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ABSTRACT

Machine Learning (ML) and Deep Learning (DL) innovations are being introduced
at such a rapid pace that researchers are hard-pressed to analyze and study them.
The complicated procedures for evaluating innovations, along with the lack of
standard and efficient ways of specifying and provisioning ML/DL evaluation, is a
major “pain point” for the community. This paper proposes MLModelScope, an
open-source, framework/hardware agnostic, extensible and customizable design
that enables repeatable, fair, and scalable model evaluation and benchmarking.
We implement the distributed design with support for all major frameworks and
hardware, and equip it with web, command-line, and library interfaces. To demon-
strate MLModelScope’s capabilities we perform parallel evaluation and show how
subtle changes to model evaluation pipeline affects the accuracy and HW/SW stack
choices affect performance.

1 INTRODUCTION

The emergence of Machine Learning (ML) and Deep Learning (DL) within a wide array of application
domains has ushered in a great deal of innovation in the form of new models and hardware/software
(HW/SW) stacks (frameworks, libraries, compilers, and hardware accelerators) to support these
models. Being able to evaluate and compare these innovations in a timely manner is critical for their
adoption. These innovations are introduced at such a rapid pace (Dean et al., 2018; arXiv ML Papers
Statistics) that researchers are hard-pressed to study and compare them. As a result, there is an urging
need by both research and industry for a scalable model/HW/SW evaluation platform.

Evaluation platforms must maintain repeatability (the ability to reproduce a claim) and fairness (the
ability to keep all variables constant and allow one to quantify and isolate the benefits of the target of
interest). For ML/DL, repeatable and fair evaluation is challenging, since there is a tight coupling
between model execution and the underlying HW/SW components. Model evaluation is a complex
process where the model, dataset, evaluation method, and HW/SW stack must work in unison to
maintain the accuracy and performance claims (e.g. latency, throughput, memory usage). To maintain
repeatability, authors are encouraged to publish their code, containers, and write documentation which
details the usage along with HW/SW requirements (Mitchell et al., 2019; Reproducibility Checklist;
Dodge et al., 2019; Lipton & Steinhardt, 2019; Pineau et al., 2018). Often, the documentation
miss details which make the results not reproducible. To perform a fair evaluation, evaluators have
to manually normalize the underlying stack and delineate the codes to characterize performance
or accuracy. This is a daunting endeavor. As a consequence, repeatable and fair evaluation is
a “pain-point” within the community (Gundersen et al., 2018; Plesser, 2018; Ghanta et al., 2018;
Hutson, 2018; Li & Talwalkar, 2019; Tatman et al., 2018; Reproducibility in Machine Learning;
ICLR Reproducibility Challenge). Thus, an evaluation platform design must have a standard way to
specify, provision, and introspect evaluations to guarantee repeatability and fairness.

In this paper, we propose MLModelScope: a distributed design which consists of a specification and
a runtime that enables repeatable, fair, and scalable evaluation and benchmarking. The proposed
specification is a text-based and encapsulates the model evaluation by defining its pre-processing,
inference, post-processing pipeline steps and required SW stack. The runtime system uses the
evaluation specification along with user-defined HW constraints as input to provision the evalua-
tion, perform benchmarking, and generate reports. More specifically, MLModelScope guarantees
repeatable and fair evaluation by (1) defining a novel scheme to specify model evaluation which

1



Under review as a conference paper at ICLR 2019

separates the entanglement of data/code/SW/HW; (2) defining common techniques to provision
workflows with specified HW/SW stacks; and (3) providing a consistent benchmarking and reporting
methodology. Through careful design, MLModelScope solves the design objectives while being
framework/hardware agnostic, extensible, and customizable.

In summary, this paper makes the following contributions: 1 we comprehensively discuss the
complexity of model evaluation and describe prerequisites for a model evaluation platform. 2
We propose a model evaluation specification and an open-source, framework/hardware agnostic,
extensible, and customizable distributed runtime design which consumes the specification to execute
model evaluation and benchmarking at scale. 3 We implemented the design with support for Caffe,
Caffe2, CNTK, MXNet, PyTorch, TensorFlow, TensorRT, and TFLite, running on ARM, Power,
and x86 with CPU, GPU, and FPGA. 4 For ease of use, we equip MLModelScope with command
line, library, and ready-made web interfaces which allows “push-button” model evaluation∗. 5
We also add introspection capability in MLModelScope to analyze accuracy at different stages and
capture latency and memory information at different levels of the HW/SW stack. 6 We showcase
MLModelScope by running experiments which compare different model pipelines, hardware, and
frameworks.

2 MODEL EVALUATION CHALLENGES
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Figure 1: Execution of a model evaluation
at different levels of hardware and software
abstractions on GPUs.

Model evaluation is complex. Researchers that publish
and share DL models can attest to that but are sometimes
unaware of the full scope of this complexity. To perform
repeatable and fair evaluation, we need to be cognizant
of the HW/SW stack and how it affects the accuracy and
performance of a model. Figure 1 shows our classification
of the HW/SW stack levels. Model level ( L1 ) evaluates
a model by performing input pre-processing, model in-
ference, and post-processing. The pre-processing stage
transforms the user input into a form that the model expects. The model inference stage calls the
framework’s inference API on the processed input and produces an output. The post-processing
stage transforms the model output to a form that can be viewed by a user or used to compute metrics.
Framework level ( L2 ) performs model inference by executing the layers in the model graph using
a framework such as TensorFlow, MXNet, or PyTorch. Layer level ( L3 ) executes a sequence of
ML library calls for layers such as convolution, normalization, or softmax. ML Library level ( L4 )
invokes a chain of system library calls for functions in ML libraries such as cuDNN(Chetlur et al.,
2014), MKL-DNN (MKL-DNN) or OpenBLAS (Xianyi et al., 2014). And, last but not the least, at
the hardware level ( L5 ), there are CPU/GPU instructions, disk, and network I/O events, and other
low-level system operations through the entire model evaluation. All the HW/SW abstractions must
work in unison to maintain the reported accuracy and performance claims. When things go awry,
each level within the abstraction hierarchy can be suspect.

