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ABSTRACT

Consider an imitation learning problem that the imitator and the expert have dif-
ferent dynamics models. Most of existing imitation learning methods fail because
they focus on the imitation of actions. We propose a novel state alignment-based
imitation learning method to train the imitator by following the state sequences
in the expert demonstrations as much as possible. The alignment of states comes
from both local and global perspectives. We combine them into a reinforcement
learning framework by a regularized policy update objective. We show the superi-
ority of our method on standard imitation learning settings as well as the challeng-
ing settings in which the expert and the imitator have different dynamics models.

1 INTRODUCTION

Learning from demonstrations (imitation learning, abbr. as IL) is a basic strategy to train agents for
solving complicated tasks. Imitation learning methods can be generally divided into two categories:
behavior cloning (BC) and inverse reinforcement learning (IRL). Behavior cloning (Ross et al.,
2011b) formulates a supervised learning problem to learn a policy that maps states to actions using
demonstration trajectories. Inverse reinforcement learning (Russell, 1998; Ng et al., 2000) tries to
find a proper reward function that can induce the given demonstration trajectories. GAIL (Ho &
Ermon, 2016) and its variants (Fu et al., 2017a; Qureshi et al., 2018; Xiao et al., 2019) are the
recently proposed IRL-based methods, which uses a GAN-based reward to align the distribution of
state-action pairs between the expert and the imitator.

Although state-of-the-art BC and IRL methods have demonstrated compelling performance in stan-
dard imitation learning settings, e.g. control tasks (Ho & Ermon, 2016; Fu et al., 2017a; Qureshi
et al., 2018; Xiao et al., 2019) and video games (Aytar et al., 2018b), these approaches are developed
based on a strong assumption: the expert and the imitator share the same dynamics model; specif-
ically, they have the same action space, and any feasible state-action pair leads to the same next
state in probability for both agents. The assumption brings severe limitation in practical scenarios:
Imagine that a robot with a low speed limit navigates through a maze by imitating another robot
which moves fast, then, it is impossible for the slow robot to execute the exact actions as the fast
robot. However, the demonstration from the fast robot should still be useful because it shows the
path to go through the maze.

We are interested in the imitation learning problem under a relaxed assumption: Given an imitator
that shares the same state space with the expert but may have a different dynamics model, we train
the imitator to follow the state sequence in expert demonstrations as much as possible. This is a
more general formulation since it poses fewer requirements on the experts and makes demonstration
collection easier. Due to the dynamics mismatch, the imitator becomes more likely to deviate from
the demonstrations compared with the traditional imitation learning setting. Therefore, it is very
important that the imitator should be able to resume to the demonstration trajectory by itself. Note
that neither BC-based methods nor GAIL-based IRL methods have learned to handle dynamics
misalignment and deviation correction.

To address the issues, we propose a novel approach with four main features: 1) State-based. Com-
pared to the majority of literature in imitation learning, our approach is state-based rather than
action-based. Not like BC and IRL that essentially match state-action pairs between the expert and
the imitator, we only match states. An inverse model of the imitator dynamics is learned to recover
the action; 2) Deviation Correction. A state-based β-VAE (Higgins et al., 2017) is learned as the
prior for the next state to visit. Compared with ordinary behavior cloning, this VAE-based next state
predictor can advise the imitator to return to the demonstration trajectory when it deviates. The
robustness benefits from VAE’s latent stochastic sampling; 3) Global State Alignment. While the
VAE can help the agent to correct its trajectory to some extent, the agent may still occasionally enter
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states that are far away from demonstrations, where the VAE has no clue how to correct it. So we
have to add a global constraint to align the states in demonstration and imitation. Inspired by GAIL
that uses reward to align the distribution of state-action pairs, we also formulate an IRL problem
whose maximal cumulative reward is the Wasserstein Distance between states of demonstration and
imitation. Note that we choose not to involve state-action pairs as in GAIL(Ho & Ermon, 2016),
or state-state pairs as in an observation-based GAIL (Ho & Ermon, 2016), because our state-only
formulation imposes weaker constraints than the two above options, thus providing more flexibility
to handle different environment dynamics; 4) Regularized Policy Update. We combine the prior for
next state learned from VAE and the Wasserstein distance-based global constraint from IRL in a uni-
fied framework, by imposing a Kullback-Leibler divergence based regularizer to the policy update
in the Proximal Policy Optimization algorithm.

