
Under review as a conference paper at ICLR 2020

ITERATIVE TARGET AUGMENTATION FOR EFFECTIVE
CONDITIONAL GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Many challenging prediction problems, from molecular optimization to program
synthesis, involve creating complex structured objects as outputs. However, avail-
able training data may not be sufficient for a generative model to learn all possible
complex transformations. By leveraging the idea that evaluation is easier than gen-
eration, we show how a simple, broadly applicable, iterative target augmentation
scheme can be surprisingly effective in guiding the training and use of such mod-
els. Our scheme views the generative model as a prior distribution, and employs a
separately trained filter as the likelihood. In each augmentation step, we filter the
model’s outputs to obtain additional prediction targets for the next training epoch.
Our method is applicable in the supervised as well as semi-supervised settings. We
demonstrate that our approach yields significant gains over strong baselines both
in molecular optimization and program synthesis. In particular, our augmented
model outperforms the previous state-of-the-art in molecular optimization by over
10% in absolute gain.

1 INTRODUCTION

Deep architectures are becoming increasingly adept at generating complex objects such as images,
text, molecules, or programs. Many useful generation problems can be seen as translation tasks,
where the goal is to take a source (precursor) object such as a molecule and turn it into a target
satisfying given design characteristics. Indeed, molecular optimization of this kind is a key step in
drug development, though the adoption of automated tools remains limited due to accuracy concerns.
We propose here a simple, broadly applicable meta-algorithm to improve translation quality.

Translation is a challenging task for many reasons. Objects are complex and the available training
data pairs do not fully exemplify the intricate ways in which valid targets can be created from the
precursors. Moreover, precursors provided at test time may differ substantially from those available
during training — a scenario common in drug development. While data augmentation and semi-
supervised methods have been used to address some of these challenges, the focus has been on either
simple prediction tasks (e.g., classification) or augmenting data primarily on the source side. We
show, in contrast, that iteratively augmenting translation targets significantly improves performance
on complex generation tasks in which each precursor corresponds to multiple possible outputs.

Our iterative target augmentation approach builds on the idea that it is easier to evaluate candidate
objects than to generate them. Thus a learned predictor of target object quality (a filter) can be used
to effectively guide the generation process. To this end, we construct an external filter and apply
it to the complex generative model’s sampled translations of training set precursors. Candidate
translations that pass the filter criteria become part of the training data for the next training epoch.
The translation model is therefore iteratively guided to generate candidates that pass the filter. The
generative model can be viewed as an adaptively tuned prior distribution over complex objects,
with the filter as the likelihood. For this reason, it is helpful to apply the filter at test time as well,
or to use the approach transductively1 to adapt the generation process to novel test cases. The
approach is reminiscent of self-training or reranking approaches employed with some success for
parsing (McClosky et al., 2006; Charniak et al., 2016). However, in our case, it is the candidate
generator that is complex while the filter is relatively simple and remains fixed during the iterative
process.

1Allowing the model to access test set precursors (but not targets) during training.

1

Under review as a conference paper at ICLR 2020

We demonstrate that our meta-algorithm is quite effective and consistent in its ability to improve
translation quality in the supervised setting. On a program synthesis task (Bunel et al., 2018), under
the same neural architecture, our augmented model outperforms their MLE baseline by 8% and their
RL model by 3% in top-1 generalization accuracy (in absolute measure). On molecular optimiza-
tion (Jin et al., 2019a), their sequence to sequence translation baseline, when combined with our
target data augmentation, achieves a new state-of-the-art result and outperforms their graph based
approach by over 10% in success rate. Their graph based methods are also improved by iterative tar-
get augmentation with more than 10% absolute gain. The results reflect the difficulty of generation
in comparison to evaluation; indeed, the gains persist even if the filter quality is reduced somewhat.
Source side augmentation with unlabeled precursors (the semi-supervised setting) can further im-
prove results, but only when combined with the filter in the target data augmentation framework. We
provide ablation experiments to empirically highlight the effect of our method and also offer some
theoretical insights for why it is effective.2

2 RELATED WORK

Molecular Optimization The goal of molecular optimization is to learn to modify compounds so as
to improve their chemical properties. Jin et al. (2019a;b) formulated this problem as graph-to-graph
translation and significantly outperformed previous methods. However, their performance remains
imperfect due to the limited size of given training sets. Our work uses property prediction models
to check whether generated molecules have desired chemical properties. Recent advances in graph
convolutional networks (Duvenaud et al., 2015; Gilmer et al., 2017) have provided effective solu-
tions to predict those properties in silico. In this work, we use an off-the-shelf property prediction
model (Yang et al., 2019) to filter proposed translation pairs during data augmentation.