Currently, model authors distribute models by publishing documentation and ad hoc scripts to public
repositories such as GitHub. Due to the lack of specification, authors may under-specify or omit key
aspects of model evaluation. This inhibits, or makes it difficult, for others to repeat their evaluations
or validate their claims. Thus all aspects of the model evaluation must be captured by a evaluation
platform to guarantee repeatability. To highlight this, consider the model evaluation pipeline at
L1 . While the model inference stage is relatively straight forward, the pre- and post-processing
stages are surprisingly subtle and can easily introduce discrepancies in the results. Some of the
discrepancies might be “silent errors” — where the evaluation is correct for the majority of the inputs
but is incorrect for a small number of cases. In general, accuracy errors due to under-specifying pre-
and post-processing are difficult to identify and even more difficult to debug. In Section 4.1, we show
the effects of under-specifying different operations in pre-processing on image classification models.

The current practice of publishing models also causes a few challenges which must be addressed by
a fair and scalable evaluation platform. First, any two ad hoc scripts do not adhere to a consistent
evaluation API. The lack of a consistent API makes it difficult to evaluate models in parallel and, in
turn, slows down the ability to quickly compare models across different HW/SW stacks. Second, ad

∗A video demo of web UI is at https://drive.google.com/open?id=1LOXZ7hs_cy-i0-DVU-5FfHwdCd-1c53z.
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hoc scripts tend to not clearly demarcate the stages of the model evaluation pipeline. This makes it
hard to introspect and debug the evaluation. Furthermore, since an apple-to-apple comparison between
models requires a fixed HW/SW stack, it is difficult to perform honest comparison between two
shared models without modifying some ad hoc scripts. MLModelScope addresses these challenges
through the careful design of a model evaluation specification and a distributed runtime as described
in Section 3.

3 MLMODELSCOPE DESIGN

1 name: Inception-v3 # model name
2 version: 1.0.0 # semantic version of model
3 task: classification # model modality
4 license: MIT # model license
5 description: ...
6 framework: # framework information
7 name: TensorFlow
8 version: ^1.x # framework version constraint
9 container: # containers used for architecture

10 arm64: mlms/tensorflow:1-13-0_arm64-cpu
11 amd64:
12 cpu: mlms/tensorflow:1-13-0_amd64-cpu
13 gpu: mlms/tensorflow:1-13-0_amd64-gpu
14 ppc64le:
15 cpu: mlms/tensorflow:1-13-0_ppc64le-cpu
16 gpu: mlms/tensorflow:1-13-0_ppc64le-gpu
17 envvars:
18 - TF_ENABLE_WINOGRAD_NONFUSED: 0
19 inputs: # model inputs
20 - type: image # first input modality
21 layer_name: data
22 element_type: float32
23 pre-processing: |
24 def pre_processing(env, inputs):
25 ... #e.g. import opencv as cv
26 return preproc_inputs
27 outputs: # model outputs
28 - type: probability # output modality
29 layer_name: prob
30 element_type: float32
31 post-processing: |
32 def post_processing(env, inputs):
33 ... # e.g. os.exec("Rscript ~/postproc.r")
34 return postproc_inputs
35 source: # model source
36 graph_path: https://.../inception_v3.pb
37 training_dataset: # dataset used for training
38 name: ILSVRC 2012
39 version: 1.0.0

Listing 1: Example evaluation manifest.

We propose MLModelScope, an open-source, frame-
work/hardware agnostic, extensible and customizable
distributed system design to perform model evaluation
and benchmarking at scale. MLModelScope consists
of a model evaluation specification and a distributed
runtime.

3.1 MODEL EVALUATION MANIFEST

All models in MLModelScope are described using a
model specification (called manifest). The manifest is
a text file and includes the information needed to run a
model. The manifest specifies information such as the
model pre- and post-processing steps, its model sources
(graph and weight), and its software stack. The hard-
ware details are not present in the manifest, but are
user-provided options when performing the evaluation.
By decoupling the hardware specification from the manifest, a manifest can work across hardware.

An example manifest is shown in Listing 1 and contains model name, version, and type of task
(Lines 1–3); framework name and version constraints (Lines 6–8); containers to use for evaluation
(Lines 9–16); model inputs (Lines 19–22); pre-processing function (Lines 23–26); model outputs
(Lines 27–30); post-processing function (Lines 31–34); model resources (Lines 35–36); and other
metadata attributes (Lines 37–39). The key components of the manifest are:

Software Stack−MLModelScope uses docker containers to maintain the software stacks. MLMod-
elScope provides ready-made containers for all popular frameworks, but users can use any container
hosted on Docker Hub. Multiple containers can be specified within the manifest. The container used
for evaluation is dependent on the executing hardware and whether the system has a GPU or not.