To empirically justify our ideas, we conduct experiments in two different settings. We first show that
our approach can achieve similar or better results on the standard imitation learning setting, which
assumes the same dynamics between the expert and the imitator. We then evaluate our approach
in the more challenging setting that the dynamics of the expert and the imitator are different. In a
number of control tasks, we either change the physics properties of the imitators or cripple them by
changing their geometries. Existing approaches either fail or can only achieve very low rewards, but
our approach can still exhibit decent performance. Finally, we show that even for imitation across
agents of completely different actuators, it is still possible for the state-alignment based method to
work. Surprisingly, a point mass and an ant in MuJoCo(Todorov et al., 2012) can imitate each other
to navigate in a maze environment.

Our contributions can be summarized as follows:

• Propose to use a state alignment based method in the imitation learning problems where
the expert and the imitator have different dynamics models.

• Propose a local state alignment method based on β-VAE and a global state alignment
method based on Wasserstein distance.

• Combine the local alignment and global alignment components into a reinforcement learn-
ing framework by a regularized policy update objective.

2 RELATED WORK

Imitation learning is widely used in solving complicated tasks where pure reinforcement learning
might suffer from high sample complexity, like robotics control (Le et al., 2017; Ye & Alterovitz,
2017; Pathak et al., 2018), autonomous vehicle (Bojarski et al., 2016; Pomerleau, 1989), and playing
video game (Hester et al., 2018; Pohlen et al., 2018; Aytar et al., 2018a). Behavioral cloning (Bain
& Sommut, 1999) is a straight-forward method to learn a policy in a supervised way. However,
behavioral cloning suffers from the problem of compounding errors as shown by Ross & Bagnell
(2010), and this can be somewhat alleviated by interactive learning, such as DAGGER Ross et al.
(2011b). Another important line in imitation learning is inverse reinforcement learning (Russell,
1998; Ng et al., 2000; Abbeel & Ng, 2004; Ziebart et al., 2008; Fu et al., 2017b), which finds a cost
function under which the expert is uniquely optimal.

Since IRL can be connected to min-max formulations, works like GAIL, SAM (Ho & Ermon, 2016;
Blondé & Kalousis, 2018) utilize this to directly recover policies. Its connection with GANs (Good-
fellow et al., 2014) also lead to f -divergence minimization (Ke et al., 2019; Nowozin et al., 2016)
and Wasserstein distance minimization (Xiao et al., 2019).

Increasing works like (Aytar et al., 2018b; Liu et al., 2018; Peng et al., 2018; Torabi et al., 2018a)
have aspired to learn from observation alone, which requires training a policy through interactions.
Methods like (Torabi et al., 2018b; Edwards et al., 2018) will recover actions from observations, and
both have offline training stage. Our work also aims to learn a robust imitating policy using a few
interactions online.

3 BACKGROUNDS

Variational Autoencoders Kingma & Welling (2013); Rezende et al. (2014) provides a frame-
work to learn both a probabilistic generative model pθ(x|z) as well as an approximated posterior
distribution qφ(z|x). β-VAE is a variant VAE that introduces an adjustable hyperparameter β to the
original objective:

L(θ, φ;x, z, β) = Eqφ(z|x) [log pθ(x|z)]− βDKL (qφ(z|x)‖p(z)) (1)
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Figure 1: Visualization of state alignment

Larger β will penalize the total correlation (Chen et al., 2018) to encourage more disentangled latent
representations, while smaller β often results in sharper and more precise reconstructions.

Wasserstein distance The Wasserstein distance between two density functions p(x) and q(y) with
support on a compact metric space (M,d) has an alternative form due to Kantorovich-Rubenstein
duality (Villani, 2008):

W(p, q) = sup
f∈L1

Ep(x)[f(x)]− Eq(x)[f(x)] (2)

Here, L1 is the set of all 1-Lipschitz functions fromM to R.

