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ABSTRACT

Deep learning models have achieved huge success in numerous fields, such as
computer vision and natural language processing. However, unlike such fields,
it is hard to apply traditional deep learning models on the graph data due to the
‘node-orderless’ property. Normally, adjacency matrices will cast an artificial and
random node-order on the graphs, which renders the performance of deep mod-
els on graph classification tasks extremely erratic, and the representations learned
by such models lack clear interpretability. To eliminate the unnecessary node-
order constraint, we propose a novel model named Isomorphic Neural Network
(ISONN), which learns the graph representation by extracting its isomorphic fea-
tures via the graph matching between input graph and templates. ISONN has two
main components: graph isomorphic feature extraction component and classifi-
cation component. The graph isomorphic feature extraction component utilizes a
set of subgraph templates as the kernel variables to learn the possible subgraph
patterns existing in the input graph and then computes the isomorphic features.
A set of permutation matrices is used in the component to break the node-order
brought by the matrix representation. Three fully-connected layers are used as
the classification component in ISONN. Extensive experiments are conducted on
benchmark datasets, the experimental results can demonstrate the effectiveness of
ISONN, especially compared with both classic and state-of-the-art graph classifi-
cation methods.

1 INTRODUCTION

The graph structure is attracting increasing interests because of its great representation power on
various types of data. Researchers have done many analyses based on different types of graphs,
such as social networks, brain networks and biological networks. In this paper, we will focus on
the binary graph classification problem, which has extensive applications in the real world. For
example, one may wish to identify the social community categories according to the users’ social
interactions (Gao et al.|(2017)), distinguish the brain states of patients via their brain networks Wang
et al. (2017), and classify the functions of proteins in a biological interaction network [Hamilton et al.
(2017).

To address the graph classification task, many approaches have been proposed. One way to estimate
the usefulness of subgraph features is feature evaluation criteria based on both labeled and unlabeled
graphs|Kong & Yu|(2010). Some other works also proposed to design a pattern exploration approach
based on pattern co-occurrence and build the classification model Jin et al.| (2009) or develop a
boosting algorithm Wu et al.| (2014). However, such works based on BFS or DFS cannot avoid
computing a large quantity of possible subgraphs, which causes high computational complexity
though the explicit subgraphs are maintained. Recently, deep learning models are also widely used
to solve the graph-oriented problems. Although some deep models like MPNN |Gilmer et al.|(2017)
and GCN [Kipf & Welling| (2016)) learn implicit structural features, the explict structural information
cannot be maintained for further research. Besides, most existing works on graph classification use
the aggregation of the node features in graphs as the graph representation|Xu et al.| (2018); |Hamilton
et al.| (2017), but simply doing aggregation on the whole graph cannot capture the substructure
precisely. While there are other models can capture the subgraphs, they often needs more complex
computation and mechanism |Wang et al.|(2017); Narayanan et al.[(2017).

However, we should notice that when we deal with the graph-structured data, different node-orders
will result in very different adjacency matrix representations for most existing deep models which
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take the adjacency matrices as input if there is no other information on graph. Therefore, compared
with the original graph, matrix naturally poses a redundant constraint on the graph node-order. Such
a node-order is usually unnecessary and manually defined. The different graph matrix represen-
tations brought by the node-order differences may render the learning performance of the existing
models to be extremely erratic and not robust. Formally, we summarize the encountered challenges
in the graph classification problem as follows:

o Explicit useful subgraph extraction. The existing works have proposed many discrimina-
tive models to discover useful subgraphs for graph classification, and most of them require
manual efforts. Nevertheless, how to select the contributing subgraphs automatically with-
out any additional manual involvement is a challenging problem.

e Graph representation learning. Representing graphs in the vector space is an important
task since it facilitates the storage, parallelism and the usage of machine learning models
for the graph data. Extensive works have been done on node representations |Grover &
Leskovec|(2016);|Lin et al.|(2015)); Lai et al.|(2017); [Hamilton et al.|(2017), whereas learn-
ing the representation of the whole graph with clear interpretability is still an open problem
requiring more explorations.

e Node-order elimination. Nodes in graphs are orderless, whereas the matrix representa-
tions of graphs cast an unnecessary order on the nodes, which also renders the features
extracted with the existing learning models, e.g., CNN, to be useless for the graphs. Thus,
how to break such a node-order constraint is challenging.

o Effecient matching for large subgraphs. To break the node-order, we will try all possible
node permutations to find the best permutation for a subgraph. Clearly, trying all possible
permutaions is a combinatorial explosion problem, which is extremly time-comsuming for
finding large subgraph templates. The problem shows that how to accelerate the proposed
model for large subgraphs also needs to be solved.

