
Under review as a conference paper at ICLR 2020

FINDING AND VISUALIZING WEAKNESSES OF DEEP
REINFORCEMENT LEARNING AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

As deep reinforcement learning driven by visual perception becomes more widely
used there is a growing need to better understand and probe the learned agents.
Understanding the decision making process and its relationship to visual inputs
can be very valuable to identify problems in learned behavior. However, this topic
has been relatively under-explored in the research community. In this work we
present a method for synthesizing visual inputs of interest for a trained agent.
Such inputs or states could be situations in which specific actions are necessary.
Further, critical states in which a very high or a very low reward can be achieved
are often interesting to understand the situational awareness of the system as they
can correspond to risky states. To this end, we learn a generative model over the
state space of the environment and use its latent space to optimize a target function
for the state of interest. In our experiments we show that this method can generate
insights for a variety of environments and reinforcement learning methods. We
explore results in the standard Atari benchmark games as well as in an autonomous
driving simulator. Based on the efficiency with which we have been able to identify
behavioural weaknesses with this technique, we believe this general approach could
serve as an important tool for AI safety applications.

1 INTRODUCTION

Humans can naturally learn and perform well at a wide variety of tasks, driven by instinct and practice;
more importantly, they are able to justify why they would take a certain action. Artificial agents
should be equipped with the same capability, so that their decision making process is interpretable
by researchers. Following the enormous success of deep learning in various domains, such as
the application of convolutional neural networks (CNNs) to computer vision (LeCun et al., 1998;
Krizhevsky et al., 2012; Long et al., 2015; Ren et al., 2015), a need for understanding and analyzing
the trained models has arisen. Several such methods have been proposed and work well in this
domain, for example for image classification (Simonyan et al., 2013; Zeiler & Fergus, 2014; Fong &
Vedaldi, 2017), sequential models (Karpathy et al., 2016) or through attention (Xu et al., 2015).

Deep reinforcement learning (RL) agents also use CNNs to gain perception and learn policies directly
from image sequences. However, little work has been so far done in analyzing RL networks. We
found that directly applying common visualization techniques to RL agents often leads to poor results.
In this paper, we present a novel technique to generate insightful visualizations for pre-trained agents.

Currently, the generalization capability of an agent is—in the best case—evaluated on a validation set
of scenarios. However, this means that this validation set has to be carefully crafted to encompass as
many potential failure cases as possible. As an example, consider the case of a self-driving agent,
where it is near impossible to exhaustively model all interactions of the agent with other drivers,
pedestrians, cyclists, weather conditions, even in simulation. Our goal is to extrapolate from the
training scenes to novel states that induce a specified behavior in the agent.

In our work, we learn a generative model of the environment as an input to the agent. This allows us
to probe the agent’s behavior in novel states created by an optimization scheme to induce specific
actions in the agent. For example we could optimize for states in which the agent sees the only
option as being to slam on the brakes; or states in which the agent expects to score exceptionally
low. Visualizing such states allows to observe the agent’s interaction with the environment in critical
scenarios to understand its shortcomings. Furthermore, it is possible to generate states based on an

1

Under review as a conference paper at ICLR 2020

objective function specified by the user. Lastly, our method does not affect and does not depend on
the training of the agent and thus is applicable to a wide variety of reinforcement learning algorithms.

Our contributions are:

1. This is one of the first works to visualize and analyze deep reinforcement learning agents.

2. We introduce a series of objectives to quantify different forms of interstingness and danger
of states for RL agents.

3. We evaluate our algorithm on 50 Atari games and a driving simulator, and compare perfor-
mance across three different reinforcement learning algorithms.

4. We quantitatively evaluate parts of our model in a comprehensive loss study (Tab. 1) and
analyze generalization though a pixel level analysis of synthesized unseen states (Tab. 2).

5. An extensive supplement shows additional comprehensive visualizations on 50 Atari games.

We will describe our method before we will discuss relevant related work from the literature.