Model Source−Model source contains links to the model graph (the graph_path field) and
weights (the weights_path field). For frameworks which have one file to represent the graph and
its weights, the weights field is omitted from the manifest. The model can be stored in the cloud,
downloaded on demand, and is cached to the local file system.

Versioning−Models, frameworks, and datasets are all versioned within MLModelScope using a
semantic versioning (Preston-Werner, 2019) scheme. The versioning of frameworks and datasets
supports constraints, such as ^1.x (Listing 1, Line 8). This tells MLModelScope that the model
works on any TensorFlow v1 framework.

1 type: image # input modality
2 layer_name: data
3 element_type: float32
4 steps: # pre-processing steps
5 decode:
6 element_type: int8
7 data_layout: NHWC
8 color_layout: RGB
9 crop:
10 method: center
11 percentage: 87.5
12 resize:
13 dimensions: [3, 299, 299]
14 method: bilinear
15 keep_aspect_ratio: true
16 mean: [127.5, 127.5, 127.5]
17 rescale: 127.5

Listing 2: MLModelScope’s eval-
uation manifest for Inception-v3.

Pre-/Post-Processing Functions−To perform input pre-processing
and output post-processing, MLModelScope allows arbitrary Python
functions to be placed within the manifest file. The pre- and post-
processing functions have the signature def fun(env, data)
where env contains metadata of the evaluation request and
data is a PyObject representation of the user request for pre-
processing and the model’s output for post-processing. Internally
MLModelScope executes the Python code within a Python sub-
interpreter (Python Subinterpreter) in the launched container. To
reduce data copy overhead parameters are passed by reference to
the processing functions. The pre- and post-processing functions are
flexible; i.e. users may import external Python modules or invoke external scripts. By allowing arbi-
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trary pre- and post-processing function executions, MLModelScope works with existing processing
codes and is capable of supporting arbitrary modalities.

Built-in Pre-/Post-Processing Functions−As vision models are widely used and their pre- and
post-processing operations are less diverse, MLModelScope allows for common pre-processing
image operations (e.g. image decoding, resizing, and normalization) and post-processing operations
(e.g. topK, IOU, mAP, etc.) to be used within the manifest without writing code. Internally,
MLModelScope invokes built-in pre- and post-processing code to perform these operations. Listing 2
can be placed within the inputs block (Lines 19–22 in Listing 1) as the pre-processing steps for
Inception-v3. The steps are executed in the order that is specified, since, as we show in Section 4, the
order of operations can have a significant impact on achieved model accuracy. Users are not required
to use this feature, but using this feature allows users to easily compare pre- or post-processing steps.
We use this mechanism during our evaluation in Section 4.

3.2 THE MLMODELSCOPE RUNTIME

1 // Opens a predictor.
2 rpc ModelLoad(OpenRequest) returns (ModelHandle){}
3 // Close an open predictor.
4 rpc ModelUnload(ModelHandle) returns (CloseResponse){}
5 // Perform model inference on user data.
6 rpc Predict(PredictRequest) returns (PredictionResponse){}

Listing 3: MLModelScope’s predictor RPC API consists of
3 functions which are specified using Protobuf.

The MLModelScope runtime consumes the
model manifest to provision evaluations and
perform benchmarking. Users evaluate a model by specifying its name, version, and framework
along with the target hardware requirements. The MLModelScope runtime uses these user-provided
constraints to query previous evaluations or schedule new ones. The runtime is distributed and is
built as a set of extensible and customizable modular components (see Figure 2). Due to space
limitations, we only highlight the key components of the runtime (See Appendix for a description of
all components):

Framework Predictors−At the core of the software stack are the frameworks. To enable uniform
evaluation and maximize code reuse, MLModelScope wraps each framework’s C++ inference API
to provide a uniform interface (called predictor API). The predictor API (shown in Listing 3) is
minimal and performs model loading, unloading, and inference. So long as a program implements
MLModelScope’s predictor API, it can be plugged into the system. This means that MLModelScope’s
design allows for exotic hardware or framework support. For example, some hardware, such as
FPGAs and ASICs, do not have a framework per se. These hardware are exposed to MLModelScope
through a program which implements the predictor API. The ModelLoad API for FPGAs, for
example, downloads a bitfile and load it onto the device.

The predictor API is linked against common code to perform container launching, manifest file
handling, downloading of required assets, pre- and post-processing function execution, collecting
of performance profiles, and publishing of results — we call this bundle an agent. These agents
can be run on separate machines, can be run in parallel, and are managed by the MLModelScope
orchestration layer. Agents can be run on remote systems behind firewalls to allow for model
evaluation on remote hardware — this allows hardware providers to give model evaluators access to
perform model evaluations without full unrestricted access to the hardware. MLModelScope does
not require modifications to a framework and thus pre-compiled binary versions of frameworks (e.g.
distributed through Python’s pip) or customized versions of a framework work within MLModelScope.

Manifest and Predictor Registry−MLModelScope uses a distributed key-value registry (Escriva
et al., 2012) to store the model manifests and running agent information. MLModelScope’s orches-
tration layer leverages the registry to facilitate the discovery of models and routing of user requests
across the distributed agents using the HW/SW constraints provided by the user. The registry is
dynamic — i.e. both model manifests and agents can be added and removed at runtime.

Profilers and Tracers−To enable performance debugging, MLModelScope collects system, frame-
work, and model level profiling information. This data is published into a tracing server (OpenTracing;
Sigelman et al., 2010) where it gets aggregated and summarized. Through the trace, users get a
holistic view of the performance of model evaluation and can identify bottlenecks. To minimize
overhead, the profilers are only active when a user enables them as part of the evaluation request.