4 SAIL: STATE ALIGNMENT BASED IMITATION LEARNING

4.1 OVERVIEW

Our imitation learning method is based on state alignment from both local and global perspectives.
For local alignment, the goal is to follow the transition of the demonstration as much as possible,
and allow the return to the demonstration trajectory whenever the imitation deviates. To achieve
both goals, we use a β-VAE (Higgins et al., 2017) to generate the next state (Figure 1 Left). For
global alignment, we set up an objective to minimize the Wasserstein distance between the states
in the current trajectory and the demonstrations (Figure 1 Right). There has to be a framework to
naturally combine the local alignment and global alignment components. We resort to the reinforce-
ment learning framework by encoding the local alignment as policy prior and encoding the global
alignment as reward over states. Using Proximal Policy Optimization (PPO) as the backbone RL
solver, we derive a regularized policy update. To maximally exploit the knowledge from demonstra-
tions and reduce interactions with the environment, we adopt a pre-training stage to produce a good
initialization based on the same policy prior induced by the local alignment. In the rest parts of this
section, we will introduce all the components of our method in details.

4.2 LOCAL ALIGNMENT BY STATE PREDICTIVE VAE

Figure 2: Using VAE as a state predic-
tive model will be more self-correctable
because of the stochastic sampling mech-
anism. But this won’t happen when we use
VAE to predict actions.

To align the transition of states locally, we need a pre-
dictive model to generate the next state which the agent
should target at. And then we can simply train an in-
verse dynamics model to recover the corresponding ac-
tion, so as to provide a direct supervision for policy.

Instead of using an ordinary network to memorize the
subsequent states, which will suffer from the same is-
sue of compounding errors as behavioral cloning (Ross
& Bagnell, 2010; Ross et al., 2011a), we propose to
use VAE to generate the next state based on the follow-
ing two reasons. First, as shown in (Dai et al., 2018),
VAE is more robust to outliers and regularize itself to
find the support set of a data manifold, so it will gen-
eralize better for unseen data. Second, because of the
latent stochastic sampling, the local neighborhood of a
data point will have almost the same prediction, which
is self-correctable when combined with a precise inverse dynamics model as illustrated in Figure 2.
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Algorithm 1 SAIL: State Alignment based Imitation Learning

Require: Expert trajectories τe ∼ πe, initial policy π, inverse dynamics model g, discriminator φ,
total episode T , memory capacity S

1: if Imitator and Expert have the same dynamics model then
2: Pre-train g using τe and random trials
3: else
4: Pre-train g using random trials
5: end if
6: Pre-train π using the policy prior . Pre-train Policy Mean and VAE
7: Pre-train VAE using τe
8: while episode ≤ T do
9: while |τ | ≤ S do

10: Collect trajectory {(s, a, s′, r, done)} using π
11: Update r using equation 4
12: Add {(s, a, s′, r, done)} to τ
13: end while
14: Train φ using maxφ∈L1

Es∼τe [φ(s)]− Es∼τ [φ(s)] . Calculate Wasserstein Distance
15: Update policy using Equation 5
16: Update inverse dynamics model g
17: end while

We can also use a VAE to generate action based on the current state. But if the agent deviated from
the demonstration trajectory a little bit, this predicted action is not necessarily guide the agent back
to the trajectory, as shown in Figure 2. And in section 5.3.2, we conduct experiments to compare the
state predictive VAE and the action predictive VAE.

Instead of the vanilla VAE, we use β-VAE to balance the KL penalty and prediction error as shown in
Eq. 1. In Section 5, we discuss the effects of the hyper-parameter β in different experiment settings.

4.3 GLOBAL ALIGNMENT BY WASSERSTEIN DISTANCE

Due to the difference of dynamics between the expert and the imitator, the VAE-based local align-
ment cannot fully prevent the imitator from deviating from demonstrations. In such circumstances,
we still need to assess whether the imitator is making progress in learning from the demonstra-
tions. We, therefore, seek to control the difference between the state visitation distribution of the
demonstration and imitator trajectories, which is a global constraint.

Note that using this global constraint alone will not induce policies that follow from the demon-
stration. Consider the simple case of learning an imitator from experts of the same dynamics. The
expert takes cyclic actions. If the expert runs for 100 cycles with a high velocity and the imitator
runs for only 10 cycles with a low velocity within the same time span, their state distribution would
still roughly align. That is why existing work such as GAIL aligns state-action occupancy measure.
However, as shown later, our state-based distribution matching will be combined with the local
alignment component, which will naturally resolve this issue. The advantage of this state-based
distribution matching over state-action pair matching as in GAIL or state-next-state pair matching
in (Torabi et al., 2018a) is that the constraint becomes loosened.

We use a GAIL-like approach to achieve the state distribution matching by introducing a reinforce-
ment learning problem. Our task is to design the reward to train an imitator that matches the state
distribution of the expert.

