
Under review as a conference paper at ICLR 2020

EXACT ANALYSIS OF CURVATURE CORRECTED
LEARNING DYNAMICS IN DEEP LINEAR NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep neural networks exhibit complex learning dynamics due to the highly non-
convex loss landscape, which causes slow convergence and vanishing gradient
problems. Second order approaches, such as natural gradient descent, mitigate
such problems by neutralizing the effect of potentially ill-conditioned curvature
on the gradient-based updates, yet precise theoretical understanding on how such
curvature correction affects the learning dynamics of deep networks has been lack-
ing. Here, we analyze the dynamics of training deep neural networks under a gen-
eralized family of natural gradient methods that applies curvature corrections, and
derive precise analytical solutions. Our analysis reveals that curvature corrected
update rules preserve many features of gradient descent, such that the learning
trajectory of each singular mode in natural gradient descent follows precisely the
same path as gradient descent, while only accelerating the temporal dynamics
along the path. We also show that layer-restricted approximations of natural gra-
dient, which are widely used in most second order methods (e.g. K-FAC), can
significantly distort the learning trajectory into highly diverging dynamics that
significantly differs from true natural gradient, which may lead to undesirable net-
work properties. We also introduce fractional natural gradient that applies partial
curvature correction, and show that it provides most of the benefit of full curvature
correction in terms of convergence speed, with additional benefit of superior nu-
merical stability and neutralizing vanishing/exploding gradient problems, which
holds true also in layer-restricted approximations.

1 INTRODUCTION

Despite recent advances in deep learning, training deep neural networks is still non-trivial and time-
consuming process, which often exhibits alternating periods of fast learning and plateau phases
where learning mostly stalls. Such characteristic learning profiles arise from the fact that the loss
surface of deep neural networks is highly non-convex due to the prevalence of saddle-points and
poorly-conditioned curvature (Dauphin et al., 2014), where gradient-based optimization methods
perform poorly. Second order optimization methods, such as natural gradient descent (NGD), have
been proposed to mitigate these problems by compensating for the negative effect of saddle-points
and poorly-conditioned curvature in learning dynamics. However, theoretical analysis on the deep
learning dynamics under such curvature correction has been lacking.

Recent works have shown that the effect of curvature of loss landscape on deep learning dynam-
ics can be well captured by deep linear networks (Saxe et al., 2013). Here, we present analytical
solutions to the curvature corrected learning dynamics in deep linear networks to gain critical un-
derstanding on the advantage and effects of applying curvature corrections.

2 PROBLEM SETUP

Consider a linear multi-layer network of depth d that consists of an input layer, d� 1 hidden layers,
an output layer, and weight matrices w ⌘ {wi}

d
i=1 that connect adjacent layers. This network learns

1

Under review as a conference paper at ICLR 2020

the input-output statistics of a dataset by minimizing the squared-error loss:

L(w) =
1

2
E[kw̄x� yk

2] = Tr

1

2
(w̄ � w⇤)⌃x(w̄ � w⇤)

|
�
+ constant, (1)

where w̄ ⌘
Qd

i=1 wi = wd · · ·w1 is the input-output map of the network, E[·] is the full-batch
expectation over the dataset {xµ

, y
µ
}µ, ⌃x ⌘ E[xx|] is the input correlations, and w⇤ ⌘ ⌃yx⌃�1

x ⌘

E[yx|]⌃�1
x is the optimum for w̄. Eq (1) can be expressed as L(w) = Tr

⇥
1
2�⌃x�|⇤+ constant,

where � ⌘ w̄ � w⇤ is the displacement from the optimum. For the ease of exposition, the input
correlation is assumed to be whitened ⌃x = I , although it is not essential to the analysis.

Gradient and Hessian We introduce bold symbols to collectively represent the derivatives of

network parameters in array form: For example, ẇ ⌘

ẇ1

ẇ2

�
and g ⌘

 @L
@w1
@L
@w2

�
=

w

|
2 �

�w
|
1

�
represent

the continuous-time weight update and the gradient of a depth d = 2 network, respectively. Hessian
is fully characterized by its operation on weight update, which, by definition, produces gradient
update:

Htrueẇ = ġ =

w

|
2 �̇+ ẇ

|
2�

�̇w
|
1 +�ẇ

|
1

�
. (�̇ = ˙̄w = w2ẇ1 + ẇ2w1) (2)

However, true Hessian-based methods (e.g. Newton-Raphson method) can converge to any ex-
trema types including saddle-points. To guarantee convergence to local minima, natural gradient
methods use positive semi-definite (PSD) portion/approximations of Hessian (e.g. Fisher matrix
(Amari, 1998; Heskes, 2000; Martens & Grosse, 2015; Bernacchia et al., 2018), Gauss-Newton ma-
trix (Martens, 2014; Botev et al., 2017; Roux et al., 2008)), which corresponds to discarding the
undifferentiated � terms from eq (2):

H+ẇ =

w

|
2 �̇

�̇w
|
1

�
. (3)

This operation is indeed PSD, since ẇ ·H+ẇ = Tr[ẇ|
1w

|
2 �̇ + ẇ

|
2 �̇w

|
1] = Tr[�̇�̇|] � 0, where

the dot-product denotes a · b ⌘
P

i Tr[aib|i]. We refer to this operation as Hessian+ or H+.