Web UI and Command Line Interface−Users interact with MLModelScope through its web UI
or command-line interface by specifying model and hardware constraints. These constraints are
used to query the database for previous evaluations or to schedule new ones. Users can integrate
MLModelScope within their existing tools or pipelines by using its REST or RPC APIs.
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3.3 MLMODELSCOPE EVALUATION FLOW
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Figure 2: MLModelScope’s distributed run-
time enables scalable evaluation across mod-
els, frameworks, and systems.

To illustrate the execution flow of a model evaluation,
consider a user wanting to run Inception-v3 trained using
ILSVRC 2012 on an Intel system with TensorFlow sat-
isfying the "≥1.10.x and ≤1.13.0" version con-
straint. The user specifies these constraints using MLMod-
elScope’s UI and invokes the model evaluation. MLMod-
elScope then finds one or more systems which satisfy the
user’s constraints, sets up the environment, and launches
the model evaluation within a container. The results are
then published to a database for subsequent analysis.

Figure 2 shows the evaluation flow of a user’s request. 1
On system startup, each agent publishes the hardware it
is running on to the registry. This information is made visible to the MLModelScope orchestration
layer. 2 A user then uses MLModelScope’s UI to request an evaluation by specifying the model,
framework, and hardware constraints. 3 An API request is then performed to the remote API handler,
which then 4 queries the registry to find an agent which satisfies the user’s constraints. 5 The
request is then forwarded to one (or all) of the agents capable of running the evaluation. The agents
then provision the hardware and software environment and run the model. 6 The agents then collect
and publish the results to a centralized evaluation database. 7 Finally, an evaluation summary is
presented to the user.

4 EVALUATION

We implemented the MLModelScope design as presented in Section 3 with support for popular
frameworks (Caffe, Caffe2, CNTK, MXNet, PyTorch, TensorFlow, TensorRT, and TFLite) and tested
it on common hardware (X86, PowerPC, and ARM CPUs as well as GPU and FPGA accelerators). We
populated it with over 300 models covering a wide array of inference tasks such as image classification,
object detection, segmentation, image enhancement, recommendation, etc. We considered three
aspects of MLModelScope for our evaluation: the effects of under-specified pre-processing on model
accuracy, model performance across systems, and the ability to introspect model evaluation to identify
performance bottlenecks. To demonstrate MLModelScope’s functionality, we installed it on multiple
Amazon instances and performed the evaluation in parallel using highly cited image classification
models.

Unless otherwise noted, all results use TensorFlow 1.13.0-rc2 compiled from source; CUDNN
7.4; GCC 6.4.0; Intel Core i7-7820X CPU with Ubuntu 18.04.1; NVIDIA TITAN V GPU with
CUDA Driver 410.72; and CUDA Runtime 10.0.1 (Amazon p3.2xlarge Instance).

4.1 MODEL PRE-PROCESSING

We use MLModelScope to compare models with different operations in the pre-processing stage.
Specifically, we look at the impact of image decoding, cropping, resizing, normalization, and data
type conversion on model accuracy. For all the experiments, the post-processing is a common
operation which sorts the model’s output to get the top K predictions. To perform the experiments,
we create variants of the original Inception-v3 (Silberman & Guadarrama, 2018; Szegedy et al., 2016)
pre-processing specification (shown in Listing 2). We maintain everything else as constant with the
exception to the operation of interest and evaluate the manifests through MLModelScope’s web UI.

Color Layout−Models are trained with decoded images that are in either RGB or BGR layout. For
legacy reasons, OpenCV decodes images in BGR layout by default and, subsequently, both Caffe
and Caffe2 use the BGR layout (caffebgr). Other frameworks (such as TensorFlow and PyTorch) use
RGB layout. Intuitively, incorrect color layout only misclassifies images which are defined by their
colors. Images which are not defined by their colors, however, would be correctly classified. Figure 3
shows the Top 5 classifications for the same image when changing the color layout.

Data Layout−Images are represented by: N (batch size), C (channels), H (height), and W (width).
Models are trained using data in either NCHW or NHWC form. Figure 4 shows Inception-v3’s (trained
using NHWC layout) Top1 result using different layouts for the same image.
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Figure 3: Top 5 predictions using
Inception-v3 with RGB or BGR
color layout.

Figure 4: Top 1 predictions using
Inception-v3 with NCHW or NHWC
data layout.

Figure 5: Image decoding difference
between PIL and OpenCV.
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Figure 6: Differences in the prediction results due to cropping using TensorFlow Inception-v3.
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Figure 7: Differences due to order of operations using TensorFlow Inception-v3.
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Figure 8: Performance of AlexNet with batch size 64 across frameworks on Amazon P3. MLModelScope
enables one to understand and debug performance bottlenecks at layer and sub-layer granularity. The axis on top
(0˘35) is the duration (ms) to evaluate each layer within the model, while the axis at the bottom (0˘3) is the
duration (ms) to evaluate the kernels within the second convolution and Relu layers.