Before introducing the reward design, we first explain the computation of the Wasserstein distance
between the expert trajectories {τe} and imitator trajectory {τ} using the Kantorovich duality:

W(τe, τ) = sup
φ∈L1

Es∼τe [φ(s)]− Es∼τ [φ(s)] (3)

The discriminator is trained with a gradient penalty term as WGAN-GP introduced in (Gulrajani
et al., 2017)

After the rollout of imitator policy is obtained, the potential φ will be updated by Eq 3. Assume a
transition among an imitation policy rollout of length T is (si, si+1). We assign the reward as:

r(si, si+1) =
1

T
[φ(si+1)− Es∼τeφ(s)] (4)
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We now explain the intuition of the above reward. By solving equation 3, those states of higher
probability in demonstration will have a larger φ value. The reward equation 4 will thus encourage
the imitator to visit such states.

Maximizing the curriculum reward will be equivalent to

J(π) =

T∑
t=1

Est,at∼π[r(st, at)] =
T∑
t=1

Est+1
[φ(st+1)− Es∼τe [φ(s)]]

T
= −W(τe, τ)

In other words, the optimal policy of this MDP best matches the state visitation distributions w.r.t
Wasserstein distance.

4.4 REGULARIZED PPO POLICY UPDATE OBJECTIVE

As mentioned in the second paragraph of Sec 4.3, the global alignment has to be combined with
local alignment. This is achieved by adding a prior to the original clipped PPO objective.

We maximize the following objective function:

J(πθ) = LCLIP (θ)− λDKL

(
πθ(·|st)

∥∥∥ pa) (5)

Here, LCLIP (θ) denotes the clipped surrogate objective used in the original PPO algorithm:

LCLIP (θ) = Êt
[
min

(
πθ(a|s)
πθold(a|s)

Ât, clip

(
πθ(a|s)
πθold(a|s)

, 1− ε, 1 + ε

)
Ât

)]
, (6)

where Ât is an estimator of the advantage function at timestep t. The advantage function is calcu-
lated based on a reward function described in Sec 4.3.

The DKL term in equation (5) serves as a regularizer to keep the policy close to a learned policy
prior pa. This policy prior pa is derived from the state predictive VAE and an inverse dynmaics
model as follows.

Assume the inverse dynamics model is ginv(st, st+1) = a and the β-VAE is f(st) = st+1. We
define the policy prior to be

pa(at|st) ∝ exp

(
−
∥∥∥ginv(st, f(st))− at

σ

∥∥∥2) (7)

where the RHS is a pre-defined policy prior.

4.5 PRE-TRAINING

For the pre-training stage, we pretrain the state predictive VAE, the inverse model, and adjust the
mean value of πθ. Practically, we observe that optimizing σ using DKL defined in Eq 5 will cause
the variance to grow up to a unreasonable large value. Therefore, we fix the variance of policy
and only update the mean to make the policy converge to a meaningful initialization with certain
stochasticity.

5 EXPERIMENTS

We conduct two different kinds of experiments to show the superiority of our method. In Sec 5.1,
we compare our method with behavior cloning, GAIL, and AIRL in control setting where the expert
and the imitator have different dynamics model, e.g., both of them are ant robots but the imitator has
shorter legs. In Sec 5.1, we further evaluate in the traditional imitation learning setting. Finally, in
Sec 5.3, we conduct ablation study to show the contribution of the components.

5.1 IMITATION LEARNING ACROSS AGENTS OF DIFFERENT ACTION DYNAMICS

5.1.1 ACTORS OF MODIFIED PHYSICS AND GEOMETRY PROPERTIES

We create environments using MuJoCo (Todorov et al., 2012) by changing some attributes of ex-
perts, such as the density and geometry of the body. We choose 2 basic environments, Ant and
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Swimmer, and augment them into 6 different environments: Heavy/Light/Disabled Ant/Swimmer.
The Heavy/Light agents have modified density, and the disabled agents have modified head/tail/leg
lengths. The demonstrations are collected from the standard Ant-v2 and Swimmer-v2. More de-
scriptions of the environments and the demonstration collection process can be founded in the Ap-
pendix.