Program Synthesis Program synthesis is the task of generating a program (using domain-specific
language) based on given input-output specifications (Bunel et al., 2018; Gulwani, 2011; Devlin
et al., 2017). In this setting, it is straightforward to check the correctness of a generated program by
simply executing the code on each input and seeing if it matches the specified output. Indeed, Chen
et al. (2019) begin to leverage this idea in their synthesizer ensemble approach, where they filter out
incorrect outputs from individual models in their ensemble.

Semi-supervised Learning Our method is related to various approaches in semi-supervised learn-
ing. In image and text classification, data augmentation and label guessing (Berthelot et al., 2019;
Xie et al., 2019) are commonly applied to obtain artificial labels for unlabeled data. In machine
translation, back-translation (Sennrich et al., 2015; Edunov et al., 2018) creates extra translation
pairs by using a backward translation system to translate unlabeled sentences from a target lan-
guage into a source language. In contrast, our method works in the forward direction because many
translation tasks are not symmetric. Moreover, our data augmentation is carried out over multiple
iterations, in which we use the augmented model to generate new data for the next iteration.

In syntactic parsing, our method is closely related to self-training (McClosky et al., 2006). They
generate new parse trees from unlabeled sentences by applying an existing parser followed by a
reranker, and then treat the resulting parse trees as new training targets. However, their method is
not iterative, and their reranker is explicitly trained to operate over the top k outputs of the parser;
in contrast, our filter is independent of the generative model. In addition we show that our ap-
proach, which can be viewed as iteratively combining reranking and self-training, is theoretically
motivated and can improve the performance of highly complex neural models in multiple domains.
Co-training (Blum & Mitchell, 1998) and tri-training (Zhou & Li, 2005; Charniak et al., 2016) also
augment a parsing dataset by adding targets on which multiple baseline models agree. Instead of
using multiple learners, our method uses task-specific constraints to select correct outputs.

3 ITERATIVE TARGET AUGMENTATION

Our iterative target augmentation framework can be applied to any conditional generation task with
task-specific constraints. For example, molecular optimization (Jin et al., 2019a;b) is the task of
transforming a given molecule X into another compound Y with improved chemical properties,

2For submission, we provide our code in a Dropbox link. All code will be open-sourced upon publication.

2

Under review as a conference paper at ICLR 2020

Figure 1: Illustration of our data generation process in the program synthesis setting. Given an
input-output specification, we first use our generation model to generate candidate programs, and
then select correct programs using our external filter. Images of input-output specification and the
program A are from Bunel et al. (2018).

Algorithm 1 Augmentation by iterative target augmentation
Input: Original training set D = [(X1, Y1), . . . , (Xn, Yn)]

1: procedure AUGMENTDATASET(D,Mt)
2: Dt+1 = D . Initialize augmented dataset.
3: for (Xi, Yi) in D do
4: for attempt in 1, . . . , C do
5: Apply modelMt to Xi to sample candidate Y ′
6: if Y ′ passes external filter then
7: Add (Xi, Y

′) to Dt+1

8: if K successful translations added then
9: break from loop

10: return augmented dataset Dt+1

11: procedure TRAIN(D)
12: for epoch in 1, . . . , n1 do . Regular training
13: Train model on D.
14: for epoch in 1, . . . , n2 do . Iterative target augmentation
15: Dt+1 = AUGMENTDATASET(D,Mt)
16: Mt+1 ← Train modelMt on Dt+1.

while constraining Y to remain similar to X . Program synthesis (Bunel et al., 2018; Chen et al.,
2019) is the task of generating a program Y satisfying input specification X; for example, X may
be a set of input-output test cases which Y must pass.

Without loss of generality, we formulate the generation task as a translation problem. For a given
input X , the model learns to generate an output Y satisfying the constraint c. The proposed aug-
mentation framework can be applied to any translation model M trained on an existing dataset
D = {(Xi, Yi)}. As illustrated in Figure 1, our method is an iterative procedure in which each
iteration consists of the following two steps:

• Augmentation Step: Let Dt be the training set at iteration t. To construct each next training
set Dt+1, we feed each input Xi ∈ D (the original training set, not Dt) into the translation
model up to C times to sample C candidate translations Y 1

i . . . Y
C
i .3 We take the first K distinct

translations satisfying the constraint c and add them to Dt+1. When we do not find K distinct
valid translations, we simply add the original translation Yi to Dt+1.