Decoding and Color Conversion−It is common to use JPEG as the image data serialization for-
mat (with ImageNet being stored as JPEG images). Model developers use library functions such
as opencv.imread, PIL.Image.open, or tf.io.decode_jpeg to decode JPEG images.
These functions may use different decoding algorithms and color conversion methods. For example,
we find the YCrCb to RGB color conversion to not be consistent across the PIL and OpenCV libraries.
Figure 5 shows the results† of decoding an image using Python’s PIL and compares it to decoding

†To increase the contrast of the image differences on paper, we dilate the image (with radius 2) and adjust its
pixel values to cover the range between 0 and 1.
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Expected Color Layout Cropping Type Conversion
Model Name Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5
Inception-V3 (Szegedy et al., 2016) 78.41% 94.07% 67.44% 88.44% 78.27% 94.24% 78.41% 94.08%
MobileNet1.0 (Howard et al., 2017) 73.27% 91.30% 59.22% 82.95% 71.26% 90.17% 73.27% 91.29%
ResNet50-V1 (He et al., 2016a) 77.38% 93.58% 63.21% 85.65% 75.87% 92.82% 77.40% 93.56%
ResNet50-V2 (He et al., 2016b) 77.15% 93.43% 63.35% 85.95% 75.71% 92.72% 77.13% 93.42%
VGG16 (Simonyan & Zisserman, 2014) 73.23% 91.31% 59.17% 82.77% 71.71% 90.61% 73.24% 91.33%
VGG19 (Simonyan & Zisserman, 2014) 74.15% 91.77% 60.41% 83.57% 72.66% 90.99% 74.14% 91.75%

Table 1: The effects of the pre-processing on the Top 1 and Top 5 accuracy for heavily cited models.
with OpenCV. As shown, edge pixels are not decoded consistently, even though these are critical
pixels for inference tasks such as object detection.

Cropping and Resizing−Accuracy is sometimes reported for cropped datasets, and this is often
overlooked when evaluating a model. For Inception-v3, for example, input images are 87.5% center-
cropped and then resized to 299 × 299. Figure 6 shows the effect of cropping on accuracy: (a) is
the original image; (b) is the result of center cropping the image with 87.5% and then resizing; (c) is
the result of just resizing; (d) and (f) shows the top-5 results for images (b) and (c). Intuitively, the
effects of cropping are more pronounced for images where the marginal regions are meaningful (e.g.
framed paintings).

Type Conversion and Normalization−After decoding, the image data is in bytes and is converted to
FP32 (assuming an FP32 model). Mathematically, float to byte conversion is float2byte(x) = 255x,
and byte to float conversion is byte2float(x) = x

255.0 and are equivalent. Because of programming
semantics, however, the executed behavior of byte to float conversion is byte2float(x) =

⌊
x

255.0

⌋
.

The input may also be normalized to have zero mean and unit variance (pixel−mean
stddev ). We find

that the order of operations for type conversion and normalization matters. Figure 7 shows the
image processing results using different order of operations for meanByte = stddevByte = 127.5
and meanF loat = stddevF loat = 0.5 where: (a) is the original image, (b) is the result of
reading the image in bytes then normalizing it with both mean and standard deviation in bytes,
byte2float( imgByte−meanByte

stddevByte ), (c) is the result of reading an image in floats then normalizing

it with both mean and standard deviation in FP32, byte2float(imgByte)−meanFloat
stddevF loat , and (d) is the

difference between (b) and (c). The inference results of (b) and (c) are shown in (e) and (f).
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Figure 9: Inference latency of Inception-v3
for (a) CPU and (b) GPU systems. The x-
axis is the batch size, and the y-axis is la-
tency in seconds for (a) and throughput in
images/second for (b).

Table 1 shows the effects of pre-processing operations ‡ on
the top 1 and top 5 accuracy for the entire ImageNet (Deng
et al., 2009) validation dataset. The experiments are run in
parallel on 4 Amazon p3.2xlarge systems. We can see
that the accuracy errors due to incorrect pre-processing
might be hard to debug, since they might only affect a
small subset of the inputs. For example, failure to center-
crop the input results in 1.45% − 7.5% top 1 accuracy
difference, and 0.36%− 4.22% top 5 accuracy difference.

4.2 HARDWARE EVALUATION

We use MLModelScope to compare different hardware’s
achieved latency and throughput while fixing the model
and software stack. We launch the same MLModelScope
TensorFlow agent on 9 different Amazon EC2 systems recommended for DL (shown in Table 2).
These systems are equipped with either GPUs or CPUs. We use MLModelScope’s UI to run the
evaluations in parallel across all 9 systems, and measure the achieved latency and throughput of the
Inception-v3 model as the batch size is varied (shown in Figure 9). Using the measured latency and
throughput, along with system pricing information, we calculate the cost/performance as “dollars per
million images”. We find that GPU instances in general are more cost-efficient than CPU instances for
batched inference. We also observe that the g3s.xlarge is as cost efficient as the p3.2xlarge,
because of the high price of the p3.2xlarge instance.

4.3 FRAMEWORK EVALUATION AND INTROSPECTION

Instance Hardware $/hr Cost/Perf.
p2.xlarge Tesla K80 (Kepler), 12GB 0.9 2.39
g3s.xlarge Tesla M60 (Maxwell), 8GB 0.75 1.45
p3.2xlarge Tesla V100-SXM2 (Volta), 16GB 3.06 1.49
c5.large 2 Intel Platinum 8124M, 4GB 0.085 2.76
c5.xlarge 4 Intel Platinum 8124M, 8GB 0.17 2.88
c5.2xlarge 8 Intel Platinum 8124M, 16GB 0.34 3.19
c4.large 2 Intel Xeon E5-2666 v3, 3.75GB 0.1 5.09
c4.xlarge 4 Intel Xeon E5-2666 v3, 7.5GB 0.199 5.95
c4.xlarge 8 Intel Xeon E5-2666 v3, 15GB 0.398 5.94

Table 2: Amazon systems used for evaluation.