We then evaluate our method on them. Figure 3 demonstrates the superiority of our methods over
all the baselines. Our approach is the most stable in all the 6 environments and shows the leading
performance in each of them. GAIL seems to be the most sensitive to dynamics difference. AIRL,
which is designed to solve imitation learning for actors of different dynamics, can perform on par
with our method in two swimmer-based environments (DisabledSwimmer and HeavySwimmer) that
have relatively lower dimensional action space (2D for swimmer versus 8D for ants). Interestingly,
the stability and performance of vanilla behavior cloning are quite reasonable in 4 of the environ-
ments, although it failed to move about in the DisabledAnt and HeavyAnt environments.1
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Figure 3: Comparison with BC, GAIL and AIRL when dynamics are different from experts.

5.1.2 ACTORS OF HETEROGENEOUS ACTION DYNAMICS

We consider an extremely challenging setting that the imitator and demonstrator are functionally
different. One typical example of expert/imitator pair in practice would be a human and a humanoid
robot. We consider a much simplified version but with similar nature – a Point and an Ant in
MuJuCo. In this task, even the state space cannot be exactly matched, since some of the dimensions
of the states describe actor-specific information, such as leg velocity. Nonetheless, there are still
some shared dimensions across the state space of the imitator and the actor, e.g., the location of the
center of mass, and the demonstration should still teach the imitator in these dimensions.

(a) Original Ant (b) Disabled Ant (c) PointMaze (d) AntMaze

Figure 4: Imitation Learning of Actors with Heterogeneous Action Dynamics.

1For LightSwimmer 3(e), AIRL meets MuJoCo numerical exception for several trials.
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The first task is that the Ant should reach the other side of the maze from several successful demon-
strations of a Point robot. As shown in Figure 4(c) and Figure 4(d), the maze structure for the ant
and point mass is exactly the same.

We use the similar setting to other hierarchical reinforcement learning methods such as HIRO and
Near-Optimal RL (Nachum et al., 2018a;b). The “goal space” is the x− y position, and the first two
dimensions of the state space are used to verify whether the agent has reached the goal. To solve
this problem, we first pretrain an VAE on the demonstrations, and use this VAE to propose the next
“subgoal” for the Ant. The inverse model will take state and goal as input, and generate an action.

Table 1: Compare behavior cloning to variational behavior cloning

β
Environments

HalfCheetah-50 Hopper-50
0.1 230.52 ± 13.26 203.87 ± 14.39

0.01 1320.04 ± 15.43 438.10 ± 20.43
0.001 3306.91 ± 12.51 3303.72 ± 10.46
None 4813.20 ± 1949.26 3525.87 ± 6.74

Our performance is shown in Figure 5(c). After 1M training steps, the agent has success rate of 0.8
to reach the other side of the maze.

5.2 ACTORS OF THE SAME DYNAMICS (STANDARD IMITATION LEARNING)

We also evaluate our algorithm on 6 non-trivial control tasks in MuJuCo: Swimmer, Hopper, Walker,
Ant, HalfCheetach, and Humanoid. We first collect demonstration trajectories with Soft Actor-
Critic, which can learn policies that achieve high scores in most of these environments2. For com-
parison, we evaluate our method against 3 baselines: behavior cloning, GAIL, and AIRL3. Also,
to create even stronger baselines for the cumulative reward and imitator run-time sample complex-
ity, we initialize GAIL with behavior cloning, which would obtain higher scores in Swimmer and
Walker. Lastly, to evaluate how much each algorithm depends on the amount of demonstrations, we
sampled demonstration trajectories of ten and fifty episodes.

Table 2 depicts representative results in Hopper and HalfCheetah4. Our method after pretraining and
before online update can perform similarly to behavior cloning. After online update, our method can
obtain higher scores. However, even a strong initialization by behavior cloning cannot ensure GAIL
to learn a good policy.

Table 2: Performance on Hopper-v2 and HalfCheetah-v2

Hopper-v2 HalfCheetah-v2
# Demo 10 50 10 50
Expert 3566 ± 1.24 12294.22 ± 273.59

BC 1318.76 ± 804.36 3525.87 ± 6.74 441.37 ± 251.31 3613.20 ± 1949.26
GAIL 3372.66 ± 130.75 3363.97 ± 262.77 474.42 ± 389.30 -175.83 ± 26.76

BC-GAIL 3132.11 ± 520.65 3130.82 ± 554.54 578.85 ± 934.34 1097.51 ± 1173.93
AIRL 3.07 ± 0.02 3.31 ± 0.02 -146.46 ± 23.57 755.46 ± 10.92

Our init 3412.58 ± 45.97 3601.16 ± 30.14 1064.44 ± 227.32 7102.29 ± 910.54
Our final 3539.56 ± 13.36 3614.19 ± 15.74 1616.34 ± 180.76 8817.32 ± 860.55

5.3 ABLATION STUDY

5.3.1 COEFFICIENT β IN β-VAE

β-VAE introduces an additional parameter to the original VAE. It controls the variance of the ran-
domly sampled latent variable sampling, which subsequently affects the reconstruction quality and
robustness. Theoretically, a smaller β leads to better state prediction quality, with the cost of losing
the deviation correction ability (Dai et al., 2018).