• Training Step: We continue to train the modelMt over the new training set Dt+1 for one epoch.

The above training procedure is summarized in Algorithm 1. As the constraint c is known a priori,
we can construct an external filter to remove any generated outputs that violate c during the aug-
mentation step. At test time, we also use this external filter to screen the predicted outputs. In order
to propose the final translation of a given input X , we have the model generate up to L outputs until
we find one satisfying the constraint c. If all L attempts fail for a particular input, we just output the
first of the failed attempts.

3One could augment Dt instead of D and continuously expand the dataset, but we find empirically that this
does change performance. We note this augmentation step can be trivially parallelized if speed is a concern.

3

Under review as a conference paper at ICLR 2020

Finally, as an additional improvement, we observe that the augmentation step can be carried out
for unlabeled inputs X that have no corresponding Y . Thus we can further augment our training
dataset in the transductive setting by including test set inputs during the augmentation step, or in the
semi-supervised setting by simply including unlabeled inputs.

4 MOTIVATION FOR ITERATIVE TARGET AUGMENTATION

We provide here some theoretical motivation for our iterative target augmentation framework. For
simplicity, we consider an external filter cX,Y that is a binary indicator function representing
whether output Y satisfies the desired constraint in relation to inputX . In other words, we would like
to generate Y such that Y ∈ B(X) = {Y ′|cX,Y ′ = 1}. If the initial translation model P (0)(Y |X)
serves as a reasonable prior distribution over outputs, we could simply “invert” the filter and use

P (∗)(Y |X) ∝ P (0)(Y |X) · cX,Y (1)

as the ideal translation model. While this posterior calculation is typically not feasible but could
be approximated through samples, it relies heavily on the appropriateness of the prior (model prior
to augmentation). Instead, we go a step further and iteratively optimize our parametrically defined
prior translation model Pθ(Y |X). Note that the resulting prior can become much more concentrated
around acceptable translations.

We maximize the log-likelihood that candidate translations satisfy the constraints implicitly encoded
in the filter

EX [logPθ(cX,Y = 1 | X)] (2)

In many cases there are multiple viable outputs for any given input X . The training data may
provide only one (or none) of them. Therefore, we treat the output structure Y as a latent variable,
and expand the inner term of Eq.(2) as

logPθ(cX,Y = 1 | X) = log
∑
Y

Pθ(Y, cX,Y = 1 | X) (3)

= log
∑
Y

P (cX,Y = 1 | Y,X)Pθ(Y |X) (4)

= log
∑
Y

cX,Y · Pθ(Y |X) (5)

Since the above objective involves discrete latent variables Y , we propose to maximize Eq.(5) using
the standard EM algorithm (Dempster et al., 1977), especially its incremental, approximate variant.
The target augmentation step in our approach is a sampled version of the E-step where the posterior
samples are drawn with rejection sampling guided by the filter. The additional training step based
on the augmented targets corresponds to a generalized M-step. More precisely, let P (t)

θ (Y |X) be the
current translation model after t epochs of augmentation training. In epoch t+ 1, the augmentation
step first samples C different candidates for each input X using the old model P (t) parameterized
by θ(t), and then removes those which violate the constraint c, interpretable as samples from the
current posterior Q(t)(Y |X) ∝ Pθ(t)(Y |X)cX,Y . As a result, the training step maximizes the EM
auxiliary objective via stochastic gradient descent:

J(θ | θ(t)) = EX

[∑
Y

Q(t)(Y |X) logPθ(Y |X)

]
(6)

We train the model with multiple iterations and show in the experiments that the model perfor-
mance indeed keeps improving as we add more iterations. The EM approach is likely to converge
to a different and better-performing translation model than the initial posterior calculation discussed
above.

5 EXPERIMENTS

We demonstrate the broad applicability of iterative target augmentation by applying it to two tasks
of different domains: molecular optimization and program synthesis.

4

Under review as a conference paper at ICLR 2020

Figure 2: Illustration of molecular optimization. Molecules can be modeled as graphs, with atoms
as nodes and bonds as edges. Here, the task is to train a translation model to modify a given input
molecule into a target molecule with higher drug-likeness (QED) score. The constraint has two
components: the output Y must be highly drug-like, and must be sufficiently similar to the input X .