In this paper, we propose a novel model, namely Isomorphic Neural Network (ISONN) and its vari-
ants, to address the aforementioned challenges in the graph representation learning and classification
problem. ISONN is composed of two components: the graph isomorphic feature extraction compo-
nent and the classification component, aiming at learning isomorphic features and classifying graph
instances, respectively. In the graph isomorphic feature extraction component, ISONN automati-
cally learns a group of subgraph templates of useful patterns from the input graph. ISONN makes
use of a set of permutation matrices, which act as the node isomorphism mappings between the
templates and the input graph. With the potential isomorphic features learned by all the permutation
matrices and the templates, [ISONN adopts one min-pooling layer to find the best node permutation
for each template and one softmax layer to normalize and fuse all subgraph features learned by dif-
ferent kernels, respectively. Such features learned by different kernels will be fused together and fed
as the input for the classification component. ISONN further adopts three fully-connected layers as
the classification component to project the graph instances to their labels. Moreover, to accelerate
the proposed model when dealing with large subgraphs, we also propose two variants of ISONN to
gurantee the efficiency.

2 RELATED WORK

Our work relates to subgraph mining, graph neural networks, network embedding as well as graph
classification. We will discuss them briefly in the followings.

Subgraph Mining: Mining subgraph features from graph data has been studied for many years. The
aim is to extract useful subgraph features from a set of graphs by adopting some specific criteria. One
classic unsupervised method (i.e., without label information) is gSpan (Yan & Hanl [2002), which
builds a lexicographic order among graphs and map each graph to a unique minimum DFS code as
its canonical label. GRAMI (Elseidy et al., 2014) only stores templates of frequent subgraphs and
treat the frequency evaluation as a constraint satisfaction problem to find the minimal set. For the
supervised model (i.e., with label information), CORK utilizes labels to guide the feature selection,
where the features are generated by gSpan (Thoma et al., [2009). Due to the mature development of
the sub-graph mining field, subgraph mining methods have also been adopted in life sciences (Mrzic
et al.| 2018). Moreover, several parallel computing based methods (Qiao et al., 2018}, [Hill et al.,
2012; |Lin et al., [2014) have proposed to reduce the time cost.
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Graph Neural Network and Network Embedding: Graph Neural Networks (Monti et al., 2017;
Atwood & Towsleyl 2016; [Masci et al., 2015; Kipf & Welling, 20165 Battaglia et al., |2018)) have
been studied in recent years because of the prosperity of deep learning. Traditional deep models
cannot be directly applied to graphs due to the special data structure. The general graph neural
model MoNet (Monti et al., 2017) employs CNN architectures on non-Euclidean domains such as
graphs and manifold. The GCN proposed in (Kipf & Welling| [2016) utilizes the normalized adja-
cency matrix to learn the node features for node classification; (Bai et al.,|2018)) proposes the multi-
scale convolutional model for pairwise graph similarity with a set matching based graph similarity
computation. However, these existing works based on graph neural networks all fail to investigate
the node-orderless property of the graph data and to maintain the explicit structural information.
Another important topic related to this paper is network embedding (Bordes et al., [2013; |Lin et al.,
20155 |Lai et al., 2017; |Abu-El-Haija et al., 2018} |Hamilton et al., |2017), which aims at learning the
feature representation of each individual node in a network based on either the network structure
or attribute information. Distinct from these network embedding works, the graph representation
learning problem studied in this paper treats each graph as an individual instance and focuses on
learning the representation of the whole graph instead.

Graph Classification: Graph classification is an important problem with many practical appli-
cations. Data like social networks, chemical compounds, brain networks can be represented as
graphs naturally and they can have applications such as community detection (Zhang et al., |2018),
anti-cancer activity identification (Kong et al., 2013} [Kong & Yu, 2010) and Alzheimer’s patients
diagnosis (Tong et al.l [2017; |2015) respectively. Traditionally, researchers mine the subgraphs by
DFS or BFS (Saigo et al.l 2009} [Kong et al., 2013)), and use them as the features. With the rapid
development of deep learning (DL), many works are done based on DL methods. GAM builds
the model by RNN with self-attention mechanism (Lee et al., 2018). DCNN extend CNN to gen-
eral graph-structured data by introducing a ‘diffusion-convolution’ operation (Atwood & Towsley),
2016).