We evaluate VAE in settings of both the imitator has the same dynamics and has different dynam-
ics. We select HalfCheetah-v2 and HeavyAnt as an example. For HalfCheetah-v2, we pretrain the
inverse dynamics and VAE using given demonstrations so that the initial performance will tell the

2We collect near-optimal demonstration on Swimmer using TRPO due to the limited performance of SAC.
3AIRL and EAIRL have similar performance, and we only compare to AIRL.
4Results for other environments can be founded in the Appendix
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quality of the VAE’s prediction. For DisabledAnt, we pretrain the dynamics with random trials,
which results in forward/inverse dynamics estimation of less accuracy. In this case, we examine
both its initialized performance and final performance. The results are shown in Table 3. We find
out that for β in [0.01, 0.1], the performance is better. Specifically, when the imitator is different
from the expert, a smaller β will result in poor performance as it overfits the demonstration data.

We also compare our method with an ordinary MLP trained by MSE loss. We find out that VAE
outperforms MLP in all settings. Note that the MLP-based approach is very similar to the state-based
behavior cloning work of (Torabi et al., 2018b).

5.3.2 ACTION PREDICTIVE β-VAE

In Figure 2, we mentioned that a VAE to predict the next action is less favorable. To justify the
claim, we compare a VAE-based BC with a vanilla BC that both predict actions, as shown in Table 1.
Experiments show that VAE-BC is even outperformed by a vanilla BC, especially when β is larger
than 0.001, let alone our state-predictive BC.

Table 3: Analyze the role of VAE coefficient. The “None” item means replacing VAE with an
ordinary network with linear layers.

β
Environments

HalfCheetah-50 HalfCheetah-20 HeavyAnt-Initial HeavyAnt-Final
0.2 2007.86 1289.21 258.91 282.13

0.15 2653.04 1151.93 1149.65 1502.68
0.1 7102.29 1797.44 1219.34 5208.45

0.05 5933.28 2215.71 987.72 4850.62
0.01 5893.17 1982.62 740.54 1921.26
0.005 4415.04 1369.57 320.54 399.31
None 4759.69 1123.79 359.15 -62.13

5.3.3 EFFECT OF WASSERSTEIN DISTANCE AND KL REGULARIZATION
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Figure 5: (a), (b) show the effects of Wasserstein distance and KL regularization on HalfCheetah-v2
and Humanoid-v2 given 20 demonstration trajectories. And (c) presents the result on Antmaze.

In our policy update process, we use Wasserstein distance with KL regularization to update the
policy. To analyze their effects on the performance, we use HalfCheetah-v2 and Humanoid-v2 with
20 expert trajectories. For each environment, they use the same pretrained inverse model and VAE,
thus they have the same behavior after pretraining.

As shown in Figure 5(a),(b), Wasserstein distance combined with KL regularization performs the
best. If no Wasserstein distance is provided, due to the existence of policy exploration, although
the agent may deviate from the expert trajectories, the KL regularizer can still help to restrict the
policy. However, if only the Wasserstein distance is provided, PPO will explore more unfamiliar
states, leading to the lowest performance. From Figure 5(a), we can see that HalfCheetah can finally
learn to return to the right trajectory with the help of the Wasserstein distance.

6 CONCLUSION

We proposed SAIL, a flexible and practical imitation learning algorithms that use state alignment
from both local and global perspective. We demonstrate the superiority of our method using MuJoCo
environments, especially when the action dynamics are different from the demonstrations.
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A LEARNING ACROSS DIFFERENT ENVIRONMENTS

PointMaze & AntMaze As shown in Figure 4, a point mass or an ant is put in a 24 × 24 U-maze.
The task is to make the agent reach the other side of U-maze with the demonstration from the point
mass. The ant is trained to reach a random goal in the maze from a random location, and should
reach the other side of the maze. The state space of ant is 30-dim, which contains the positions and
velocities.