Symmetry and conservation law Deep linear networks exhibit inherent symmetries that their
input-output map w̄ is invariant under the transformations that multiply an arbitrary matrix m to

layer i and its inverse to the next layer

w1

w2

�
!

mw1

w2m
�1

�
, or under the equivalent continuous-

time transformations: ẇnull ⌘

mw1

�w2m

�
. Due to the invariance of the input-output map (�̇ =

˙̄w = w2m1w1 � w2m1w1 = 0) under these transformations, ẇnull are orthogonal to gradient
g · ẇnull = Tr[��̇|] = 0, and also form the null-space of Hessian, since

ẇnull ·H+ẇnull = Tr[�̇�̇|] = 0. (4)
These continuous symmetries give rise to conservation laws (Noether’s theorem):

d/dt (wiw
|
i � w

|
i+1wi+1) = 0 (5)

which applies to all update dynamics ẇ that are orthogonal to the null-space: i.e. ẇ · ẇnull =P
i Tr[(wiẇ

|
i � ẇ

|
i+1wi+1)mi] = 0, including SGD and NGD updates.

2.1 SHALLOW NETWORK CASE (d = 1)

In case of shallow networks w̄ = w1, the loss eq (1) reduces to the least-squares regression problem,
whose SGD dynamics is linear (learning rate ⌘)

˙̄w = �⌘g = �⌘(w̄ � w⇤)⌃x, (6)
which exhibits mixture of exponentially converging dynamics. The time-constants of convergence
are critically affected by the condition number of loss curvature, which in this case is the input
correlations. Applying inverse Hessian neutralizes this effect (⌘ = 1/⌧)

˙̄w = �⌘H
�1

g = �(w̄ � w⇤)/⌧, (7)

2

Under review as a conference paper at ICLR 2020

yielding perfectly-conditioned convergence dynamics regardless of curvature. Therefore, for the lin-
ear learning dynamics of shallow networks, curvature correction merely normalizes the convergence
time-constants, which is also achievable by simple whitening of input correlations.

In contrast, learning dynamics of deep networks exhibits complex nonlinearities due to the mul-
tiplicative weight coupling in the input-output map w̄ = wd · · ·w1 (Saxe et al., 2013), for which
the effect of curvature correction remains obscure/unsolved. We investigate this problem by an-
alyzing exact solutions to the learning dynamics of loss eq (1) under various curvature correction
schemes. We assume pre-whitened input distribution to isolate the nonlinear phenomenon from the
linear time-constant normalization effect mentioned above.

3 LEARNING DYNAMICS OF NETWORK WEIGHTS

Deep networks learns to appropriately modify its overall function (i.e. the input-output map w̄)
by dynamically tuning their parameters (i.e. network weights) over the course of training. In this
section, we analyze the learning dynamics of the network weights under SGD and the curvature
corrected update rules, and in the next section, analyze its effect on the dynamics of input-output
map.

Steepest gradient descent (SGD) SGD update dynamics of eq (1) for deep networks is given by
(d = 2 example)

ẇ + ⌘g =

ẇ1 + ⌘w

|
2 �

ẇ2 + ⌘�w
|
1

�
= 0, (8)

where the update dynamics of layer i is driven by the displacement � and multiplied by weights of
all other layers. For further analysis, eq (8) can be broken down via singular vector decomposition
into simpler, decoupled dynamics of length d chains, with each chain representing one singular
mode. Under the simplifying condition that the singular vectors of adjacent layers are well aligned1,
the learning dynamics of each singular mode chain is fully described by2

�̇i = �⌘ �� ri, (�� ⌘ �̄ � �⇤, �̄ =
dY

i=1

�i, ri =
Y

j 6=i

�j) (9)

where �i, �⇤, �̄, �� are the singular values of wi, w⇤, w̄, �, and ri ⌘ @��/@�i denotes the coupling
between displacement �� and �i (See S.I.). This dynamics is more simply described in terms of its
speed and direction: The direction of singular mode dynamics is prescribed by the conservation
law (5) to follow the hyperbolic paths

�
2
i � �

2
j = constant, (10)

and the speed is k�̇k = ⌘|��|krk, where krk ⌘

qPd
i=1 r

2
i is the overall coupling strength. Nor-

malizing the speed by the displacement yields the effective learning rate [any better name?]:

⌘eff ⌘
k�̇k

|��|
= ⌘ krk,

which vanishes/explodes for small/large coupling strength.

1 Given the singular value decompositions wi = LiAiR
|
i , and w⇤ = L⇤A⇤R

|
⇤, where the L/R are the

orthogonal matrices of left/right singular vectors and A are the rectangular diagonal matrices of singular values,
it is assumed that 8i, Ri+1 = Li and L⇤ = Ld, R⇤ = R1, such that the input-output map w̄ = wd · · ·w1 =
Ld (

Qd
i=1 Ai)R

|
1 shares the same singular vectors with w⇤. See (Saxe et al., 2013).