3 TERMINOLOGY AND PROBLEM DEFINITION

In this section, we will define the notations and the terminologies used in this paper and give the
formulation for the graph classification problem.

3.1 NOTATIONS

In the following sections, we will use lower case letters like  to denote scalars, lower case bold
letters (e.g. x) to represent vectors, bold-face capital letters (e.g. X) to show the matrices. For
tensors or sets, capital calligraphic letters are used to denote them. We use x; to represent the i-th
element in x. Given a matrix X, we use X(i, j) to express the element in ¢-th row and j-th column.
For i-th row vector and j-th column vector, we use X(7,:) and X(:, ) to denote respectively.
Moreover, notations x' and X' denote the transpose of vector x and matrix X respectively.

Besides, the F'-norm of matrix X can be represented as || X[, = (3=, ; [Xi ; 12)z.

3.2 PROBLEM FORMULATION

Many real-world inter-connected data can be formally represented as the graph-structured data.

DEFINITION 1 (Graph): Formally, a graph can be represented as G = (V,E), where the sets V
and &£ denote the nodes and links involved in the graph, respectively.

Some representative examples include the human brain graphs (where the nodes denote brain regions
and links represent the correlations among these regions), biological molecule graphs (with the
nodes represent the atoms and links denote the atomic bonds), as well as the geographical graphs
in the offline world (where the nodes denote the communities and the links represent the commute
routes among communities). Meanwhile, many concrete real-world application problems, e.g., brain
graph based patient disease diagnosis, molecule function classification and community vibrancy
prediction can also be formulated as the graph classification problems.

Problem Definition: Formally, given a graph set G = {G1,Ga, - - , G, } with a small number of
labeled graph instances, the graph classification problem aims at learning a mapping, i.e., f : G —
Y, to project each graph instance into a pre-defined label space Y = {+1, —1}.
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Figure 1: IsoNN Framework Architecture. (The left subplot provides the outline of the proposed
framework, including the graph isomorphic feature extraction component and the classification
component respectively. Meanwhile, the right subplot illustrates the detailed architecture of the
proposed framework, where the graph isomorphic features are extracted with the graph isomorphic
layer, min-pooling layer and softmax layer, and the graphs are further classified with three fully-
connected layers.)
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In this paper, we will take the graph binary classification as an example to illustrate the problem
setting for ISONN. A simple extension of the model can be applied to handle more complicated
learning scenarios with multi-class or multi-label as well.

4 PROPOSED METHOD

The overall architecture of ISONN is shown in Figure [Ii The ISONN framework includes two
main components: graph isomorphic feature extraction component and classification component.
The graph isomorphic feature extraction component includes a graph isomorphic layer, a min-
pooling layer as well as a softmax layer and the classification component is composed by three
fully-connected layers. They will be discussed in detail in the following subsections.

4.1 GRAPH ISOMORPHIC FEATURE EXTRACTION COMPONENT

Graph isomorphic feature extraction component targets at learning the graph features. To achieve
that objective, [ISONN adopts an automatic feature extraction strategy for graph representation learn-
ing. In ISONN, one graph isomorphic feature extraction component involves three layers: the graph
isomorphic layer, the min-pooling layer and the softmax layer. In addition, we can further con-
struct a deep graph isomorphic neural network by stacking multiple isomorphic feature extraction
components on top of each other.

4.1.1 GRAPH ISOMORPHIC LAYER

Graph isomorphic layer is the first effective layer in deep learning that handles the node-order re-
striction in graph representations. Assume we have a graph G = {V, £}, and its adjacency matrix
to be A € RIVIXIVI In order to find the existence of specific subgraph patterns in the input graph,
ISONN matches the input graph with a set of subgraph templates. Each template is denoted as a
kernel variable K; € R¥** /i € {1,2,---  c}. Here, k denotes the node number in subgraphs and
c is the channel number (i.e., total template count). Meanwhile, to match one template with regions
in the input graph (i.e., sub-matrices in A), we use a set of permutation matrices, which map both
rows and columns of the kernel matrix to the subgraphs effectively. The permutation matrix can be
represented as P € {0, 1}*** that shares the same dimension with the kernel matrix. Therefore,
given a kernel matrix K; and a sub-matrix M, ;) € R*** in A (i.e., a region in the input graph G

and s,t € {1,2,--- ,(]V| — k + 1)} denotes a starting index pair in A), there may exist k! different

such permutation matrices. The optimal should be the matrix P* that minimizes the following term.
2