HeavyAnt Two times of original Ant’s density.

LightAnt One tenth of original Ant’s density.

DisabledAnt Two front legs are 3 quarters of original Ant’s legs.

HeavySwimmer 2.5 times of original Swimmer’s density.

LightSwimmer One twentieth of original Swimmer’s density.

DisabledSwimmer Make the last joint 1.2 times longer and the first joint 0.7 times of the original
length

The exact results of these environments are listed in Table 4, 5. All the statistics are calculated from
20 trails.

Table 4: Performance on modifeid Swimmer

DisabledSwimmer LightSwimmer HeavySwimmer
BC 249.09 ± 1.53 277.99 ± 3.41 255.95 ± 2.5

GAIL 228.46 ± 2.02 -4.11 ± 0.51 254.91 ± 1.35
AIRL 283.42 ± 3.69 67.58 ± 25.09 301.27 ± 5.21

SAIL(Ours) 287.71 ± 2.31 342.61 ± 6.14 286.4 ± 3.2

Table 5: Performance on modified Ant

DisabledAnt-v0 HeavyAnt-v0 LightAnt-v0
BC 1042.45 ± 75.13 550.6 ± 77.62 4936.59 ± 53.42

GAIL -1033.54 ± 254.36 -1089.34 ± 174.13 -971.74 ± 123.14
AIRL -3252.69 ± 153.47 -62.02 ± 5.33 -626.44 ± 104.31

SAIL(Ours) 3305.71 ± 67.21 5608.47 ± 57.67 4335.46 ± 82.34

B IMITATION BENCHMARK EXPERIMENTS SETTINGS AND RESULTS

We use six MuJoCo (Todorov et al., 2012) control tasks. The name and version of the environments
are listed in Table 6, which also list the state and action dimension of the tasks with expert perfor-
mance and reward threshold to indicate the minimum score to solve the task. All the experts are
trained by using SAC (Haarnoja et al., 2018) except Swimmer-v2 where TRPO (Schulman et al.,
2015) get higher performance.

Table 6: Performance on benchmark control tasks

Environment State Dim Action Dim Reward threshold Expert Performance
Swimmer-v2 8 2 360 332
Hopper-v2 11 3 3800 3566

Walker2d-v2 17 6 - 4924
Ant-v2 111 8 6000 6157

HalfCheetah-v2 17 6 4800 12294
Humanoid-v2 376 17 1000 5187

The exact performance of all methods are list in Table 7, 8, 9, 10, 11, 12. We compare GAIL(Ho &
Ermon, 2016), behavior cloning, GAIL with behavior cloning initilization and AIRL to our method
containing. Means and standard deviations are calculated from 20 trajectories after the agents con-
verge and the number total interactions with environments is less than one million environment
steps.
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Table 7: Performance on Swimmer-v2 with different trajectories

Swimmer-v2
#Demo 5 10 20 50
Expert 332.88 ± 1.24

BC 328.85 ± 2.26 331.17 ± 2.4 332.17 ± 2.4 330.65 ± 2.42
GAIL 304.64 ± 3.16 271.59 ± 11.77 56.16 ± 5.99 246.73 ± 5.76

BC-GAIL 313.80 ± 3.42 326.58 ± 7.87 294.93 ± 12.21 315.68 ± 9.99
AIRL 332.11 ± 2.57 338.43 ± 3.65 335.67 ± 2.72 340.08 ± 2.70

Our init 332.36 ± 3.62 335.78 ± 0.34 336.23 ± 2.53 334.03 ± 2.11
Our final 336.22 ± 3.23 339 ± 3.21 339 ± 1.87 336.31 ± 3.20

Table 8: Performance on Hopper-v2 with different trajectories

Hopper-v2
#Demo 5 10 20 50
Expert 3566 ± 1.24

BC 1471.40 ± 637.25 1318.76 ± 804.36 1282.46 ± 772.24 3525.87 ± 6.74
GAIL 3300.32 ± 331.61 3372.66 ± 130.75 3201.97 ± 295.27 3363.97 ± 262.77

BC-GAIL 3122.23 ± 358.65 3132.11 ± 520.65 3111.42 ± 414.28 3130.82 ± 554.54
AIRL 4.12 ± 0.01 3.07 ± 0.02 4.11 ± 0.01 3.31 ± 0.02