2 Eq (9) applies upto N singular modes, where N is the narrowest width of the network (i.e. bottleneck
size), which sets the number non-zero singular values at the bottleneck layer.

3

Under review as a conference paper at ICLR 2020

0

0 1 2 3
0

2

0 1

2

A B C

D E
0 0

0

Figure 1: Learning dynamics of a singular mode in a depth d = 2 network (i.e. 1-hidden-layer).
The stable manifold �1�2 = �⇤ is shown in black. The contour lines show the manifolds of constant
displacement levels �� ⌘ �1�2 � �⇤, which are invariant to null-space transformations. The vector
field visualizes the displacement-normalized update dynamics [�̇1, �̇2]/|��|, whose amplitude is the
effective learning rate: ⌘eff ⌘ k�̇k/|��|. (A,B,C) SGD, NGD, and

p
NGD share the same update

directions, following hyperbolic paths (red line) that conserve �
2
1 � �

2
2 , orthogonal to the contour

lines. SGD exhibits vanishing rate problem for small weights {�i}, while NGD show the opposite
problem. In contrast,

p
NGD exhibits constant effective learning rate. (D) NGD-bd exhibits radially

diverging vector field that conserves �1/�2. (E)
p

NGD-bd exhibits vector field of constant direction
and amplitude that conserves |�1|� |�2|.

Natural gradient descent (NGD) NGD is given by the Moore-Penrose (MP) pseudo-inverse3that
finds the minimum-norm update (min kẇk

2
⌘ ẇ · ẇ) subject to the constraint (d = 2 example)

H+ẇ + ⌘g =

w

|
2 (�̇+ ⌘�)

(�̇+ ⌘�)w|
1

�
= 0, (11)

which can be solved using Lagrange multipliers
ẇ1 + ⌘w

|
2 ⇤

ẇ2 + ⌘⇤w
|
1

�
= 0, (12)

where ⇤ satisfies the generalized Sylvester equation, w
|
2S(⇤) = S(⇤)w|

1 = 0 with S(⇤) ⌘

(w2w
|
2)⇤ + ⇤(w|

1w1) � � (See S.I.). Remarkably, the only change from SGD update (8) is re-
placing � with ⇤ as the main drive of the update dynamics. Consequently, NGD update (12) shares
many features with SGD, such as orthogonality to the null-space and the conservation law (5).

The singular mode analysis of eq (12) yields (See S.I.):

�̇i = �⌘ ��
ri

krk2
, (krk2 =

dX

i=1

r
2
i) (13)

which simply divides/normalizes the speed of singular mode dynamics eq (9) by krk
2 while pre-

serving the direction (Fig 1B). Therefore, NGD update follows the same hyperbolic path of SGD
update, but with modified effective learning rate

⌘eff =
⌘

krk
,

which explodes/vanishes for small/large coupling strength, reciprocal to SGD’s problem.
3 Due to the null-space of H+, the constraint eq (11) admits infinitely many solutions with arbitrary null-

space components, since H+(ẇ + ẇnull) + ⌘g = H+ẇ + ⌘g = 0. MP-inverse yields the unique solution
orthogonal to the null-space, equivalent to the limit of regularized inverse ẇ = �⌘ lim✏!0(✏ + 1)(✏I +
H+)

�1
g. The block-diagonal NGD eq (17)

4

Under review as a conference paper at ICLR 2020

Fractional Natural Gradient Descent (q
p

NGD) The above result can be generalized to a spec-
trum of learning rules that apply partial curvature corrections, described by q

p
H+ẇ + ⌘g = 0,

where q
p
H+ is a fractional power of Hessian (q � 1). This fractional NGD interpolates between

NGD (q ! 1) and SGD (q ! 1), with singular mode dynamics

�̇i = �⌘��
ri

krk2/q
, (14)

which normalizes the update speed by krk
2/q , while preserving the hyperbolic path shape. Note that

at q = 2, termed
p

NGD, the effective learning rate becomes constant

⌘eff = ⌘, (15)

thus neutralizing the vanishing/exploding problems of SGD and NGD (See Fig 1C).

Comparison to Regularized NGD Another interpolation can be obtained from solving (H+ẇ +
⌘g) + ✏(ẇ + ⌘g) = 0, which yields the regularized inverse ẇ = �⌘(✏ + 1)(✏I + H+)�1

g. The
corresponding singular mode dynamics is

�̇i = �⌘ ��
ri

krk

akrk+ 1

a+ krk
, (a ⌘ ✏/krk) (16)

where the ratio a ⌘ ✏/krk describes the effective degree of interpolation between NGD (a ! 0) and
SGD (a ! 1). Note that a needs to be large enough in order to provide appropriate regularization
for numerical stability, but it also cannot be too large to nullify the effect of curvature correction.
Unlike q in q

p
NGD, however, this ratio a is not an explicit parameter, but an indirectly determined

variable that constantly changes during learning and across singular modes. Remarkably, eq 16
reduces to

p
NGD at the mid-point (a = 1). In this sense,

p
NGD can be considered as an ideally-

regularized NGD with hypothetical adaptive tuning ✏ = krk.