P* = in|[PK;PT — M, , 1

arg min | 0)llp Q)

where P = {P1,Ps,--- P} covers all the potential permutation matrices. Formally, the iso-

morphic feature extracted based on the kernel K; for the regional sub-matrix M, ;) in A can be

represented as
o = [PK(P)T = M [ = min{|[PKPT — M, || n per

o 2

= min(z; (5,1 (1 : k!)),
where vector z;(,;) € RM contains entry z; (s (j) = ||P;K/P] — M(S’t)Hiﬂ Vi€
{1,2,--- , k!} denoting the isomorphic features computed by the j-th permutation matrix P; € P.
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As indicated by the Figure [T} ISONN computes the final isomorphic features for the kernel K; via
two steps: (1) computing all the potential isomorphic features via different permutation matrices
with the graph isomorphic layer, and (2) identifying and fusing the optimal features with the min-
pooling layer and softmax layer to be introduced as follows. By shifting one kernel matrix K;
on regional sub-matrices, ISONN extracts the isomorphic features on the matrix A, which can be
denoted as a 3-way tensor Z; € RFX(IVIZk+DX(VI=k+1) ‘where Z;(1 : kI, 5,t) = 2; (5.4 (1 : k).
In a similar way, we can also compute the isomorphic feature tensors based on the other kernels,
which can be denoted as Z;, Z,, - - -, Z, respectively.

4.1.2 MIN-POOLING LAYER

Given the tensor Z; computed by K; in the graph isomorphic layer, ISONN will identify the optimal
permutation matrices via the min-pooling layer. Formally, we can represent results of the optimal
permutation selection with Z; as matrix Z;:

Z;(s,t) = min{Z;(1: k!, s,t)}. 3)

The min-pooling layer learns the optimal matrix Z; for kernel K; along the first dimension (i.e., the
dimension indexed by different permutation matrices), which can effectively identify the isomorphic
features created by the optimal permutation matrices. For the remaining kernel matrices, we can also
achieve their corresponding graph isomorphic feature matrices as Z1, Zo, - - -, Z. respectively.

4.1.3 SOFTMAX LAYER

Based on the above descriptions, a perfect matching between the subgraph templates with the input
graph will lead to a very small isomorphic feature, e.g., a value approaching to 0. If we feed the small
features into the classification component, the useful information will vanish and the relative useless
information (i.e., features learned by the subgraphs dismatch the kernels) dominates the learning
feature vector in the end. Meanwhile, the feature values computed in Equation can also be in
different scales for different kernels. To effectively normalize these features, we propose to apply the
softmax function to matrices Z, Zo, - - -, Z. across all ¢ kernels. Compared with the raw features,
e.g., Z;, softmax as a non-linear mapping can also effectively highlight the useful features in Z; by
rescaling them to relatively larger values especially compared with the useless ones. Formally, we
can represent the fused graph isomorphic features after rescaling by all the kernels as a 3-way tensor
Q, where slices along first dimension can be denoted as:

Q(i,:,:) = Z; , where Z; = softmax(—%;), Yie {1,...,c}. 4)
4.2 CLASSIFICATION COMPONENT

After the isomorphic feature tensor Q is obtained, we feed it into a classification component. Let q
denote the flattened vector representation of feature tensor Q, and we pass it to three fully-connected
layers to get the predicted label vector y. For the graph binary classification, suppose we have the
ground truth y = (y{,v5) and the predicted label vector y9 = (97, 93) for the sample g from
the training batch set B. We use cross-entropy as the loss function in ISONN. Formally, the fully-
connected (FC) layers and the objective function can be represented as follows respectively:

d, = O'(qu + bl), 2
FC Layers: d; = o(Wad; +bs), Objective Function: £ = — Z Z y]g- log yg, (5)
y = 0(Wsds +b3), geB j=1

where W, and b; represent the weights and biases in i-th layer respectively for i € {1,2,3}. The
o denotes the adopted the relu activation function. To train the proposed model, we adopt the back
propagation algorithm to learn both the subgraph templates and the other involved variables.