5.1 MOLECULAR OPTIMIZATION

The goal of molecular optimization is to learn to modify molecules so as to improve their chemical
properties. As illustrated in Figure 2, this task is formulated as a graph-to-graph translation problem.
Similar to machine translation, the training set is a set of molecular pairs {(X,Y)}. X is the input
molecule (precursor) and Y is a similar molecule with improved chemical properties. Each molecule
in the training set D is further labeled with its property score. Our method is well-suited to this
task because the target molecule is not unique: each precursor molecule can be modified in many
different ways to optimize its properties.

External Filter The constraint for this task contains two parts: 1) the chemical property of Y
must exceed a certain threshold β, and 2) the molecular similarity between X and Y must exceed a
certain threshold δ. The molecular similarity sim(X,Y) is defined as Tanimoto similarity on Morgan
fingerprints (Rogers & Hahn, 2010), which measures structural overlap between two molecules.

In real world settings, ground truth values of chemical properties are often evaluated through experi-
mental assays, which are too expensive and time-consuming to run for iterative target augmentation.
Therefore, we construct an in silico property predictor F1 to approximate the true property evalu-
ator F0. To train this property prediction model, we use the molecules in the training set and their
labeled property values. The predictor F1 is parameterized as a graph convolutional network and
trained using the Chemprop package (Yang et al., 2019). During data augmentation, we use F1 to
filter out molecules whose predicted property is under the threshold β.

5.1.1 EXPERIMENTAL SETUP

We follow the evaluation setup of Jin et al. (2019b) for two molecular optimization tasks:

1. QED Optimization: The task is to improve the drug-likeness (QED) of a given compound X .
The similarity constraint is sim(X,Y) ≥ 0.4 and the property constraint is QED(Y) ≥ 0.9.

2. DRD2 Optimization: The task is to optimize biological activity against the dopamine type 2
receptor (DRD2). The similarity constraint is sim(X,Y) ≥ 0.4 and the property constraint is
DRD2(Y) ≥ 0.9.

Both properties are measured by an in silico evaluator from Bickerton et al. (2012) and Olivecrona
et al. (2017), respectively.4 We treat the output of these evaluators as the ground truth, and we use
them only during test-time evaluation.

Evaluation Metrics. During evaluation, we are interested both in the probability that the model
will find a successful modification for a given molecule, as well as the diversity of the successful
modifications when there are multiple. We translate each molecule in the test set Z = 20 times,
resulting in candidate modifications Y1 . . . YZ (not necessarily distinct). We use the following two
evaluation metrics:

1. Success: The fraction of moleculesX for which any of the corresponding outputs Y1 . . . YZ meet
the required property score and similarity constraint. This is our main metric.

4Although the Chemprop model we use in our filter is quite powerful, it fails to perfectly approximate the
ground truth models. The test set RMSE between our Chemprop model and the ground truth is 0.015 on the
QED task and 0.059 on DRD2, where both properties range from 0 to 1.

5

Under review as a conference paper at ICLR 2020

Model QED Succ. QED Div. DRD2 Succ. DRD2 Div.
VSeq2Seq 58.5 0.331 75.9 0.176
VSeq2Seq+ (Ours) 89.0 0.470 97.2 0.361
VSeq2Seq+, semi-supervised (Ours) 95.0 0.471 99.6 0.408
VSeq2Seq+, transductive (Ours) 92.6 0.451 97.9 0.358
HierGNN 76.6 0.477 85.9 0.192
HierGNN+ (Ours) 93.1 0.514 97.6 0.418

Table 1: Performance of different models on QED and DRD2 optimization tasks. Italicized mod-
els with + are augmented with iterative target augmentation. We emphasize that iterative target
augmentation remains critical to performance in the semi-supervised and transductive settings; data
augmentation without an external filter instead decreases performance.

2. Diversity: For each molecule X , we measure the average Tanimoto distance (defined as 1 −
sim(Yi, Yj)) between pairs within the set of successfully translated compounds among Y1 . . . YZ .
If there are one or fewer successful translations then the diversity is 0. We average this quantity
across all test molecules.

Models and Baselines. We consider the following two model architectures from Jin et al. (2019a)
to show that our augmentation scheme is not tied to specific neural architectures.