Block-diagonal Approximation of NGD (NGD-bd) In practical applications, numerically esti-
mating and inverting Hessian of deep networks becomes prohibitively expensive. Instead, most
second-order methods approximate NGD by applying layer-restricted, or block-diagonal curvature
corrections (Martens & Grosse, 2015; Ba et al., 2016; Grosse & Martens, 2016; Martens et al.,
2018; Bernacchia et al., 2018), in which the weight update of layer i only uses the Hessian term of
the layer, discarding the off-diagonal curvature interactions with other layers: (d = 2 example)

H1ẇ1 + ⌘1g1

H2ẇ2 + ⌘2g2

�
=

w

|
2 (w2ẇ1 + ⌘1�)

(ẇ2w1 + ⌘2�)w|
1

�
= 0, (17)

where Hi’s denote the Hessian of layer i. This block-diagonal approximation (NGD-bd) introduces
significant null-space component to the update dynamics, yet still satisfying the NGD constraint
eq (11), given that

Pd
i=1 ⌘i = ⌘. The singular mode dynamics of NGD-bd is (with ⌘i = ⌘/d)

�̇i = �
⌘ ��

d

ri

r
2
i

= �
⌘ ��

d

1

ri
, (18)

where the layer-restricted factor r
2
i substitutes NGD’s full curvature correction factor krk

2 in
(13). Due to the non-zero null-space component, this dynamics deviates from the hyperbolic paths
of NGD/SGD update and instead follows radially diverging paths that conserve the ratio �i/�j ,
(Fig 1D). As a result, NGD-bd finds less efficient solutions that require larger modification to con-
verge (Fig 1D, red line).

Block-diagonal
p

NGD (
p

NGD-bd) More generally, block-diagonalization of q
p

NGD yields

�̇i = �
⌘ �� ri

(d r2i)
1/q

, (19)

which conserves �
2(1�1/q)
i � �

2(1�1/q)
j as constants of motion for q > 1. The effective learning

rate is ⌘eff = ⌘ krk
1�2/q . Note that for q = 2, called

p
NGD-bd, the singular mode dynamics

follows non-diverging, straight parallel paths that conserve |�i|� |�j |, with constant ⌘eff = ⌘, hence
neutralizing the vanishing/exploding rate problems (See Fig 1E), analogous to

p
NGD.

5

Under review as a conference paper at ICLR 2020

4 LEARNING DYNAMICS OF INPUT-OUTPUT MAP

The previous section analyzed the update dynamics of weight parameters in deep networks. In this
section, we investigate how the overall function of network, i.e. the input-output map w̄, evolves
during training. The map dynamics of NGD update is derived from eq (13)

˙̄� =
dX

i=1

ri�̇i = �⌘ (�̄ � �⇤)

Pd
i=1 r

2
i

krk2
= �⌘(�̄ � �⇤), (20)

which is identical to the linear dynamics of shallow network learning eq (7). Moreover, since the
map w̄ is invariant to the null-space component of update, this result holds for NGD-bd and for any
other generalized inverse solutions of the constraint eq (11) (Bernacchia et al., 2018).

More generally, the map dynamics of q
p

NGD is ˙̄� = �⌘(�̄ � �⇤)krk2(1�1/q)
, which, for the sim-

plifying case of an identical singular value shared across all layers (8i, �i = �̄
1/d), reduces to

˙̄� = �⌘̄ (�̄ � �⇤) �̄
p (p ⌘

2(d� 1)(q � 1)

dq
) (21)

where ⌘̄ ⌘ ⌘ d
1�1/q is the depth-calibrated learning rate, and p represents the combined effect of

depth and curvature correction that determines the stiffness, or numerical stability, of map dynamics.

Figure 2 shows the following notable closed-form solutions, as well as the p = 2 case:

�̄(t) = �⇤(1� e
�⌘̄t) (p = 0)

�̄(t) = �⇤ tanh
2(⌘̄

p
�⇤t/2) (p = 0.5)

�̄(t) =
�⇤

1 + (�⇤/�̄(0) � 1)e�⌘̄�⇤t
(p = 1)

where zero initial condition �̄(0) = 0 is assumed for p < 1 cases.

NGD update (q = 1) The p = 0 case corresponds to shallow network learning (d = 1), as
well as NGD update of arbitrarily deep networks, where the effect of depth is perfectly canceled
out by curvature correction, such that map dynamics exhibits simple exponential convergence with
constant time-scale ⌘̄

�1 across all singular modes. Consequently, the loss dynamics also exhibits
exponentially decaying profiles: L(t) = L(0)e

�2⌘̄t. Note that these loss profiles have finite slope
L̇(t) = �2⌘̄L(t) even as the gradient vanishes at kwk ! 0, which is sustained by exploding the
update norm kẇk ! 1.