4.3 MORE DISCUSSIONS ON GRAPH ISOMORPHIC FEATURE EXTRACTION IN ISONN

Before introducing the empirical experiments to test the effectiveness of ISONN, we would like to
provide more discussions about the computation time complexity of the graph isomorphic feature
extraction component involved in ISONN. Formally, given the input graph G with n = |V| nodes,
by shifting the kernel variables (of size k x k) among the dimensions of the corresponding graph
adjacency matrix, we will be able to obtain (n—k+1)? regional sub-matrices (or O(n?) regional sub-
matrices for notation simplicity). Here, we assume ISONN has only one isomorphic layer involving
c different kernels. In the forward propagation, the introduced time cost in computing the graph
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Figure 2: An [llustration of Deep Architecture of ISONN.

isomorphic features can be denoted as O(ck!k3n?), where term k! is introduced in enumerating all
the potential permutation matrices and k3 corresponds to the matrix multiplication time cost.

According to the notation, we observe that n is fixed for the input graph. Once the kernel channel
number c is decided, the time cost notation will be mainly dominated by k. To lower down the
above time complexity notation, in this part, we propose to further improve ISONN from two per-
spectives: (1) compute the optimal permutation matrix in a faster manner, and (2) use deeper model
architectures with small-sized kernels.

4.3.1 FAST PERMUTATION MATRIX COMPUTATION
Instead of enumerating all the permutation matrices in the graph isomorphic feature extraction as
indicated by Equations2}{3] here we introduce a fast way to compute the optimal permutation matrix

for the provided kernel variable matrix, e.g., K;, and input regional sub-matrix, M(S,t), directly
according to the following theorem.

THEOREM 1 Formally, let the kernel variable K; and the input regional sub-matrix M, 4y be kx k
real symmetric matrices with k distinct eigenvalues cvy > ag > -+ > ag and 1 > B3 > -+ > by,
respectively, and their eigendecomposition be represented by

Ki = Ug, A, Ug,, and My ) = U, An, Uy, (6)

where Uk, and Uy, are orthogonal matrices of eigenvectors and Ak, = diag(c;), A, ,, =
diag(B;). The minimum of ||PK;P T — M, ||? is attained for the following P’s:

P* =Uy,,SUyg, (7
where S € S = {diag(s1, 82, -+ ,sk)|si=1or —1}.

The proof of the theorem will be provided in appendix. In computing the optimal permutation matrix
P*, trials of different S will be needed. Meanwhile, to avoid such time costs, we introduce to take
the upper bound value of U M(S,USUIQ as the approximated optimal permutation matrix instead,
which together with the corresponding optimal feature z; (5 +) can be denoted as follows:

P* =[Un,, , ||Uf,|and z; ;) = [[P*K(P*)T — M, |, ®)
where |- | denotes the absolute value operator and [Uni, , |[U, | > Uy, , SUj, hold for VS € S.

By replacing Equations 2}{3] with Equation [7] we can compute the optimal graph isomorphic feature
for the kernel K; and input regional sub-matrix M, ;) with a much lower time cost. Furthermore,
since the eigendecomposition time complexity of a k x k matrix is O(k3), based on the above
theorem, we will be able to lower down the total time cost in graph isomorphic feature extraction to
O(ck3n?), which can be further optimized with the method introduced in the following subsection.

4.3.2 DEEP GRAPH ISOMORPHIC FEATURE EXTRACTION

Here, we will illustrate the advantages of deep ISONN model with small-sized kernels compared
against shallow ISONN model with large kernels. In Figure 2] we provide an example two ISONN
models with different model architectures

o the left model has one single layer and 6 kernels, where the kernel size k = 12;
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o the right model has two layers: layer 1 involves 2 kernels of size 3, and layer 2 involves 3
kernels of size 4.

By comparing these two different models, we observe that they have identical representation learning
capacity. However, the time cost in feature extraction introduced by the left model is much higher
than that introduced by the right model, which can be denoted as O(6(123)n?) and O(2(33)n? +
3(43)n?), respectively.

Therefore, for the ISONN model, we tend to use small-sized kernels. Formally, according to the
fast method provided in the previous part, given a 1-layer ISONN model with c large kernels of
size k, its graph isomorphic feature extraction time complexity can be denoted as O(ck3n?). In-
spired by Figure 2] without affecting the representation capacity, such a model can be replaced

by a max{[log5], [logg—‘ }-layers deep ISONN model instead, where each layer involves 2 ker-
nels of size 3. The graph isomorphic feature extraction time complexity of the deep model will be

O ((max{ [logs], [logg—‘ -2 33n2) (or O ((max{ [log“], [logk—‘ 1) - n2) for simplicity).
5 EXPERIMENTS

To evaluate the performance of ISONN, in this section, we will talk about the experimental settings
as well as five benchmark datasets. Finally, we will discuss the experimental results with parameter
analyses on kernel size , channel number and time complexity.