1. VSeq2Seq, a sequence-to-sequence translation model generating molecules by their SMILES
string (Weininger, 1988).

2. HierGNN, a hierarchical graph-to-graph architecture that achieves state-of-the-art performance
on the QED and DRD2 tasks, outperforming VSeq2Seq by a wide margin.

We apply our iterative augmentation procedure to the above two models, generating up to K = 4
new targets per precursor during each epoch of iterative target augmentation. Additionally, we
evaluate our augmentation of VSeq2Seq in a transductive setting, as well as in a semi-supervised
setting where we provide 100K additional source-side precursors from the ZINC database (Sterling
& Irwin, 2015). Full hyperparameters are in Appendix A.

5.1.2 RESULTS

As shown in Table 1, our iterative augmentation paradigm significantly improves the performance of
VSeq2Seq and HierGNN. On both datasets, the translation success rate increases by over 10% in ab-
solute terms for both models. In fact, VSeq2Seq+, our augmentation of the simple VSeq2Seq model,
outperforms the non-augmented version of HierGNN. This result strongly confirms our hypothesis
about the inherent challenge of learning translation models in data sparse scenarios. Moreover, we
find that adding more precursors during data augmentation further improves the VSeq2Seq model.
On the QED dataset, the translation success rate improves from 89.0% to 92.6% by just adding
test set molecules as precursors (VSeq2Seq+, transductive). When instead adding 100K presursors
from the external ZINC database, the performance further increases to 95.0% (VSeq2Seq+, semi-
supervised). We observe similar improvements for the DRD2 task as well. Beyond accuracy gain,
our augmentation strategy also improves the diversity of generated molecules. For instance, on the
DRD2 dataset, our approach yields 100% relative gain in terms of output diversity.

Importance of Property Predictor Although the property predictor used in data augmentation is
different from the ground truth property evaluator used at test time, the difference in evaluators does
not derail the overall training process. Here we analyze the influence of the quality of the property
predictor used in data augmentation. Specifically, we rerun our experiments using less accurate
predictors in the property-predicting component of our external filter. We obtain these less accurate
predictors by undertraining Chemprop and decreasing its hidden dimension. For comparison, we
also report results with the oracle property predictor which is the ground truth property evaluator.

As shown in Figure 3, on the DRD2 dataset, we are able to maintain strong performance despite
using predictors that deviate significantly from the ground truth. This implies that our framework
can potentially be applied to other properties that are harder to predict. On the QED dataset, our
method is less tolerant to inaccurate property prediction because the property constraint is much
tighter — it requires the QED score of an output Y to be in the range [0.9, 1.0].

6

Under review as a conference paper at ICLR 2020

Predictor RMSE

Q
ED

 S
uc

ce
ss

0

25

50

75

100

0 0.02 0.04 0.06 0.08
Predictor RMSE

DR
D2

 S
uc

ce
ss

0

25

50

75

100

0 0.1 0.2 0.3 0.4

Figure 3: Left: QED success rate vs. Chemprop predictor’s RMSE with respect to ground truth
on test set. The red line shows the performance of the (unaugmented) VSeq2Seq baseline. Right:
Same plot for DRD2. In each plot, the far left point with zero RMSE is obtained by reusing the
ground truth predictor, while the second-from-left point is the Chemprop predictor we use to obtain
our main results. Points further to the right are weaker predictors trained for fewer epochs and with
less capacity, simulating a scenario where the property is more difficult to model.

Model Train Test QED Succ. QED Div. DRD2 Succ. DRD2 Div.
VSeq2Seq 7 7 58.5 0.331 75.9 0.176
VSeq2Seq(test) 7 3 77.4 0.471 87.2 0.200
VSeq2Seq(train) 3 7 81.8 0.430 92.2 0.321
VSeq2Seq+ 3 3 89.0 0.470 97.2 0.361
VSeq2Seq(no-filter) 7 7 47.5 0.297 51.0 0.185

Table 2: Ablation analysis of filtering at training and test time. “Train” indicates a model whose
training process uses data augmentation according to our framework. “Test” indicates a model that
uses the external filter at prediction time to discard candidate outputs which fail to pass the filter. The
evaluation for VSeq2Seq(no-filter) is conducted after 10 augmentation epochs, as the best validation
set performance only decreases over the course of training.