SGD update (q ! 1) For SGD update, p = 1 corresponds to training 1-hidden-layer networks,
which exhibits sigmoidal learning curves. The learning time of singular modes scales with (⌘̄�⇤)�1,
such that stronger modes (i.e. large �⇤) learn faster than weaker modes. The learning time also
diverges as O(� log �̄(0)) for small initial value �̄(0) ! 0, due to vanishing gradient (Saxe et al.,
2013). For deeper networks, the separation of time-scales and the slow rise of sigmoidal curves near
zero intensifies as p increases with network depth, which approaches p ! 2 in infinite depth limit.
The learning time scales with mode strength as (⌘̄�p

⇤)�1, and diverges as O(�̄1�p
(0)) for small initial

values. This causes a sequence of learning from strong to weak singular modes in well-separated
manner, which results in multiple stage-like transitions (plateaus) of loss-profile over the course of
training.

p
NGD update (q = 2) The p = 0.5 case corresponds to training 1-hidden-layer networks under

p
NGD update, which facilitates map dynamics to exhibit much smoother convergence than the

sigmoidal profiles of SGD update. Even for deeper networks, the map dynamics under
p

NGD
update is strictly less stiff than SGD training of 1-hidden-layer networks, since p approaches 1 only
in infinite depth limit. Moreover, all p < 1 cases exhibit polynomial learning curves near zero,
�̄(t) ⇡ ((1� p)⌘̄ �⇤t)1/(1�p), which therefore escape from zero initial condition �̄(0) ! 0 in finite
time. This is due to

p
NGD neutralizing the vanishing/exploding update problem and maintaining a

constant effective learning rate ⌘eff.

6

Under review as a conference paper at ICLR 2020

0 10 20
0

1

2

0 2 4 6
0

1

2

0 2 4
0

1

2

0 500 1000 1500
0

1

2

0 10 200 2 4 60 2 4

0.01

1

0 500 1000 1500
time

Lo
ss

0.01

1

0.01

1

0.01

1

timetimetime

(A) (B) (C) (D)

Figure 2: Top: Learning curves of map singular modes �̄(t) for various stiffness numbers p. The
input-output correlations for each mode �⇤ is shown by dashed lines. Half-max points (black circles)
are shown to visualize the time-scale of learning, which scales as ��p

⇤ . Bottom: Corresponding loss
profiles. Initial conditions: �̄(0) = 0 for p < 1, and �̄(0) = �⇤/100 for p � 1. ⌘̄ = 1.

Effective Depth Note that d and q contribute to stiffness in a symmetric manner. This relationship
can be intuitively understood by representing stiffness in terms of the corresponding network depth
under SGD update, called the effective depth:

deff =
dq

d+ q � 1
, (22)

which approaches the actual depth d in the SGD limit (q ! 1), and similarly, approaches q in the
limit of infinite depth (d ! 1). Therefore, the input-output map learning dynamics of finite depth
d network under q

p
NGD update exhibits the same level of stiffness as the SGD update of depth deff

network, which is strictly less than q.

5 EFFECTS ON GENERALIZATION

Recent works have shown that SGD update has implicit regularization, which allows learning on
training dataset to generalize well to testing set. However, it has not been shown whether such
regularization property generalizes to update rules with curvature correction.

A crucial insight from recent works on generalization dynamics suggest that deep networks with
small weight initializations can avoid overfitting via early stopping because they first learn the rele-
vant signal dimensions of the dataset before the irrelevant noise dimension begins to fit (Advani &
Saxe, 2017; Lampinen & Ganguli, 2018). Here, we test this result in the student-teacher task: The
training and test dataset is generated by a teacher network y

µ = w⇤x
µ + z

µ, where x
µ
2 RN is

the input data, yµ 2 RN is the output, w⇤x
µ is the signal and z

µ
2 RN is the noise. The teacher’s

mapping w⇤ 2 RN⇥N has a low-rank structure (rank 3), and the student network is a depth d = 4
network of constant width N , whose weight matrices are initialized to be orthogonal matrices with
scaling factor of 1/40. The number of training dataset {xµ

, y
µ
}
P
µ=1 is set to be equal to the effective

number free parameters P = N , which makes learning most susceptible to overfitting.

This experiment used full-batch training. Hessian+ is numerically estimated from the training data
and inverted (sqrt-inverted) via SVD for NGD (

p
NGD) updates. Because of the discrete-time up-

date, the weight updates �w under NGD and SGD rules are clipped to avoid the exploding rate
problems.

p
NGD does not require such clipping.

Figure 3 shows the result of training: As previously described, under SGD update, the network
learns the three signal modes first, well separated from the onset of overfitting of the noise modes

7

Under review as a conference paper at ICLR 2020

Iteration # Iteration #Singular Mode #

Mode Strength

Signal Noise

(A) (B) (C)

Figure 3: Curvature correction effects on generalization : (A) Singular mode strength of input-
output correlation of a training dataset. Dataset is generated from a rank-3 teacher network with
added noise (SNR = 10). (B, C) Training and testing loss profiles of a 3-hidden-layer student net-
work. Vertical dashed-lines show the optimal early stopping time for each update rule.

begins (vertical dashed lines) for high SNR cases, which allows effective early stopping scheme.
However, the long plateaus which allows the separates the time scales of signal and noise modes,
also prolongs the overall duration of training.

NGD and
p

NGD exhibit much faster learning dynamics. NGD update, however, makes all modes
to learn simultaneously, including the noise modes, which cannot be separated from the signal mode
learning. Therefore, NGD update leads to high generalization error even at optimal early stopping
time. Note that NGD’s loss profile deviates from exponential decay due to the clipping.

