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ABSTRACT

We present a method to infer 3D location and orientation of vehicles on a single
image. To tackle this problem, we optimize the mapping relation between the ve-
hicle’s wheel grounding point on the image and the real location of the wheel in
the 3D real world coordinate. Here we also integrate three task priors, including
a ground plane constraint and vehicle wheel grounding point position, as well as
a small projection error from the image to the ground plane. And a robust light
network for grounding point detection in autopilot is proposed based on the ve-
hicle and wheel detection result. In the light grounding point detection network,
the DSNT key point regression method is used for balancing the speed of con-
vergence and the accuracy of position, which has been proved more robust and
accurate compared with the other key point detection methods. With more, the
size of grounding point detection network is less than 1 MB, which can be exe-
cuted quickly on the embedded environment. The code will be available soon.

1 INTRODUCTION

3D location and orientation detection is a basic but challenging problem in computer vision, which
focuses on the prediction accuracy of visible and invisible points. It has been applied in many ways,
including human action recognition, human-computer interaction, recently popular object detection
and so on. In our application scenario, we define the point of wheel contacting with the ground as
the keypoint in the vehicle instance. This paper mainly solves the problem of non-fixed number of
vehicle keypoint detection, which is the basis of vehicle automatic driving perception technology.
Recent researches have shown that deep convolutional network has powerful ability in information
acquisition and image processing. Advanced network structures, such as Hourglass (Newell et al.,
2016), HRNet (Sun et al., 2019) etc., usually have multi-scale architectures in critical point detection
tasks. Location and orientation estimation tasks based on above networks with efficient transposed
convolution structure can effectively solve the problem of invisible points in inference. Because
they effectively combine the context information in different receptive field to ensure the high-
level semantic information and high resolution information fusion at the same time. The fusion
in inference process provides a rich multi-level information. This is also an important method to
improve the detection accuracy of keypoints of fixed quantity.

Different from the current keypoint detection tasks, we aim to solve the problem of non-fixed number
of keypoint detection. Due to the influence of shooting angle and distance, the purpose of keypoints
of vehicles visible in the sample is not fixed and fluctuates violently. To adapt to the application
scenes and avoid the disastrous consequences caused by the potential wrong inference of invisible
points, we only forecast visible points in the image.

We adopt the top-down keypoint detection strategy and put forward a novel detection process, con-
straining the location information of the keypoint through wheel detection. Meanwhile, the wheel
area also provides abundant pixel information for keypoint detection, including visual identifiable
geometric and location information. After obtaining the grounding point information, we project
the 2D point to 3D coordinate. Finally, we fuse and process multi-frame vehicle’s location and
orientation information to complete visual-only vehicle trajectory description.

The inference process of vehicle trajectory proposed by us has the following innovation points:
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• We obtain the location and orientation in the 3D coordinate information of the vehicle by
the way of keypoint detection, which doesn’t need radar and 3D detection technology. It
reduces the time cost greatly and ensures the real-time performance at the same time.

• We directly constrain the quantitative changes of keypoints through auxiliary target infor-
mation, ensuring the continuity of updating the model gradient.

• We combine the information of multiple frames and infer the vehicle trajectory which con-
tains location and orientation in the 3D coordinate information of the vehicle, with high
information richness.

Figure 1: The structure of GPNet.

2 RELATED WORK

The deep convolution neural network has powerful information processing capability that makes
it dominate the keypoint detection task (Belagiannis & Zisserman, 2017; Bulat & Tzimiropoulos,
2016; G. Papandreou & Murphy, 2017; Haoshu Fang, 2016; Papandreou et al., 2018; X. Sun & Wei,
2017).The current popular keypoint detection methods are usually based on the deep convolution
network (Belagiannis & Zisserman, 2017; Bulat & Tzimiropoulos, 2016) . From the form of the
keypoint label, there are two excellent methods: the one-hot vector (He et al., 2018) and the heatmap
(F. Xia & Yuille, 2017; Girshick et al., 2014; Pfister et al., 2015; Ren et al., 2017; Kaiming He, 2015).

One-hot mask. In Mask R-CNN (He et al., 2018), the labels are encoded as a one-hot mask where
each class of keypoint corresponds a mask. The mask is predicted by Mask R-CNN. For each of
the K keypoints of an instance, the network outputs a one-hot binary mask with only one pixel is
marked as the foreground.