Importance of External Filtering Our full model (VSeq2Seq+) uses the external filter during both
training and testing. We further experiment with Vseq2seq(test), a version of our model trained
without data augmentation but which uses the external filter to remove invalid outputs at test time.
As shown in Table 2, VSeq2Seq(test) performs significantly worse than our full model trained under
data augmentation. Similarly, a model VSeq2Seq(train) trained with the data augmentation but
without the prediction time filtering also performs much worse than the full model.

In addition, we run an augmentation-only version of the model without an external filter. This model
(referred to as VSeq2Seq(no-filter) in Table 2) augments the data in each epoch by simply using the
first K distinct candidate translations for each precursor X in the training set, without using the
external filter at all. In addition, we provide this model with the 100K unlabeled precursors from the
semi-supervised setting. Nevertheless, we find that the performance of this model steadily declines
from that of the bootstrapped starting point with each data augmentation epoch. Thus the external
filter is necessary to prevent poor targets from leading the model training astray.

5.2 PROGRAM SYNTHESIS

In program synthesis, the source is a set of input-output specifications for the program, and the target
is a program that passes all test cases. Our method is suitable for this task because the target program
is not unique. Multiple programs may be consistent with the given input-output specifications. The
external filter is straightforward for this task: we simply check whether the generated output passes
all test cases. Note that at evaluation time, each instance contains extra held-out input-output test
cases; the program must pass these in addition to the given test cases in order to be considered
correct. When we perform prediction time filtering, we do not use held-out test cases in our filter.

7

Under review as a conference paper at ICLR 2020

Model Top-1
Generalization

MLE (Bunel et al., 2018) 71.91
MLE + RL + Beam Search
(Bunel et al., 2018)

77.12

MLE+ (Ours) 80.17

Table 3: Model performance on Karel program syn-
thesis task. MLE+ is our augmented version of the
MLE model (Bunel et al., 2018).

Data Augmentation Epoch

To
p-

1
G

en
er

al
iz

at
io

n

70
72
74
76
78
80
82

0 10 20 30 40 50

Figure 4: Top-1 generalization accuracy of
MLE+ model on validation set of Karel task
across different epochs.

5.2.1 EXPERIMENTAL SETUP

Our task is based on the educational Karel programming language (Pattis, 1981) used for evaluation
in Bunel et al. (2018) and Chen et al. (2019). Commands in the Karel language guide a robot’s
actions in a 2D grid, and may include for loops, while loops, and conditionals. Figure 1 contains an
example. We follow the experiment setup of Bunel et al. (2018).

Evaluation Metrics. The evaluation metric is top-1 generalization. This metric measures how often
the model can generate a program that passes the input-output test cases on the test set. At test
time, we use our model to generate up to L candidate programs and select the first one to pass the
input-output specifications (not including held-out test cases).

Models and Baselines. Our main baseline is the MLE baseline from Bunel et al. (2018). This
model consists of a CNN encoder for the input-output grids and a LSTM decoder along with a
handcoded syntax checker. It is trained to maximize the likelihood of the provided target program.
Our model is the augmentation of this MLE baseline by our iterative target augmentation framework.
As with molecular optimization, we generate up to K = 4 new targets per precursor during each
augmentation step. Additionally, we compare against the best model from Bunel et al. (2018), which
finetunes the same MLE architecture using an RL method with beam search to estimate gradients.5
We use the same hyperparameters as the original MLE baseline; see Appendix A for details.

5.2.2 RESULTS

Table 3 shows the performance of our model in comparison to previous work. Our model (MLE+)
outperforms the base MLE model in Bunel et al. (2018) model by a wide margin. Moreover, our
model outperforms the best reinforcement learning model (RL + Beam Search) in Bunel et al.
(2018), which was trained to directly maximize the generalization metric. This demonstrates the
efficacy of our approach in the program synthesis domain. Since our augmentation framework is
complementary to architectural improvements, we hypothesize that other techniques, such as exe-
cution based synthesis (Chen et al., 2019), can benefit from our approach as well.

6 CONCLUSION

In this work, we have presented an iterative target augmentation framework for generation tasks
with multiple possible outputs. Our approach is theoretically motivated, and we demonstrate strong
empirical results on both the molecular optimization and program synthesis tasks, significantly out-
performing baseline models on each task. Moreover, we find that iterative target augmentation is
complementary to architectural improvements, and that its effect can be quite robust to the quality
of the external filter. Finally, in principle our approach is applicable to other domains as well.