2 METHODS

We will first introduce the notation and definitions that will be used through out the remainder of the
paper. We formulate the reinforcement learning problem as a discounted, infinite horizon Markov
decision process (S;A; ; P; r), where at every time step t the agent finds itself in a state st 2 S
and chooses an action at 2 A following its policy ��(ajst). Then the environment transitions from
state st to state st+1 given the model P (st+1jst; at). Our goal is to visualize RL agents given a
user-defined objective function, without adding constraints on the optimization process of the agent
itself, i.e. assuming that we are given a previously trained agent with fixed parameters �.

We approach visualization via a generative model over the state space S and synthesize states that
lead to an interesting, user-specified behavior of the agent. This could be, for instance, states in which
the agent expresses high uncertainty regarding which action to take or states in which it sees no
good way out. This approach is fundamentally different than saliency-based methods as they always
need an input for the test-set on which the saliency maps can be computed. The generative model
constrains the optimization of states to induce specific agent behavior.

2.1 STATE MODEL

Often in feature visualization for CNNs, an image is optimized starting from random noise. However,
we found this formulation too unconstrained, often ending up in local minima or fooling examples
(Figure 3a). To constrain the optimization problem we learn a generative model on a set S of states
generated by the given agent that is acting in the environment. The model is inspired by variational
autoencoders (VAEs) (Kingma & Welling, 2013) and consists of an encoder f(s) = (�; �) 2
R2�n that maps inputs to a Gaussian distribution in latent space and a decoder g(�; �; z) = ŝ that
reconstructs the input. The training of our generator has three objectives. First, we want the generated
samples to be close to the manifold of valid states s. To avoid fooling examples, the samples should
also induce correct behavior in the agent and lastly, sampling states needs to be efficient. We encode
these goals in three corresponding loss terms.

L(s) = Lp(s) + �La(s) +
�

2
(1 + log(f2

�(s)) + f2
�(s) + f2

�(s)): (1)

The role of Lp(s) is to ensure that the reconstruction g(f(s); z) is close to the input s such that
k g(f(s); z)� s k2

2 is minimized. We observe that in the typical reinforcement learning benchmarks,
such as Atari games, small details—e.g. the ball in Pong or Breakout—are often critical for the
decision making of the agent. However, a typical VAE model tends to yield blurry samples that are
not able to capture such details. To address this issue, we model the reconstruction error Lp(s) with
an attentive loss term, which leverages the saliency of the agent to put focus on critical regions of the
reconstruction. The saliency maps are computed by guided backpropagation of the policy’s gradient
with respect to the state.

Lp(s) = k g(f(s); z)� s k2
2 �

kr�(s) k1Pd
i=1 kr�(s)i k1

: (2)

2

Under review as a conference paper at ICLR 2020

As discussed earlier, gradient based reconstruction methods might not be ideal for explaining a
CNN’s reasoning process (Kindermans et al., 2017a). Here however, we only use it to focus the
reconstruction on salient regions of the agent and do not use it to explain the agent’s behavior for
which these methods are ideally suited. This approach puts emphasis on details (salient regions)
when training the generative model.

Since we are interested in the actions of the agent on synthesized states, the second objective La(s)
is used to model the perception of the agent:

La(s) = kA(s)�A(g(f(s); z)) k2
2; (3)

where A is a generic formulation of the output of the agent. For a DQN for example, �(s) =
maxaA(s)a, i.e. the final action is the one with the maximal Q-value. This term encourages the
reconstructions to be interpreted by the agent the same way as the original inputs s. The last term
KL(f(s);N (0; In)) ensures that the distribution predicted by the encoder f stays close to a Gaussian
distribution. This allows us to initialize the optimization with a reasonable random vector later and
forms the basis of a regularizer. Thus, after training, the model approximates the distribution of states
p(s) by sampling z from N (0; In). We will now use the generator inside an optimization scheme to
generate state samples that satisfy a user defined target objective.

2.2 SAMPLING STATES OF INTEREST

Training a generator with the objective function of Equation 1 allows us to sample states that are not
only visually close to the real ones, but which the agent can also interpret and act upon as if they
were states from a real environment.

