules for generator G. It is a ResNet-type self-attention network
as in Zhang et al. (2019). It is composed of 3D ResNet blocks as in He et al. (2016) and spatial
self-attention layer from Wang et al. (2018c), which means the attention calculation is limited within
each frame.

Discriminators Table 5b is the architecture of 2D or 3D PatchGAN discriminator as in Isola et al.
(2016). Frame discriminator Df is a 2D convolutional NN. Sequence discriminator Ds uses the same
structure as Df but with 3D convolutions except that the stride is still 1 for temporal dimension, such
that the number of frames is not limited.
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C DETAILS OF VARIANTS OF OUR MODEL

We describe two supervised variants as supervised baselines in Section 4.1 and a recurrent variant of
our model in Section 4.2.

Unpaired Variant, Supervised (Figure 3a) This variant gives our model access to the distribution
pX. Instead of distinguishing between true observations y and fake ones ŷ, Df and Ds will
discriminate between original sequences x and the output of the generator x̂.

Paired Variant, Supervised (Figure 3b) This variant gives our model access not only to the dis-
tribution pX but also the joint distribution pX,Y by adding a sequence-to-sequence L1 reconstruction
loss. We use the duo-discriminator setting as our model to prevent generating blurry frames, which is
essentially the same techniques in Isola et al. (2016) and Wang et al. (2018b).

Recurrent Variant, Unsupervised (Figure 4) In this variant, we simply insert a convolutional
recurrent network cell of any type, ConvGRU in our case (Convolutional Gated Recurrent Unit, Siam
et al., 2016), into Pajot et al. (2019). See Appendix C for the illustration and further description. This
cell models temporal dependency in feature maps after encoding the sequence into the space with
maximum number of channels. Instead of discriminating image by image as in Pajot et al. (2019), we
use in this variant the same duo-discriminator setting as our model. Df distinguishes frame by frame
while Ds discriminates true sequence clip yt

t−L+1 and fake clip ŷt
t−L+1, where L is the maximum

number of consecutive frames.

D ADDITIONAL SAMPLES

We provide more longer samples from with samples from baselines in this section, see figures 5, 6,
7, and 8. We also show extra samples for unsupervised baselines (Figure 10), supervised baselines
(Figure 11) and ablation study (Figure 12).

…
.

…
.

x̂̂x

…
.

xx

GG

DfDf
real frame fake frame

yy

DsDs

real sequence fake sequence

⇠ pY⇠ pY

(a) Unpaired variant of our model, supervised

…
.

…
.

x̂̂x

…
.

xx

GG

DfDf
real frame fake frame

yy

DsDsreal sequence
fake sequence

⇠ pY⇠ pY

L1L1 loss
(b) Paired variant of our model, supervised

Figure 3: Supervised variants, used as baseline in Section 3.3
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Figure 4: Recurrent variant.

Figure 5: Samples from our model for SST. From top to bottom: Cloud at LWP threshold 55, 60, 65,
70, 75, and 80 g/m2.
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Figure 6: Samples from our model for FaceForensics++. From top to bottom: Raindrops, Remove-
Pixel, and Vertical-Moving-Bar.

Figure 7: Samples from our model for KTH. From top to bottom: Raindrops, Remove-Pixel, and
Vertical-Moving-Bar.
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Figure 8: Samples from our model for BAIR. From top to bottom: Raindrops, Remove-Pixel, and
Vertical-Moving-Bar.
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Figure 9: Samples from DINEOF (Beckers & Rixen, 2003) for SST, FaceForensics++, KTH and
BAIR.
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Figure 10: Samples from Newson et al. (2014) for FaceForensics++, KTH, and BAIR. Only with
Vertical-Moving-Bar. Samples for other measurements cannot be calculated in reasonable time.

(a) Unpaired variant

(b) Paired variant

Figure 11: Samples from supervised variants.

(a) Pajot et al. (2019) (left) versus ours (right)

(b) Pajot et al. (2019). Abrupt
inter-frame changes degrade tem-
poral quality.

(c) Recurrent variant. Frames on
the right are better than those on
the left.

(d) Ours.

Figure 12: Samples for ablation study.
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