We use MLModelScope to compare and introspect
frameworks’ performance by fixing the model and hard-

‡We omit from Table 1 the data layout pitfall results, since, as expected, it results in very low accuracy.
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ware. For illustration purpose, we show AlexNet, since it has less than 10 layers and fits within the
paper. We use MLModelScope’s TensorRT, MXNet, Caffe2, and Caffe agents and run them on the
Amazon p3.2xlarge system. Figure 8 shows AlexNet’s latency across frameworks. To understand
the performance of each framework, we use MLModelScope’s profiler to delve deep and capture each
evaluation’s layer and library performance information. Through the data, we observe that ML layers
across frameworks are implemented differently and dispatched to different library functions. Take
the first conv2 and the following relu layers for example. In TensorRT, these two layers are fused and
are mapped into two trt_volta_scudnn_128x128_relu_small_nn_v1 kernels (Oyama
et al., 2018) which take 1.95ms. In Caffe2, however, the layers are not fused and take 2.63ms. The
sub-model profile information helps identify bottlenecks within the model inference. We can see
that MLModelScope helps understand the performance across the HW/SW stack which is key to
evaluating HW/SW stack choices.

5 RELATED WORK

To encourage repeatability in ML/DL research, guidelines (Mitchell et al., 2019; Dodge et al., 2019;
Li & Talwalkar, 2019; Lipton & Steinhardt, 2019; Pineau et al., 2018; Reproducibility Checklist)
have been developed which authors are advised to follow. These guidelines are checklists of what is
required to ease reproducibility and encourage model authors to publish code and write down the
HW/SW constraints needed to repeat the evaluation. More often than not, model authors use note-
books (Ragan-Kelley et al., 2014), package managers (Fursin et al., 2018a;b) or containers (Kurtzer
et al., 2017; Godlove, 2019) to publish their code or specify the SW requirements. These SW
requirements are accompanied with a description of the usage, required HW stack, and are published
to public repositories (e.g. on GithHub). Through its design, MLModelScope guarantees repeat-
able evaluations by codifying the model evaluation through the manifest and user-provided HW
constraints.

Both industry and academia have developed consortiums to build benchmark suites that evaluate
widely used models (MLPerf; MLMark; AI-Matrix; Gao et al., 2019; Li et al., 2019). These
benchmark suites provide separate (non-uniform) scripts that run each model. Each researcher
then uses these scripts to perform evaluations on their target HW/SW stack. MLModelScope’s
model pipeline specification overlaps with the demarcation used by other benchmark suites (e.g.
MLPerf seperates model evaluation into pre-processing, model inference, and post-processing).
MLModelScope, as an evaluation platform, can incorporate models from benchmark suites so that
they can benefit from the distributed evaluation, profiling, and experiment management capabilities.
MLModelScope currently has models from benchmark suites such as MLPerf Inference and Alibaba’s
AI-Matrix built-in.

To allow for distributed evaluation, existing platforms utilize general distributed fabrics (Burns et al.,
2016; Boehm et al., 2016; Hindman et al., 2011) to perform model serving (Kubeflow; Chard et al.,
2019; Novella et al., 2018; Pachyderm; Zhou et al., 2019) or experimentation (Tsay et al., 2018;
FAI-PEP). MLModelScope differs in that it decouples the specification and provisioning of the model
evaluation pipeline from the HW/SW stack to enable repeatable and fair evaluations. Moreover,
it allows users to introspect the execution at sub-model granularity. To the best of the author’s
knowledge, no previous design addresses the confluence of repeatability, fairness, and introspection
within scalable model evaluation at the same time.

6 CONCLUSION

Everyday, an increasingly complex and diverse DL models as well as hardware/software (HW/SW)
solutions are proposed — be it algorithms, frameworks, libraries, compilers, or hardware. Both
industry and research are hard-pressed to quickly, thoroughly, consistently, and fairly evaluate
these new innovations. This paper proposes MLModelScope, which is a specification along with a
distributed runtime design that is scalable, extensible, and easy-to-use. Through MLModelScope,
users can perform fair and repeatable comparisons across models, software stacks, and hardware.
MLModelScope’s careful design of the specification, runtime, and parallel evaluation flow reduces
time-to-test for model evaluators. With MLModelScope, we evaluate a set of representative image
classification models and present insights into how different pre-processing operations, hardware,
and framework selection affect model accuracy and performance.
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A SUPPLEMENTARY MATERIAL

MLModelScope is a big system, and we had to selectively choose topics due to the space limitation.
This supplementary materials section is used to provide details about MLModelScope that we
were unable to cover in the paper’s main body. Specifically, we discuss how MLModelScope: (a)
incorporates the latest research and production models through model manifests by showing object
detection and instance segmentation models. (b) Attracts users by providing a web interface and
command line for scalable model evaluation. (c) Is built from a set of modular components which
allows it to be easily customized and extended.

A.1 MLMODELSCOPE MODEL MANIFESTS

Listing 4 shows the manifest of SSD_MobileNet_v1_COCO, an objection detection model, for
TensorFlow. This model embeds the pre-processing operations in the model graph, and thus requires
no normalization, cropping, or resizing. The major difference from a image classification model
manifest is the task type (being object_detection) and the outputs. There are three output
tensors for this model (boxes, probabilities, and classes). These output tensors are processed by
MLModelScope to produce a single object detection feature array, which can then be visualized or
used to calculate the metrics (e.g. mean average precision).