5.1 EXPERIMENTAL SETTINGS

In this subsection, we will use five real-world benchmark datasets: HIV-fMRI (Cao et al.| (2015a),
HIV-DTI |Cao et al.| (2015a), BP-fMRI |Cao et al.| (2015b), MUTA and PTCL. Both HIV-fMRI
and HIV-DTI have 56 positive instances and 21 negative instances. Also, graph instances in both
of them are represented as 90 x 90 matrices (Cao et al.[|(2015a). BP-fMRI has 52 positive and 45
negative instances and each instance is presented by an 82 x 82 matrix |Cao et al.{(2015b). MUTAG
and PTC are two datasets which have been widely used in academia Xu et al.|(2018)); Shervashidze
& Borgwardt (2009). MUTAG has 125 positive and 63 negative graph instances with graph size
28 x 28. PTC is a relative large dataset, which has 152 positive and 192 negative graph instances
with graph size 109 x 109. With these datasets, we first introduce the comparison methods used in
this paper and then talk about the experimental setups and the adopted evaluation metrics in detail.

5.1.1 COMPARISON METHODS

e ISONN & ISONN-fast : The proposed method ISONN uses a set of template variables as
well as the permutation matrices to extract the isomorphic features and feed these features
to the classification component. The variant model named ISONN-fast uses the Equation ??
to compute the optimal permutation matrices and other settings remain unchanged.

e Freq: The method uses the top-k frequent subgraphs as its features. This is also an unsu-
pervised feature selection method based on frequency.

o AE: We use the autoencoder model (AE) Vincent et al.[|(2010) to get the features of graphs
without label information. It is an unsupervised learning method, which learns the latent
representations of connections in the graphs without considering the structural information.

e CNN: It is the convolutional model |Krizhevsky et al.|(2012)) learns the structural informa-
tion within small regions of the whole graph. We adopt one convolution layer and three
fully-connected layer to be the classification module.

e SDBN: A model proposed in|Wang et al.|(2017), which reorders the nodes in the graph first
and then feeds the reordered graph into an augmented CNN. In this way, it not only learns
the structural information but also tries to minimize the effect of the order constraint.

o WL: WL Shervashidze & Borgwardt| (2009) is a classic algorithm to do the graph isomor-
phism test. For the graph classification, we computes the similarity scores for test graphs
and train graph. The mean of all similarity scores between each test graph and train graphs
will be used to do the classification.

e GCN: GCN is proposed in [Kipf & Welling| (2016) use the adjacent matrix to learn the
implicit structure information in graphs. Here, we use two graph convolutional layers to

"https://Is11-www.cs.tu-dortmund.de/people/morris/graphkerneldatasets/
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Table 1: Classification Results of the Comparison Methods.

Methods

Dataset ~ Metric Freq AE CNN SDBN WL GCN GIN ISONN-fast ISONN
Acc. 543 469 593 665 442 583 525 70.5 734
HIV-fMRI FI 582 355 663 667 272 564 356 69.9 722
nvor | Acc. 646 624 543 659 471 577 55 60.1 67.5
FI 639 00 557 656 484 544 536 61.9 68.3
spRl | A 568 536 546 648 562 607 454 62.3 64.9
FI 576 695 528 637 588 612 423 63.2 69.7
Acc. 762 500 817 540 524 635 540 83.3 83.3
MUTAG FI 769 667 823 667 499 619 667 83.6 83.0
rc Acc. 578 500 546 500 490 490 490 53.0 59.9
Fl 549 665 589 665 480 489 475 55.8 59.9

learn node features and then take the all nodes features as the graph features. One fully-
connected layer will be used as graph classification module.

e GIN: GIN is proposed in Xu et al.|(2018)) can be used to do graph classification with node
features. We adopt the same experimental setting as GIN-0 stated in | Xu et al.| (2018]).