We can further exploit this property and formulate an energy optimization scheme to generate samples
that satisfy a specified objective. The energy operates on the latent space of the generator and is
defined as the sum of a target function T on agent’s policy and a regularizer R

E(x) = T (�(g(x; z)) + �R(x): (4)

The target function can be defined freely by the user and depends on the agent that is being visualized.
For a DQN, one could for example define T as the Q-value of a certain action, e.g. pressing the
brakes of a car. In section 2.3, we show several examples of targets that are interesting to analyze.
The regularizer R can again be chosen as the KL divergence between x and the normal distribution:

R(x) = KL(x;N (0; In)); (5)
forcing the samples that are drawn from the distribution x to be close to the Gaussian distribution that
the generator was trained with. We can optimize Equation 4 with gradient descent on x = (�; �).

2.3 TARGET FUNCTIONS

Depending on the agent, one can define several interesting target functions T – we present and explore
seven below, which we refer to as: T+, T�, T�, S+, S�, S�, and action maximization. For a
DQN the previously discussed action maximization is interesting to find situations in which the agent
assigns a high value to a certain action e.g. Tleft(s) = �Aleft(s). Other states of interest are those
to which the agent assigns a low (or high) value for all possible actions A(s) = q = (q1; : : : ; qm).
Consequently, one can optimize towards a low Q-value for the highest valued action with the
following objective:

T�(q) =

Pm
i=1 qie

�qiPm
k=1 e

�qk
; (6)

where � > 0 controls the sharpness of the soft maximum formulation. Analogously, one can
maximize the lowest Q-value with T+(q) = �T�(�q). We can also optimize for interesting
situations in which one action is of very high value and another is of very low value by defining

T�(q) = T�(q)� T+(q): (7)

The energy E(x) (Equation 4) can be optimized with gradient descent on x = (�; �).

3 RELATED WORK

We divide prior work into two parts. First we discuss the large body of visualization techniques
developed primarily for image recognition, followed by related efforts in reinforcement learning.

3

Under review as a conference paper at ICLR 2020

(a) Kung Fu Master - T �

enemies on both sides
(b) Kung Fu Master - T +

easy, many points to score
(c) Kung Fu Master - T �

no enemies

(d) Pong - T +

scoring a point
(e) Space Invaders - T +

shooting an enemy
(f) Enduro - T +

overtaking an opponent

(g) Name This Game - T �

whether to refill air
(h) Seaquest - T �

out of oxygen
(i) Beamrider - Tleft

avoiding the enemy
Figure 1: Qualitative Results: Visualization of different target functions (Sec. 2.3). T+ generates
high reward and T� low reward states; T� generates states in which one action is highly beneficial
and another is bad. For a long list of results, with over 50 Atari games, please see the appendix.

3.1 FEATURE VISUALIZATION

In the field of computer vision, there is a growing body of literature on visualizing features and
neuron activations of CNNs. As outlined in (Grün et al., 2016), we differentiate between saliency
methods, that highlight decision-relevant regions given an input image, methods that synthesize
an image (pre-image) that fulfills a certain criterion, such as activation maximization (Erhan et al.,
2009) or input reconstruction, and methods that are perturbation-based, i.e. they quantify how input
modification affects the output of the model.

3.1.1 SALIENCY METHODS

Saliency methods typically use the gradient of a prediction or neuron at the input image to estimate
importance of pixels. Following gradient magnitude heatmaps (Simonyan et al., 2013) and class
activation mapping (Zhou et al., 2016), more sophisticated methods such as (Mahendran & Vedaldi,
2016; Selvaraju et al., 2016) have been developed (Zintgraf et al., 2017) distinguish between regions
in favor and regions speaking against the current prediction. (Sundararajan et al., 2017) distinguish
between sensitivity and implementation invariance.

An interesting observation is that such methods seem to generate believable saliency maps even for
networks with random weights (Adebayo et al., 2018a). (Kindermans et al., 2017b) show that saliency
methods do not produce analytically correct explanations for linear models and further reliability
issues are discussed in (Adebayo et al., 2018b; Hooker et al., 2018; Kindermans et al., 2017a).