5More recently, Chen et al. (2019) achieved state-of-the-art performance on the same Karel task, with top-1
generalization accuracy of 92%. They use a different architecture highly specialized for program synthesis as
well as a specialized ensemble method. Thus their results are not directly comparable to our results in this
paper. We did not apply our method to their model as their implementation is not publicly available.

8

Under review as a conference paper at ICLR 2020

REFERENCES

David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital Oliver, and Colin
Raffel. Mixmatch: A holistic approach to semi-supervised learning. arXiv preprint
arXiv:1905.02249, 2019.

G Richard Bickerton, Gaia V Paolini, Jérémy Besnard, Sorel Muresan, and Andrew L Hopkins.
Quantifying the chemical beauty of drugs. Nature chemistry, 4(2):90, 2012.

Avrim Blum and Tom Mitchell. Combining labeled and unlabeled data with co-training. In Proceed-
ings of the eleventh annual conference on Computational learning theory, pp. 92–100. Citeseer,
1998.

Rudy Bunel, Matthew Hausknecht, Jacob Devlin, Rishabh Singh, and Pushmeet Kohli. Lever-
aging grammar and reinforcement learning for neural program synthesis. arXiv preprint
arXiv:1805.04276, 2018.

Eugene Charniak et al. Parsing as language modeling. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing, pp. 2331–2336, 2016.

Xinyun Chen, Chang Liu, and Dawn Song. Execution-guided neural program synthesis. Interna-
tional Conference on Learning Representations, 2019.

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete data
via the em algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1):
1–22, 1977.

Jacob Devlin, Rudy R Bunel, Rishabh Singh, Matthew Hausknecht, and Pushmeet Kohli. Neural
program meta-induction. In Advances in Neural Information Processing Systems, pp. 2080–2088,
2017.

David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alán
Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular
fingerprints. Advances in Neural Information Processing Systems, pp. 2224–2232, 2015.

Sergey Edunov, Myle Ott, Michael Auli, and David Grangier. Understanding back-translation at
scale. arXiv preprint arXiv:1808.09381, 2018.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
message passing for quantum chemistry. Proceedings of the 34th International Conference on
Machine Learning, 2017.

Sumit Gulwani. Automating string processing in spreadsheets using input-output examples. In ACM
Sigplan Notices, volume 46, pp. 317–330. ACM, 2011.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Multi-resolution autoregressive graph-to-graph
translation for molecules. arXiv preprint arXiv:1907.11223, 2019a.

Wengong Jin, Kevin Yang, Regina Barzilay, and Tommi Jaakkola. Learning multimodal graph-to-
graph translation for molecular optimization. International Conference on Learning Representa-
tion, 2019b.

David McClosky, Eugene Charniak, and Mark Johnson. Effective self-training for parsing. In Pro-
ceedings of the main conference on human language technology conference of the North American
Chapter of the Association of Computational Linguistics, pp. 152–159. Association for Compu-
tational Linguistics, 2006.

Marcus Olivecrona, Thomas Blaschke, Ola Engkvist, and Hongming Chen. Molecular de-novo
design through deep reinforcement learning. Journal of cheminformatics, 9(1):48, 2017.

Richard E. Pattis. Karel the Robot: A Gentle Introduction to the Art of Programming. John Wiley
& Sons, Inc., New York, NY, USA, 1st edition, 1981. ISBN 0471089281.

David Rogers and Mathew Hahn. Extended-connectivity fingerprints. J. Chem. Inf. Model., 50(5):
742–754, 2010.

9

Under review as a conference paper at ICLR 2020

Rico Sennrich, Barry Haddow, and Alexandra Birch. Improving neural machine translation models
with monolingual data. arXiv preprint arXiv:1511.06709, 2015.

Teague Sterling and John J Irwin. Zinc 15–ligand discovery for everyone. Journal of chemical
information and modeling, 55(11):2324–2337, 2015.

David Weininger. Smiles, a chemical language and information system. 1. introduction to method-
ology and encoding rules. J. Chem. Inf. Model., 28(1):31–36, 1988.

Qizhe Xie, Zihang Dai, Eduard Hovy, Minh-Thang Luong, and Quoc V Le. Unsupervised data
augmentation. arXiv preprint arXiv:1904.12848, 2019.

Kevin Yang, Kyle Swanson, Wengong Jin, Connor W Coley, Philipp Eiden, Hua Gao, Angel
Guzman-Perez, Tim Hopper, Brian Kelley, Miriam Mathea, et al. Analyzing learned molecu-
lar representations for property prediction. Journal of chemical information and modeling, 2019.