5.1.2 EXPERIMENTAL SETUP AND EVALUATION METRICS

In our experiments, to make the results more reliable, we partition the datasets into 3 folds and then
set the ratio of train/test according to 2 : 1, where two folds are treated as the training data and
the remaining one is the testing data. We select top-100 features for Freq as stated in Wang et al.
(2017) with a three layer MLP classifier, where the neuron numbers are 1024, 128, 2. For Auto-
encoder, we apply the two-layer encoder and two-layer decoder. For the CNN, we apply the one
convolutional layer with the size 5 x 5 x 50, a max-pooling layer with kernel size 2 x 2, one gating
relu layer as activation layer and we set parameters in the classification module the same as Freq
classifier. For the SDBN, we set the architecture as follows: we use two layers of ’convolution layer
+ max pooling layer + activation layer ” and concatenate a fully connected layer with 100 neurons
as well as an activation layer, where the parameters are the same as those in CNN. We also set the
dropout rate in SDBN being 0.5 to avoid overfitting. For WL kernel, if the average similarity score
for one test graph greater than 0.5, we assign the test graph positive label, otherwise, assign negative
label. We follow the setting in |Kipf & Welling| (2016) and |Xu et al.| (2018)) to do GCN and GIN-O0.
Here, to make a fair comparison, we will use the adjacency matrices as features (i.e., no node label
information) for GCN and GIN. In the experiments, we set the kernel size £ in the isomorphic layer
for three datasets as 2, 4, 3, 4, 4 respectively, and then set the parameters in classification component
the same as those in Freq classifier. In this experiment, we adopt Adam optimizer and the set the
learning rate = 0.001, and then we report the average results on balanced datasets.

5.2 EXPERIMENTAL RESULTS

In this section, we investigate the effectiveness of the learned subgraph-based graph feature represen-
tations for graphs. We adopt one isomorphic layer where the kernel size £ = 2 and channel number
¢ = 3 for HIV-fMRI, one isomorphic layer with (k =4,c=2), (k=3,c=1),(k=4,c=1) and
(k = 4, c = 2) for the HIV-DTI, BP-fMRI, MUTAG and PTC, respectively. The results are shown
in Table|lIl From that table, we can observe that [ISONN outperforms all other baseline methods
on these all datasets. We need to remark that ISONN and ISONN-fast are very close on MUTAG,
and ISONN has the best performance in total on PTC. Compared with Freq, the proposed method
achieves a better performance without searching for all possible subgraphs manually. AE has almost
the worst performance among all comparison methods. This is because the features learned from
AE do not contain any structural information. For HIV-DTI, AE gets O in F1. This is because the
dataset contains too many zeros, which makes the AE learns trivial features. Also, for PTC, its F1
is higher than other models, but the accuracy only get 50.0, which indicates AE actually have a
bad performance since it cannot discriminate the classes of the instances (i.e., predicting all positive
classes). CNN performs better than AE but still worse than ISONN. The reason can be that it learns
some structural information but fails to learn representative structural patterns. SDBN is designed
for brain images, so it may not work for MUTAG and PTC. One possible reason for WL got bad
results is the isomorphism test is done on the whole graph, which may lead to erratic results. GCN
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performs better than GIN but worse than ISONN, showing that GCN can learn some sturctual infor-
mation without node labels, but GIN cannot work with the adjacency matrix as input. ISONN-fast
achieves the best scores on MUTAG and second-best on HIV-fMRI, yet worse than several other
methods on other datasets. This can be the approximation on P may impair the performance. Com-
paring ISONN with AE, ISONN achieves better results. This means the structural information is
more important than only connectivity information for the classification problem. If compared with
CNN, the results also show the contribution of breaking the node-order in learning the subgraph
templates. Similar to SDBN, ISONN also finds the features from subgraphs, but ISONN gets better
performance with more concise architecture. Contrasting with GCN and GIN, ISONN can maintain
the explict subgraph structures in graph representations, while the GCN and GIN simply use the
aggragation of the neighboring node features, losing the graph-level substructure infomation.

5.3 PARAMETER ANALYSIS

To further study the proposed method, we will discuss the effects of different kernel size and channel
number in ISONN. The model convergence analysis will be provided in appendix.

o Kernel Size: We show the effectiveness of different & in Figure 3] Based on the previ-
ous statement, parameter k£ can affect the final results since it controls the size of learned
subgraph templates. To investigate the best kernel size for each dataset, we fix the chan-
nel number ¢ = 1. As Figure[3|shows, different datasets have different appropriate kernel
sizes. The best kernel sizes are 2, 4, 3, 4, 4 for the three datasets respectively.