Heatmap regression and optimizing strategy. The concept of heatmap is first presented by Pfister
et al. (2015). The heatmap has local correlation that is similar to the feature map output by deep
convolution neural network. There are many approaches proposed aiming to accelerate the network
training based on heatmap, such as G-RMI (G. Papandreou & Murphy, 2017) and DSNT (Nibali
et al., 2018), etc. These works divide heatmap regression problems into different sub-tasks or create
techniques to decrease the regression difficulty. For instance, the heatmap is decomposed in a prob-
ability map and an offset map in G-RMI. The probability of a point being a keypoint, and the offset
map describes the relative offset of the keypoint. The DSNT compresses the heatmap in size M×N
that satisfies Gaussian distribution into a 2× 1 vector , which decrease the difficulty of regression.

Our Approach. Our model is based on the top-down strategy (Chen et al., 2018; Newell et al.,
2017; G. Papandreou & Murphy, 2017) in two phases. However, our approach is different from
most existing works. The difculty encountered here is the number of visible keypoints varies. We
utilize feature maps as the input of the second stage instead of initial image inspired by intermediate
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supervision (Szegedy et al., 2015). Compared with the initial image, feature maps contain richer
information which can improve the model performance of keypoint detection.

The two phase detection is shown as Figure1, we locate the grounding point in the second stage
through the wheel location information obtained in the rst stage. This method takes less time/This
method more efficient obtains the accurate location and orientation information in the real 3D world
coordinate. Fully utilizing the geometric constraints between the vehicle and wheel ensures the
gradient of the keypoints is continuous, and completely avoids the disturbance from truncate.

GPNet. Our approach focuses on learning the size information at the pixel level, therefore we pro-
pose a dual-branch prediction network. With the same amount of parameters, dual-branch structure
can achieve higher accuracy than single-branch structure.As shown in Figure 1.

Gradient-based OHKM. We propose a novel online hard keypoints mining method based on the
current gradients.

ˆdiff =

{
scale× ˆdiff,
ˆdiff,

(1)

where scale is the scaling coefficient of the gradient, ˆdiff is the initial gradient of the network,
and dt is the lower limit of the gradient. In this experiment, we select dt as 0:05 and scale as 0:1.
We adjust the weights instead of truncating the gradient, which is different from OHKM(Cao et al.,
2017). Our approach ensures the continuity of gradient updates while mining hard keypoints. As a
result, our method has better performance, as shown in Table 1

Fixed Range of Softmax Inputs. Just like the principle in argsoftmax, softmax has different corre-
sponding to different range inputs, in order to improve the performance of the proposed network, we
normalize the range of input in [0, 20] before softmax operation. As shown in Table2, it can greatly
speeds up the training process and obtains the optimal gradient response. And experiments proved
that this process can accelerate the training process and improve the performance of the proposed
network

3 METHOD INTRODUCTION

3.1 TOP - DOWN STRATEGIES

Vehicle keypoint detection requires high accuracy for close vehicles. However, for the distant ob-
ject only location information is required. Therefore, we follow the top-down keypoint detection
strategy, which only performs keypoint detection on a single instance at a time to achieve higher
accuracy.

3.2 WHEEL DETECTION

The network structure of wheel detection is shown in the Figure 1. The total network of keypoint
detection is shown as Figure 3.

We cite the RoI Align module in mask R-CNN to cut down the pooling quantization error. And for
further improving the recall rate of small targets, especially the wheel recall rate, residual structure
is applied here as backbone to provide rich and fine-grained information for the model.

3.3 KEYPOINT DETECTION

In order to accelerate the convergence of the model and ensure the accuracy, we use DSNT to
compress the spatial continuous spatial information of the network feature map. The normalized
feature map of each channel maps to a two-dimensional mean point through two mapping matri-
ces by DSNT. The mean value represents the position information of the peak point satisfying the
distribution of heat map. The mapping matrices is as Equation (2) and Equation (3) separately.

Xi,j =
2i− (H + 1)

H
, i ∈ [1, H] (2)
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Figure 2: Wheel grounding point detection process.

Figure 3: The first-stage of GPNET.