4

Under review as a conference paper at ICLR 2020

3.1.2 PERTURBATION METHODS

Perturbation methods modify a given input to understand the importance of individual image regions.
(Zeiler & Fergus, 2014) slide an occluding rectangle across the image and measure the change in
the prediction, which results in a heatmap of importance for each occluded region. This technique
is revisited by (Fong & Vedaldi, 2017) who introduce blurring/noise in the image, instead of a
rectangular occluder, and iteratively �nd a minimal perturbation mask that reduces the classi�er's
score, while (Dabkowski & Gal, 2017) train a network for masking salient regions.

3.1.3 INPUT RECONSTRUCTION

As our method synthesizes inputs to the agent, the most closely related work includes input recon-
struction techniques. (Long et al., 2014) reconstruct an image from an average of image patches
based on nearest neighbors in feature space. (Mahendran & Vedaldi, 2015) propose to reconstruct
images by inverting representations learned by CNNs, while (Dosovitskiy & Brox, 2015) train a CNN
to reconstruct the input from its encoding.

When maximizing the activation of a speci�c class or neuron, regularization is crucial because the
optimization procedure—starting from a random noise image and maximizing an output—is vastly
under-constrained and often tends to generate fooling examples that fall outside the manifold of
realistic images (Nguyen et al., 2015). In (Mahendran & Vedaldi, 2016) total variation (TV) is used
for regularization, while (Baust et al., 2018) propose an update scheme based on Sobolev gradients.
In (Nguyen et al., 2015) Gaussian �lters are used to blur the pre-image or the update computed in
every iteration. Since there are usually multiple input families that excite a neuron, (Nguyen et al.,
2016c) propose an optimization scheme for the distillation of these clusters. More variations of
regularization can be found in (Olah et al., 2017; 2018). Instead of regularization, (Nguyen et al.,
2016a;b) use a denoising autoencoder and optimize in latent space to reconstruct pre-images for
image classi�cation.

3.2 EXPLANATIONS FOR REINFORCEMENTLEARNING

In deep reinforcement learning however, feature visualization is to date relatively unexplored. (Zahavy
et al., 2016) apply t-SNE (Maaten & Hinton, 2008) on the last layer of a deep Q-network (DQN) to
cluster states of behavior of the agent. (Mnih et al., 2016) also use t-SNE embeddings for visualization,
while (Greydanus et al., 2017) examine how the current state affects the policy in a vision-based
approach usingsaliency methods. (Wang et al., 2016) use saliency methods from (Simonyan et al.,
2013) to visualize the value and advantage function of their dueling Q-network. (Huang et al., 2018)
�nds critical states of an agent based on the entropy of the output of a policy. Interestingly, we could
not �nd prior work usingactivation maximizationmethods for visualization. In our experiments we
show that the typical methods fail in the case of RL networks and generate images far outside the
manifold of valid game states, even with all typical forms of regularization. In the next section, we
will show how to overcome these dif�culties.

4 EXPERIMENTS

In this section we thoroughly evaluate and analyze our method on Atari games (Bellemare et al.,
2013) using the OpenAI Gym (Brockman et al., 2016) and a driving simulator. We present qualitative
results for three different reinforcement learning algorithms, show examples on how the method helps
�nding �aws in an agent, analyze the loss contributions and compare to previous techniques.

4.1 IMPLEMENTATION DETAILS

In all our experiments we use the same factors to balance the loss terms in Equation 6:� = 10 � 4

for the KL divergence and� = 10 � 3 for the agent perception loss. The generator is trained on
10; 000frames (using the agent and an� -greedy policy with� = 0 :1). Optimization is done with
Adam (Kingma & Ba, 2015) with a learning rate of10� 3 and a batch size of16 for 2000epochs.
Training takes approximately four hours on a Titan Xp. Our generator uses a latent space of100
dimensions, and consists of four encoder stages comprised of a3 � 3 convolution with stride 2,
batch-normalization (Ioffe & Szegedy, 2015) and ReLU layer. The starting number of �lters is 32
and is doubled at every stage. A fully connected layer is used for mean and log-variance prediction.

5