In contrast,
p

NGD allows separation between the signal and the noise modes, since it scales the
learning-time of each singular mode according to with mode strength. Consequently,

p
NGD update

can achieve comparable test loss as SGD update, but also with fast early-stopping time comparable to
NGD update. Note that all three update rules achieve the same test loss after overfitting is complete.
This IS BECAUSE OF they all take the same learning path.

6 DISCUSSION

A critical result of our analysis is that curvature correction maintains critical properties of SGD
weight updates, i.e. orthogonality to null-space of Hessian, which generalizes the conservation law
eq (5) to curvature-corrected update rules. As a result, along each singular mode chain, curvature
correction only affects the speed/temporal profile of learning, while preserving the direction/path un-
changed. This result may seem surprising, because in shallow network, because curvature correction
is usually associated with changing of update direction, by changing the metric.

Optimal choice of curvature correction Here we discussed the idea of stiffness in learning dy-
namics, which adversely affects the numerical integration of the dynamics equation. Without cur-
vature correction, steepest gradient has problem navigating through the convoluted space of loss
landscape, with vanishing gradient being the prominent manifestation of the problem. In terms of
map dynamics, NGD proposes the best solution for correcting the ill-conditioned curvature prob-
lem, which, in case of deep linear network, indeed completely resolves the nonlinearities of learning
dynamics. In term of parameter dynamics, however, NGD has several problems. Accurate esti-
mation of Hessian is difficult in moderate batch-size, and such estimation error would be further
amplified when inverting the highly ill-conditioned Hessian. Therefore, most methods require large
batch size and heavy/sophisticated application of gradient clipping and Hessian damping in order
to reduce the noise level, which however, would, inevitably reduce the effectiveness of curvature
correction. Moreover, as our analysis shows, the layer-wise curvature correction via block-diagonal
Hessian approximation, which is unavoidable for most practical usage, produces update direction
that is significantly different from true natural gradient direction and divergent in nature, although it
would require further investigation to understand how this affects the network properties in nonlinear
settings.

8

Under review as a conference paper at ICLR 2020

Furthermore, the separation of time scales in SGD has been suggested to have critical implications
for learning: It has been proposed to have relevance for similarity between deep learning and human
perceptual learning (Saxe et al., 2019), as well as for optimal early stopping time to maximize gen-
eralization of deep learning, which allows the meaningful signal features of the data to be learned
before the onset of overfitting the small, noise features (assumed small) begins (Advani & Saxe,
2017; Lampinen & Ganguli, 2018). Therefore, NGD’s advantage of and it maybe prone to overfit-
ting of noisy data, because it does not separate time scales of learning. Moreover, the block-diagonal
approximations of NGD shows very different update dynamics and tend to amplify the weight dif-
ferences across layers during training.

We propose
p

NGD as an alternative optimization method that merges the advantages of both SGD
and NGD. It allows training from zero-initial weights within finite time, yet allows separation of
time scales that may benefit generalization properties.

REFERENCES

Madhu S Advani and Andrew M Saxe. High-dimensional dynamics of generalization error in neural
networks. arXiv preprint arXiv:1710.03667, 2017.

Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural computation, 10(2):251–
276, 1998.

Jimmy Ba, Roger Grosse, and James Martens. Distributed second-order optimization using
kronecker-factored approximations. 2016.

Alberto Bernacchia, Mate Lengyel, and Guillaume Hennequin. Exact natural gradient in deep linear
networks and its application to the nonlinear case. In Advances in Neural Information Processing
Systems, pp. 5941–5950, 2018.

Aleksandar Botev, Hippolyt Ritter, and David Barber. Practical gauss-newton optimisation for deep
learning. In Proceedings of the 34th International Conference on Machine Learning-Volume 70,
pp. 557–565. JMLR. org, 2017.

Yann N Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and Yoshua
Bengio. Identifying and attacking the saddle point problem in high-dimensional non-convex op-
timization. In Advances in neural information processing systems, pp. 2933–2941, 2014.

Roger Grosse and James Martens. A kronecker-factored approximate fisher matrix for convolution
layers. In International Conference on Machine Learning, pp. 573–582, 2016.

Tom Heskes. On “natural” learning and pruning in multilayered perceptrons. Neural Computation,
12(4):881–901, 2000.

Andrew K Lampinen and Surya Ganguli. An analytic theory of generalization dynamics and transfer
learning in deep linear networks. arXiv preprint arXiv:1809.10374, 2018.

James Martens. New insights and perspectives on the natural gradient method. arXiv preprint
arXiv:1412.1193, 2014.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
curvature. In International conference on machine learning, pp. 2408–2417, 2015.

James Martens, Jimmy Ba, and Matt Johnson. Kronecker-factored curvature approximations for
recurrent neural networks. 2018.

Nicolas L Roux, Pierre-Antoine Manzagol, and Yoshua Bengio. Topmoumoute online natural gra-
dient algorithm. In Advances in neural information processing systems, pp. 849–856, 2008.

Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the nonlinear dynam-
ics of learning in deep linear neural networks. arXiv preprint arXiv:1312.6120, 2013.