Yi,j =
2j − (W + 1)

W
, j ∈ [1,W ] (3)

where H and W are the width and height of the feature map separately, Xi,j and Yi,j represents the
value at (i, j) on the matching matrix X and Y separately.So the mapping process is as follows:

x̂ =
〈
Ẑ,X

〉
F

(4)

ŷ =
〈
Ẑ, Y

〉
F

(5)

where <,> is the sum of the two matrices after the dot product. Ẑ represents the predicted value of
the network, X and Y are the matrices described in Equation (2) and Equation (3). x̂, ŷ represents the
horizontal index value and the vertical index value of the peak point coordinates on Ẑ. Therefore,
the regression of H × W heatmap can be converted into the regression of 2 × 1 vector, and the
transformation is spatially continuous. We also perform the same compression operation on the real
heatmap.

x = 〈Z,X〉F (6)

y = 〈Z, Y 〉F (7)

Where x, y represent the values of the real heatmap Z through the matrix X , Y compression.We
choose the Euclidean distance between the label compression tensor Lxy and the predicted com-
pression tensor Dxy as the loss function:

loss =
1

N

H∑
y=1

W∑
x=1

(Dxy − Lxy), N = H ×W (8)

Where W,H represent the high and width of the heatmap.
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3.4 INFERENCE OF LOCATION

In the process of inference, the position of each point should be determined. After inference through
the network, the output result is handled like Equation ?? and Equation ??:

locŷ = argmin
i,j

(ŷ − Yij) (9)

locx̂ = argmin
i,j

(x̂−Xij) (10)

Where locx̂, locŷ represents the x, y coordinate position of the peak point on the heatmap. i, j
represent the coordinate index, as described in Equation (??) and Equation (??).

In conclusion, our method can ensure the accuracy of vehicle yaw angle information while provid-
ing real-time performance. At the same time, it has strong robustness, especially when the model
capacity is limited by storage space.

4 EXPERIMENT

In this section, the process and details of relevant experiments will be described.

We propose a new method of online hard keypoints mining based on the current gradients. It dy-
namically adjusts the learning rate in pixel and supports flexible gradient adjustments by artificial
control coefficients. Our approach is similar to OHKM but keeps the continuity of the gradient while
balancing the learning difficult of simple and hard keypoints. The experimental results comparison
about different methods are shown in Table 1.

Table 1: Online hard keypoints mining experiment based on gradient. The gradient-based hard key-
points mining can improve the accuracy of model predictions, and this dynamic gradient adjustment
mechanism will make the parameter update of the network more efficient. ”–” represent without
OHKM methods.

Method HM AP AP 50 AP 75 APM APL AR

CMU-Pose (Cao et al., 2017)
– 63.0 85.8 68.9 58.1 68.5 68.6

OHKM 41.5 68.8 47.3 37.3 51.5 51.5
Ours 64.2 86.7 69.5 59.1 72.0 72.0

Pose-AE (Newell & Deng, 2016)
– 63.6 86.6 69.3 59.7 70.4 69.3

OHKM 43.3 62.6 50.1 37.2 52.9 52.8
Ours 64.1 85.6 72.4 59.5 73.0 72.9

Mask-RCNN (He et al., 2018)
– 65.2 89.1 71.3 59.8 74.0 72.5

OHKM 43.0 65.1 47.0 36.7 53.1 52.8
Ours 66.3 88.3 71.3 60.3 75.4 75.4

Person-Lab (Papandreou et al., 2018)
– 68.8 89.0 75.5 64.2 75.9 74.5

OHKM 46.6 68.2 53.3 45.5 54.7 54.5
Ours 71.6 89.7 74.1 69.8 75.3 75.3

DLA (Yu et al., 2018)
– 51.7 81.4 55.3 44.6 63.1 62.0

OHKM 35.0 65.5 44.2 35.8 46.0 44.7
Ours 60.1 86.7 66.8 54.7 70.5 70.5

HRNet-W32 (Sun et al., 2019)
– 79.1 90.8 85.8 72.9 82.2 81.9

OHKM 42.2 66.7 54.8 40.7 55.2 55.1
Ours 66.2 87.2 76.9 63.2 77.3 77.2

As shown in Table 2, it can greatly speeds up the training process and obtains the optimal gradient
response. And experiments proved that this process can accelerate the training process and improve
the performance of the proposed network.

In general, there are two ways to regress the grounding points. The first one is to regress the ground-
ing points location information directly after obtaining the vehicle detection map, this method is
based on the top-down method. Another one is to assume that the wheel bounding box is approx-
imately rectangular, so it can be considered that the grounding point of a wheel is located at the
center of the bottom edge of the bounding box.
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Table 2: Effects with different scaling ratios. For our training data, when the scaling coefficient is
10, we can achieve the expected effect of accelerating convergence. The number of intervals was
20.