Our init 2322.49 ± 30.93 3412.58 ± 45.97 3314.03 ± 31.32 3601.16 ± 30.14
Our final 3092.26 ± 67.72 3539.56 ± 13.36 3516.81 ± 28.98 3614.19 ± 15.74

Table 9: Performance on Walker2d-v2 with different trajectories

Walker2d-v2
#Demo 5 10 20 50
Expert 5070.97 ± 209.19

BC 1617.34 ± 693.63 4425.50 ± 930.62 4689.30 372.33 4796.24 490.05
GAIL 1307.21 ± 388.55 692.16 ± 145.34 1991.58 446.66 751.21 150.18

BC-GAIL 3454.91 ± 792.40 2094.68 ± 1425.05 3482.31 828.21 2896.50 828.18
AIRL -7.13 ± 0.11 -7.39 ± 0.09 -3.74 ± 0.13 -4.64 ± 0.09

Our init 1859.10 ± 72.44 2038.90 ± 26.78 4509.82 ± 147.65 4757.58 ± 88.45
Our final 2681.20 ± 53.67 3764.14 ± 47.01 4778.82 ± 76.34 4950.73 ± 36.66

Table 10: Performance on Ant-v2 with different trajectories

Ant-v2
#Demo 5 10 20 50
Expert 6190.90 ± 254.18

BC 3958.20 ± 661.28 3948.88 ± 753.41 5424.01 ± 473.05 5852.79 ± 572.97
GAIL 340.02 ± 59.02 335.25 ± 89.19 314.35 ± 52.13 284.18 ± 32.40

BC-GAIL -1081.30 ± 673.65 -1177.27 ± 618.67 -13618.45 ± 4237.79 -1166.16 ± 1246.79
AIRL -839.32 ± -301.54 -386.43 ± 156.98 -586.07 ± 145.43 -393.90 ± 145.13

Our init 1150.82 ± 20.87 3015.43 ± 30.70 5200.58 ± 87.74 5849.88 ± 89.56
Our final 1693.59 ± 35.74 4983.34 ± 25.99 5980.37 ± 42.16 5988.65 ± 47.03

Table 11: Performance on HalfCheetah-v2 with different trajectories

HalfCheetah-v2
#Demo 5 10 20 50
Expert 12294.22 ± 208.41

BC 225.42 ± 147.16 441.37 ± 251.31 2782.76 ± 959.67 4813.20 ± 1949.26
GAIL -84.92 ± 43.29 74.42 ± 389.30 -116.70 ± 34.14 -175.83 ± 26.75

BC-GAIL 1362.59 ± 1255.57 578.85 ± 934.34 3744.32 ± 1471.90 1597.50 ± 1173.93
AIRL 782.36 ± 48.98 -146.46 ± 23.57 1437.25 ± 25.45 755.46 ± 10.92

Our init 267.71 ± 90.38 1064.44 ± 227.32 3200.80 ± 520.04 7102.74 ± 91.58
Our final 513.66 ± 15.31 1616.34 ± 180.76 6059.27 ± 344.41 8817.32 ± 860.55
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Table 12: Performance on Humanoid-v2 with different trajectories

Humanoid-v2
#Demo 5 10 20 50
Expert 5286.21 ± 145.98

BC 1521.55± 272.14 3491.07± 518.64 4686.05 ±355.74 4746.88 ±605.61
GAIL 485.92± 27.59 486.44 ±27.18 477.15± 22.07 481.14± 24.37

BC-GAIL 363.68 ±44.44 410.03 ±33.07 487.99± 30.77 464.91 ±33.21
AIRL 79.72 ± 4.27 87.15 ± 5.01 -1293.86 ± 10.70 84.84 ± 6.46

Our init 452.31 ± 19.12 1517.63 ± 11.45 4610.25 ± 275.86 4776.83 ± 132.46
Our final 1225.58 ± 21.88 2190.43 ± 28.18 4716.91 ±68.29 4790.07 ± 70.01

C HYPER-PARAMETER AND NETWORK ARCHITECTURE

When we pretrain the policy network with our methods, we choose β = 0.05 in β-VAE. We use
Adam with learning rate 3e-4 as the basic optimization algorithms for all the experiments. The
policy network and value network used in the algorithms all use a three-layer relu network with
hidden size 128. All the algorithms are trained by using about one million environment interactions.
All the statistics are calculated with twenty trails.
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