Andrew M. Saxe, James L. McClelland, and Surya Ganguli. A mathematical theory of semantic
development in deep neural networks. Proceedings of the National Academy of Sciences, 2019.
ISSN 0027-8424. doi: 10.1073/pnas.1820226116. URL .

9

https://www.pnas.org/content/early/2019/05/16/1820226116

Exact analysis of curvature corrected
learning dynamics in deep linear networks

- Supplementary Materials

Anonymous Author(s)
Affiliation
Address

1 Singular mode analysis of SGD update: eq (6) in Section 3.1

The SGD update :

ẇ + ⌘g =

ẇ1 + ⌘w|

2 �
ẇ2 + ⌘�w|

1

�
= 0, (1)

assumption: aligned singular vectors:

w1 =
P

m ~um
1 �m

1 ~um|
0 , w2 =

P
m ~um

2 �m
2 ~um|

1 , w⇤ =
P

m ~um
2 �m

⇤ ~um|
0 .

where ~um
k are orthonormal vectors (singular vectors) that satisfy ~un|

k ~um
k = �nm, and �m

1 , �m
2 , �m

⇤
are the singular values.

The displacement (� ⌘ w2w1 � w⇤) can be expressed as � =
P

m ~um
2 �m

�~um|
0 , where �m

� ⌘
�m
2 �m

1 � �m
⇤ .

The first layer portion of eq (1) can be expressed as
X

m

~um
1 (�̇m

1 + ⌘�m
2 �m

�)~um|
0 + ~̇um

1 �m
1 ~um|

0 + ~um
1 �m

1 ~̇um|
0 = 0 (2)

Multiplying eq (5) by the orthogonal vectors yields:

~un|
1

X

m

~um
1 (�̇m

1 + ⌘�m
2 �m

�)~um|
0 + ~̇um

1 �m
1 ~um|

0 + ~um
1 �m

1 ~̇um|
0

!
~un
0

= �̇n
1 + ⌘�n

2 �
n
�

= �̇n
1 + ⌘

�̄n�n
�

�n
1

= 0

where we used ~un|
k ~um

k = �nm and ~un|
k ~̇um

k = 0, and �̄n ⌘ ⇧i�n
i . is the singular values of the

input-output map w̄. This result generalizes to networks of any depth D: For layer i,

�̇m
i = �⌘

�̄m�m
�

�m
i

= �⌘
�̄m

�m
i

(�̄m � �m
⇤).

In the main text, we drop the singular mode index m for notational simplicity.

Submitted to 33rd Conference on Neural Information Processing Systems (NeurIPS 2019). Do not distribute.

2 Moore-Penrose inverse solution: eq (15,16,17) in Section 3.2

In section 4, we find the Moore-Penrose inverse solution of the natural gradient condition:

Hẇ + ⌘g =

w|

2 (�̇+ ⌘�)
(�̇+ ⌘�)w|

1

�
= 0, (3)

which minimizes the Frobenius norm of ẇ while satisfying the constraint. This constrained opti-
mization problem is described by the following Lagrangian:

L(ẇ1, ẇ2,⇤2,⇤2) = (ẇ1 · ẇ1 + ẇ2 · ẇ2)/2 + ⇤1 · w|
2 (�̇+ ⌘�) + ⇤2 · (�̇+ ⌘�)w|

1 ,

where �̇ = w2ẇ1 + ẇ2w1, and dot notation denotes inner-product: a · b ⌘ Tr[a|b]. Optimality
condition on ẇi yields

@L/@ẇ1 = ẇ1 + w|
2w2⇤1 + w|

2⇤2w1 = 0 (4)
@L/@ẇ2 = ẇ2 + w2⇤1w

|
1 + ⇤2w1w

|
1 = 0 (5)

which, via change of variables ⇤ ⌘ (w2⇤1 + ⇤2w1)/⌘, reduces to
ẇ1 + ⌘w|

2⇤ = 0 (6)
ẇ2 + ⌘⇤w|

1 = 0 (7)
which can be plugged into the optimality condition on ⇤i

@L/@⇤1 = w|
2 (�̇+ ⌘�) = 0 (8)

@L/@⇤2 = (�̇+ ⌘�)w|
1 = 0 (9)

to produce a linear equation for ⇤i:
w|

2S(⇤) = S(⇤)w|
1 = 0 (10)

where S(⇤) = (w2w
|
2)⇤+ ⇤(w|

1w1)��. (11)
Note that eq (10) reduces to Sylvester equation, S(⇤) = 0, if w2, w1 are full rank. Therefore, eq (10)
can be understood as the pseudo-inverse version of Sylvester equation for rank deficient problems.

The Moore-Penrose inverse ẇMP is the unique solution of natural gradient that is orthogonal to the
null space. All other generalized inverse solutions to natural gradient condition, including block-
diagonal natural gradient, differ from ẇMP only in their null space components, since

(HẇMP + ⌘g)� (Hẇ + ⌘g) = H(ẇMP � ẇ) = 0 (12)

3 Singular mode analysis eq (18) in Section 3.2

We follow the approach of [1] and consider well-aligned singular vector condition, which allows
analyzing the dynamics of individual singular modes independently. In the following analysis, we
introduce �i, �̄,��,�⇤,�S which represent the singular values of wi, w̄,�,⇤, S(⇤) of one singular
mode.