e Channel Number: We also study the effectiveness of multiple channels (i.e., multiple
templates in one layer). To discuss how the channel number influences the results, we
choose the best kernel size for each dataset (i.e., 2, 4, 3, 4, 4 respectively). From all sub-
figures in Figure[d we can see that the differences among the different channel numbers by
using only one isomorphic layer. As shown in Figure[d ISONN achieves the best results by
c=3,2,1,1,2, respectively, which means the increase of the channel number can improve
the performance, but more channels do not necessarily lead to better results. The reason
could be the more templates we use, the more complex our model would be. With such a
complex model, it is easy to learn an overfitting model on train data, especially when the
dataset is quite small. Thus, increasing the channel number can improve the performance
but the effectiveness will still depend on the quality and the quantity of the dataset.

5.4 TiIME COMPLEXITY STUDY

To study the efficiency of ISONN and ISONN-fast, we collect the actual running time on training
model, which is shown in Figure In both Figures and El the x-axis denotes its value for
k or c and the y-axis denotes the time cost with different parameters. From Figure [5(a)] four lines

2Since the PTC is a relative large dataset compared with the others, its running time is in different scale
compared with the other datasets, which makes the time growth curve of other datasets not obvious. Thus, we
don’t show the results on PTC.
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show the same pattern. When the £ increases, the time cost grows exponentially. This pattern can
be directly explained by the size of the permutation matrix set. When we increase the kernel size
by one, the number of corresponding permutation matrices grows exponentially. While changing c,
shown in Figure[5(b)] it is easy to observe that those curves are basically linear with different slopes.
This is also natural since whenever we add one channel, we only need to add a constant number
of the permutation matrices. To study the efficiency of ISONN-fast, Figure [5(c)] shows the running
times of ISONN and ISONN-fast on MUTAG. As it shows, ISONN-fast use less time when the
kernel size greater than 4, otherwise ISONN and ISONN will have little difference since the eigen
decomposition has nearly the same time complexity as calculating all possible node permutaions.
The results also verify the theoretical time complexity analysis in[4.3]

6 CONCLUSION

In this paper, we proposed a novel graph neural network named ISONN to solve the graph classi-
fication problem. ISONN consists of two components: (1) isomorphic component, where a set of
permutation matrices is used to break the randomness order posed by matrix representation for a
bunch of templates and one min-pooling layer and one softmax layer are used to get the best iso-
morphic features, and (2) classification component, which contains three fully-connected layers. We
further discuss the two efficient variants of ISONN to accelerate the model. Next, we perform the
experiments on five real-world datasets. The experimental results show the proposed method out-
performs all comparison methods, which demonstrates the superiority of our proposed method. The
experimental analysis on time complexity illustrates the efficiency of the [ISONN-fast.
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Figure 6: Convergence Analysis

7 APPENDIX

7.1 PROOF OF THEOREM 1

Before giving the proof of Theorem|[I] we need to introduce Lemmal|T] first.

LEMMA 1 If A and B are Hermitian matrices with eigenvalues oy > ag > -++ > «ay and 57 >
B2 > -+ > By respectively, then ||A — B|| > Y"1 (a; — ;)%

Based on Lemmal[I] we can derive the proof of Theorem [T]as follows.

PROOF 1 From Lemmall| Equation 9 holds for any orthogonal matrix R. since the eigenvalues of
RK;RT are the same as those of K.

IRK:RT = M pl* =) (a; - 6)° ©)
j=1
On the other hand, if we use P in[7] we have
HPKiPT - 1v[(s,t)||2 = ||UM(5,t)SU}iUKiAK'iU};iUKiSU]T/[(SJ) - UM(SJ)AM(S@U]T/[(“) H2
= ||UM(S,t) (SAKls - AM(SJ))UL<SJ)||2
= ||SAKIS - AM(s,t) H2
= ||AK1' - AM(s,t) H2
=2 1(og — B))°
(10)

where we use the equations that ||[UX|| = |[UXT|| = ||X]|| for any orthogonal matrix U and
SAk,S = S?Ax, = Ak, since S and Ak, are both orthogonal matrices and S? = L.

7.2 CONVERGENCE ANALYSIS

The Figure |§| shows the convergence trend of ISONN on five datasets, where the x-axis denotes
the epoch number and the y-axis is the training loss, respectively. From these sub-figures, we can
know that the proposed method can achieve a stable optimal solution within 50 iterations except
for MUTAG (it needs almost 130 epochs to converge), which also illustrates our method would
converge relatively fast.
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