Zhi-Hua Zhou and Ming Li. Tri-training: Exploiting unlabeled data using three classifiers. IEEE
Transactions on Knowledge & Data Engineering, (11):1529–1541, 2005.

10

Under review as a conference paper at ICLR 2020

A MODEL HYPERPARAMETERS

Our augmented models share the same hyperparameters as their baseline counterparts in all cases.

A.1 MOLECULAR OPTIMIZATION

For the VSeq2Seq model we use batch size 64, embedding and hidden dimension 300, VAE latent
dimension 30, and an LSTM with depth 1 (bidirectional in the encoder, unidirectional in the de-
coder). For models using iterative target augmentation, n1 is set to 5 and n2 is set to 10, while for
the baseline models we train for 20 epochs (corresponding to n1 = 20, n2 = 0). The HierGNN
model shares the same hyperparameters as in Jin et al. (2019a).

For the training time and prediction time filtering parameters, we set K = 4, C = 200, and L = 10
for both the QED and DRD2 tasks.

A.2 PROGRAM SYNTHESIS

For the Karel program synthesis task, we use the same hyperparameters as the MLE baseline model
in Bunel et al. (2018). We use a beam size of 64 at test time, the same as the MLE baseline, but
simply sample programs from the decoder distribution when running iterative target augmentation
during training. The baseline model is trained for 100 epochs, while for the model employing
iterative target augmentation we train as normal for n1 = 15 epochs followed by n2 = 50 epochs
of iterative target augmentation. Due to the large size of the full training dataset, in each epoch of
iterative augmentation we use 1

10 of the dataset, so in total we make 5 passes over the entire dataset.

For the training time and prediction time filtering parameters, we set K = 4, C = 50, and L = 10.

B ADDITIONAL EXPERIMENTAL DETAILS

B.1 DATASET SIZES

In Table 4 we provide the training, validation, and test set sizes for all of our tasks. For each task we
use the same splits as our baselines.

Task Training Set Validation Set Test Set
QED 88306 360 800
DRD2 34404 500 1000
Karel 1116854 2500 2500

Table 4: Number of source-target pairs in training, validation, and test sets for each task.

B.2 MOLECULAR OPTIMIZATION LEARNING CURVES

In Figure 5, we provide the validation set performance per iterative target augmentation epoch for
our VSeq2Seq+ model on both the QED and DRD2 tasks. The corresponding figure for the MLE+
model on the Karel task is in the main text in Figure 4.

B.3 PROGRAM SYNTHESIS ABLATIONS

In Table 5 we provide the same ablation analysis that we provided in the main text for molecular
optimization, demonstrating that both training time iterative target augmentation as well as predic-
tion time filtering are beneficial to model performance. However, we note that even MLE(train), our
model without prediction time filtering, outperforms the best RL method from Bunel et al. (2018).

11

Under review as a conference paper at ICLR 2020

Data Augmentation Epoch

Q
ED

 S
uc

ce
ss

75

80

85

90

95

0 2 4 6 8 10
Data Augmentation Epoch

DR
D2

 S
uc

ce
ss

75

80

85

90

95

100

0 2 4 6 8 10

Figure 5: Left: QED success rate for VSeq2Seq+ on validation set for each epoch of iterative
target augmentation. Right: Same plot for DRD2. For each plot, the far left point indicates the
performance of the bootstrapped model.

Model Train Test Top-1 Generalization
MLE∗ 7 7 70.91
MLE(test)∗ 7 3 74.12
MLE(train) 3 7 77.92
MLE+ 3 3 80.17

Table 5: Ablation analysis of filtering at training and test time. “Train” indicates a model whose
training process uses data augmentation according to our framework. “Test” indicates a model that
uses the external filter at prediction time to discard candidate outputs which fail to pass the filter.
Note that MLE and MLE(test) are based on an MLE checkpoint which underperforms the published
result from Bunel et al. (2018) by 1 point, due to training for fewer epochs.

12

	Introduction
	Related Work
	Iterative Target Augmentation
	Motivation For Iterative Target Augmentation
	Experiments
	Molecular Optimization
	Experimental Setup
	Results

	Program Synthesis
	Experimental Setup
	Results

	Conclusion
	Model Hyperparameters
	Molecular Optimization
	Program Synthesis

	Additional Experimental Details
	Dataset Sizes
	Molecular Optimization Learning Curves
	Program Synthesis Ablations