In this representation, eq (6) and (7) reduce to

�̇i = ��⇤
�̄

�i
(13)

whereas, eq (10) and (11) reduce to
�i�S = 0 (14)

�S =
DX

i=1

✓
�̄

�i

◆2

�⇤ � ⌘�� (15)

Since we only consider trainable singular modes (i.e. 8i,�i 6= 0), eq (14) implies �S = 0, which
reduces eq (15) to

�⇤ = ⌘
��PD

i=1 (�̄/�i)
2 (16)

which plugs into (13) to produce the result in the main text

�̇i = �⌘
��PD

i=1 (�̄/�i)
2

�̄

�i
(17)

2

SGD NGDsqrt-NGD d-NGDd-sqrt-NGD

Loss

Comparison
to SGD

Weight
elements

Iteration #

A

B

C

Figure 1: Training of a linear 4-layer (D = 3) student network that learns to recover the mappings
defined by a random teacher network. Identical initial weights were used for all student networks
and trained by various learning methods. (A) Loss profile: SGD training shows multiple plateaus
in the loss profile due to separation of time scales.

p
NGD and d-

p
NGD training show smoother

and faster convergence without multiple plateaus, yet exhibit a level of time-scale separation, where
small noise modes are learned at the end. NGD and d-NGD show exponential convergence without
separation of time scales. (B) Evolution of a randomly sampled set of weight elements during
training: SGD training exhibits complex nonlinear dynamics in weights due to multiple plateaus.p

NGD and d-
p

NGD shows smoother dynamics that are almost identical to each other, and exhibit
some similarity to SGD dynamics. NGD trajectories exhibit smooth, exponential convergence. d-
NGD, however, exhibits very different, diverging trajectories, even though its loss profile is identical
to NGD profile. (C) Comparison of final weight element values at the end of training. x-axis: SGD
final weight, y-axis: final weights from other learning methods.

4 Weight trajectory of during learing

In main text, we showed that SGD, NGD and
p

NGD all conserve the same constants of motion
and thus follow the same path of learning per singular mode, and they differ only in their temporal
profiles of learning. This result implies that all of them should converge to the same point on the
solution manifold given the same initial condition, even though their learning trajectories may differ.
Figure 1C here indeed confirms this prediction. As predicted, the final weights of NGD and

p
NGD

are very close to those of SGD training. The small differences can be attributed to using finite update
step-size, instead of continuous time version. d-

p
NGD final weights show more deviations but still

show strong similarities to SGD result. d-NGD final weights show very little correlation.

5 Nonlinear network training on MNIST classification task

Here, we experimented with the effect of curvature corrections in non-linear networks by training
a 5 layer network for MNIST classification task. Network of layer size [784,300,100,30,10] with
alternation between dense layer and ReLU layer were used. The weights were initialized as orthogo-
nal matrices, as suggested in [1], with various gains that range between 1 and 10�6, which translates
to the initial singular value of �̄o ranging between 1 and 10�24. batch-size of 128.

Standard SGD training, standard pytorch SGD optimizer was used. For d-NGD training, we used
the block-diagonal, Kronecker-factored approximation of hessian, similar to KFAC algorithm, im-
plemented in pytorch, which uses generalized Gauss-Newton matrix as the preconditioner instead of
Fisher matrix. SVD (singular value decomposition) was used to invert the layer-wise hessian (with
added damping). The same algorithm was also used for d-

p
NGD training, except that it inverted the

3

gain = 1e-4

lr: 5e 3

lr: 2e-4
lr: 2e-2

gain = 3e-2

lr: 2e-1

lr: 2e-3
lr: 2e-2

gain = 1

lr: 5e-3

lr: 2e-3
lr: 2e-2

gain = 1e-6

lr: 5e-6
lr: 2e-2
lr: 5e 7

A B C D

Iteration # Iteration # Iteration # Iteration #

C
ro

ss
-e

nt
ro

py
 lo

ss

d-
d-

d-
d-

d-
d-

d-
d-

Figure 2: Reviving vanishing gradient: Training a 5-layer ReLU network on MNIST dataset.
Weights are initialized to be orthonormal matrices with various gains that range between 1 and
10�6. NGD-bd requires a small damping term for inverting Hessian (✏I + H+)�1 with ✏ =
[10�3, 10�3, 10�6, 10�7] for numerical stability.

p
NGD-bd requires no such damping. batch-size

= 128. Network architecture: [784,300,100,30,10].

square-root of the hessian’s singular values (without damping). For numerical stability, the amount
of damping and learning rate had to change for different initial weight gains for d-NGD training. In
contrast, d-

p
NGD training was unaffected by the initial weight gain.

References
[1] Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the nonlinear

dynamics of learning in deep linear neural networks. arXiv preprint arXiv:1312.6120, 2013.

4

	Introduction
	Problem setup
	Shallow network case (d=1)

	blackLearning dynamics of network weights
	Learning dynamics of input-output map
	Effects on generalization
	Discussion