1 name: SSD_MobileNet_v1_COCO # name of your model
2 version: 1.0 # version information in semantic version format
3 task: object_detection # task type
4 framework:
5 name: TensorFlow # framework name
6 version: 1.12.x # framework version contraint
7 container: # containers used to perform model evaluation
8 amd64:
9 gpu: mlcn/tensorflow:amd64-cpu

10 cpu: mlcn/tensorflow:amd64-gpu
11 ppc64le:
12 cpu: mlcn/tensorflow:ppc64le-gpu
13 gpu: mlcn/tensorflow:ppc64le-gpu
14 description: ...
15 references: # references to papers / websites / etc.. describing the model
16 - ...
17 license: Apache License, Version 2.0 # license of the model
18 inputs: # model inputs
19 - type: image # first input modality
20 element_type: uint8
21 layer_name: image_tensor
22 layout: HWC
23 color_layout: RGB
24 outputs:
25 - type: box
26 element_type: float32
27 layer_name: detection_boxes
28 - type: probability
29 element_type: float32
30 layer_name: detection_scores
31 - type: class
32 element_type: float32
33 layer_name: detection_classes
34 features_url: https://.../labels.txt
35 source:
36 graph_path: https://.../ssd_mobilenet_v1_coco_2018_01_28.pb
37 attributes: # extra model attributes
38 training_dataset: COCO # dataset used to for training
39 manifest_author: ...

Listing 4: MLModelScope’s model specification for SSD_MobileNet_v1_COCO TensorFlow model.

Listing 5 shows the manifest of Mask_RCNN_ResNet50_v2_Atrous_COCO, an instance seg-
mentation model, for MXNet. The major difference from the object detection model in Listing 4 is
the task type (being instance_segmentation) and the outputs. Listing 5 shows four outputs
for this model (boxes, probabilities, classes, and masks). These output tensors are processed by
MLModelScope to produce a single instance segmentation feature array. Note that unlike TensorFlow,
MXNet uses layer indices in place of layer names to get the tensor objects.

1 name: Mask_RCNN_ResNet50_v2_Atrous_COCO # name of your model
2 version: 1.0 # version information in semantic version format
3 task: instance_segmentation
4 framework:
5 name: MXNet # framework for the model
6 version: 1.4.x # framework version contraint
7 container: # containers used to perform model evaluation
8 amd64:
9 gpu: mlcn/mxnet:amd64-cpu

10 cpu: mlcn/mxnet:amd64-gpu
11 ppc64le:
12 cpu: mlcn/mxnet:ppc64le-gpu
13 gpu: mlcn/mxnet:ppc64le-gpu
14 description: ...
15 references: # references to papers / websites / etc.. describing the model

12



Under review as a conference paper at ICLR 2019

16 - ...
17 license: Apache License, Version 2.0 # license of the model
18 inputs: # model inputs
19 - type: image # first input modality
20 element_type: uint8
21 layout: HWC
22 color_layout: RGB
23 outputs:
24 - type: box
25 element_type: float32
26 layer_name: 0
27 - type: probability
28 element_type: float32
29 layer_name: 1
30 - type: class
31 element_type: float32
32 layer_name: 2
33 features_url: https://.../labels.txt
34 - type: mask
35 element_type: float32
36 source: # specifies model graph and weights sources
37 base_url: http://.../mxnet/Mask_RCNN_ResNet50_v2_Atrous_COCO/
38 graph_path: model-symbol.json
39 weights_path: model-0000.params
40 attributes: # extra model attributes
41 training_dataset: COCO # dataset used to for training
42 manifest_author: ...

Listing 5: MLModelScope’s model specification for Mask_RCNN_ResNet50_v2_Atrous_COCO MXNet
model.

Figure 10: The MLModelScope website provides an intuitive interface to conduct experiments.

A.2 WEBSITE WORKFLOW

Although MLModelScope provides both command line and library interfaces, we find the web-
site provides an intuitive flow for specifying and running experiments. Figure 10 shows the
flow, and a video demonstrating it can be found at https://drive.google.com/open?id=1LOXZ7hs_
cy-i0-DVU-5FfHwdCd-1c53z. In figure 10, users first arrive at 1 MLModelScope’s landing page.
The landing page contains a description of the project along with links to how to setup and install
MLModelScope. Users can try MLModelScope by 2 clicking the demo button, which then displays
3 the inference tasks exposed through the website. If a user 4 selects object detection, then 5
models that are available for object detection are displayed. A user can then 7 selects one or more
models and 8 selects one or more systems to run the evaluation on. The input can be specified as a
URL, data from disk, or dataset 8 and once complete the user can perform the evaluation 9 . This
10 will run the evaluation on the remote system and 11 display the evaluation results along with
summary of the execution flow.
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A.3 MLMODELSCOPE’S RUNTIME ARCHITECTURE
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Figure 11: MLModelScope’s runtime com-
ponents.

In this section we describe each component in Figure 11
in detail. The runtime is designed to be extensible and
customizable.

A.3.1 USER INTERFACE AND API

MLModelScope can be used as an application or as a
library. Users interact with MLModelScope application
through its website, command line, or its API interface.
The website and command line interface allow users to
evaluate and profile models without familiarity with the
underlying frameworks or profiling tools. Users who wish
to integrate MLModelScope within their existing tools or
pipelines can use the REST or RPC APIs. They can also
compile MLModelScope as a standalone shared library
and use it within their C/C++, Python, or Java projects.

A.3.2 ML ARTIFACTS

As discussed in the main body of the paper, replication of model accuracy and performance results is
dependent on: the usage of specific HW/SW stack; the training dataset; and the pre/post-processing
steps on the inputs and outputs. MLModelScope specifies these requirements via a model manifest
file described in Section 3. The manifest tells MLModelScope the HW/SW stack to instantiate and
how to evaluate the model.

Asset Versioning — Models, frameworks, and datasets are versioned using a semantic versioning
scheme. The MLModelScope middleware layer uses this information for asset management and
discovery. To request a model, for example, users specify model, framework, hardware, or dataset
constraints. MLModelScope solves the constraint and returns the predictors (systems where the
model is deployed) that satisfy the constraint. The model evaluation can then be run on one of (or, at
the user request, all) the predictors.

Docker Containers — To maintain the SW stack, evaluations are performed within docker containers.
To facilitate user introspection of the SW stack, MLModelScope integrates with existing docker tools
that allows querying images’s SW environment and metadata.

Pre/Post-Processing Operations — MLModelScope provides the ability to perform common op-
erations such as resizing, normalization, and scaling without writing code. It also allows users to
specify code snippets for pre/post-processing within the manifest file which are run within a Python
subsession. MLModelScope is able to support a wide variety of models for different input modalities.

Evaluation History — MLModelScope uses the manifest information as keys to store the evaluation
results in a database. Users can view historical evaluations through the website or command line using
query constraints similar to the ones mentioned above. MLModelScope summarizes and generates
plots to aid in comparing the performance across experiment.

A.3.3 FRAMEWORK AND MODEL PREDICTORS

A predictor is a thin abstraction layer that exposes a framework through a common API. A predictor
is responsible for evaluating models (using the manifest file) and capturing the results along with
the framework’s profile information.A predictor publishes its HW/SW stack information to MLMod-
elScope’s registry at startup, can have multiple instantiations across the system, and is managed by
MLModelScope’s middleware.

A.3.4 MIDDLEWARE

The middleware layer is composed of services and utilities for orchestrating, provisioning, aggregating,
and monitoring the execution of predictors — acting as a conduit between the user-facing APIs and
the internals of the system.
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Manifest and Predictor Registry — MLModelScope uses distributed key-value database to store
the registered model manifests and running predictors. MLModelScope leverages the registry to
facilitate discovery of models, load balancing request across predictors, and to solve user constraint
for selecting the predictor (using HW/SW stack information registered). The registry is dynamic —
both model manifests and predictors can be added or deleted at runtime throughout the lifetime of the
application.

Data Manager — MLModelScope data manager is responsible for downloading the assets (dataset
and models) required by the model’s manifest file. Assets can be hosted within MLModelScope’s
assets repository, or hosted externally. For example, in Listing 1 ( Lines 35–36) the manifest uses a
model that’s stored within the MLModelScope repository, the data manager downloads this model on
demand during evaluation.

Within MLModelScope’s repository, datasets are stored in an efficient data format and are placed
near compute on demand. The dataset manager exposes a consistent API to get values and iterate
through the dataset.

Tracer — The MLModelScope tracer is middleware that captures the stages of the model evaluation,
leverages the predictor’s framework profiling capability, and interacts with hardware and system level
profiling libraries to capture fine grained metrics. The profiles do no need to reflect the wall clock
time, for example, users may integrate a system simulator and publish the simulated time rather than
wall-clock time.

MLModelScope publishes the tracing results asynchronously to a distributed server — allowing
users to view a single end-to-end time line containing the pipeline traces. Users can view the entire
end-to-end time line and can “zoom” into specific component (shown in Figure 1) and traverse the
profile at different abstraction levels. To reduce trace overhead, users control the granularity (AI
component, framework, library, or hardware) of the traces captured.

MLModelScope leverages off-the-shelf tools to enable whole AI pipeline tracing. To enable the
AI pipeline tracing, users inject a reference to their tracer as part the model inference API request
to MLModelScope. MLModelScope then propagates its profiles to the injected application tracer
instead of the MLModelScope tracer — placing them within the application time line. This allows
MLModelScope to integrate with existing application time lines and allows traces to span API
requests.

A.3.5 FRAMEWORKS

At time of writing, MLModelScope has built-in support for Caffe, Caffe2, CNTK, MXNet, PyTorch,
Tensorflow, TFLite, and TensorRT. MLModelScope uses “vanilla” unmodified versions of the
frameworks and uses facilities within the framework to enable layer-level profiling — this allows
MLModelScope to work with binary versions of the frameworks (version distributed through Python’s
pip, for example) and support customized or different versions of the framework with no code
modifications. To avoid overhead introduced by scripting languages, MLModelScope’s supported
frameworks use the frameworks’ C-level API directly — consequently the evaluation profile is as
close to the hardware as possible.

A.3.6 HARDWARE

MLModelScope has been tested on X86, PowerPC, and ARM CPUs as well as NVIDIA’s Kepler,
Maxwell, Pascal, and Volta GPUs. It can leverage NVIDIA Volta’s TensorCores, and can also perform
inference with models deployed on FPGAs. During evaluation, users can select hardware constraints
such as: whether to run on CPU or GPU, type of architecture, type of interconnect, and minimum
memory requirements — which MLModelScope considers when selecting a system.

A.4 MLMODELSCOPE SOURCE CODE

This project is open-source and the code spans multiple (> 15) repositories on GitHub. Thus it is
difficult to anonymize for the blind review process. We are happy to share the links to the source
code with the PC members. The links will be included in the paper after the blind review process.
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