Method Scale Iteration AP AP 50 AP 75 APM APL AR

CMU-Pose

– 35600 63.0 85.8 68.8 58.1 68.4 68.6
4 33760 63.0 85.8 68.8 58.1 68.4 68.7
7 30820 63.0 85.8 68.9 58.1 68.4 68.7

10 26960 63.0 85.8 68.9 58.1 68.5 68.6
13 28120 63.0 85.8 68.8 58.1 68.4 68.5

Pose-AE

– 34960 63.6 86.6 69.3 59.7 70.2 69.2
4 33740 63.6 86.6 69.3 59.7 70.3 69.2
7 29520 63.6 86.6 69.3 59.7 70.3 69.3

10 25900 63.6 86.6 69.3 59.7 70.4 69.3
13 26120 63.6 86.6 69.3 59.7 70.2 69.2

Mask-RCNN

– 33040 65.2 89.1 71.3 59.7 73.8 72.4
4 31460 65.2 89.1 71.3 59.7 73.9 72.4
7 28120 65.2 89.1 71.3 59.8 74.0 72.4

10 24540 65.2 89.1 71.3 59.8 74.0 72.5
13 24960 65.2 89.1 71.3 59.7 73.8 72.3

PersonLab

– 33800 68.8 89.0 75.5 64.2 75.7 74.4
4 32080 68.8 89.0 75.5 64.2 75.8 74.4
7 28900 68.8 89.0 75.5 64.2 75.8 74.5

10 25180 68.8 89.0 75.5 64.2 75.9 74.5
13 25960 68.8 89.0 75.5 64.2 75.6 74.3

DLA

– 46820 51.7 81.4 55.3 44.6 63.0 61.9
4 45540 51.7 81.4 55.3 44.6 63.0 62.0
7 42180 51.7 81.4 55.3 44.6 63.1 62.0

10 38800 51.7 81.4 55.3 44.6 63.1 62.0
13 39000 51.7 81.4 55.2 44.6 63.0 61.9

HRNet-W32

– 14520 75.3 90.8 85.7 72.9 82.1 81.8
4 12800 79.1 90.8 85.7 72.9 82.2 81.8
7 9740 79.1 90.8 85.8 72.9 82.2 81.9

10 5800 79.1 90.8 85.8 72.9 82.2 81.9
13 6360 79.0 90.8 85.8 72.9 82.1 81.8

Table 3: The experimental results of the three methods regressing the grounding point separately:
direct regression to the grounding point, identify the center of bottom edge of the wheel as the
grounding point, and two-stage strategy proposed by us.

Method Train-Method AP AP 50 AP 75 APM APL

Car Point

CMU-Pose 31.8 43.6 37.9 26.2 35.8
Pose-AE 32.8 43.7 39.2 28.6 39.3

Mask-RCNN 33.9 57.4 37.9 27.4 42.1
PersonLab 36.4 56.1 42.3 32.5 39.8

DLA 28.1 54.8 34.0 32.5 37.2
Center-net 33.0 56.8 41.6 32.9 42.4

Box-middle – 69.8 79.9 74.9 66.2 75.8
Our method – 78.8 90.3 85.4 75.8 82.7

As shown in Table 4, when using a small model for training, the method of directly regressing to the
grounding point from the vehicle cannot converge on our data set, the reason of non-convergence is
that the high proportion of invisible points in the number of all points and its wide function range, so
the low-capacity network cannot converge. However, it is impossible to obtain an accurate position
information by directly taking the bottom edge midpoint of the wheel detection box as the grounding
point. Because when the vehicle’s course Angle changes, the shape of the wheel in the 2-d image
will also change, and the constraint of rectangular shape is no longer true.Compared with the other
two methods, the proposed method can get higher accuracy. The reason is that we do not make
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(a) (b)

Figure 4: The red and green points are real rear-right and front-right grounding points separately,
the blue and white points are the predicted results separately. (a) Identify the center of the vehicle
bottom edge as the grounding point. (b) Cut off the gradients corresponding to invisible points

(a) (b) (c)

Figure 5: The red and green points are real rear-right and front-right grounding points separately, the
blue and white points are the predicted results separately. (a) Invisible point at center. (b) Invisible
point at top left corner. (c)Invisible point at lower right corner.

any prior constraints on the shape of the wheel and we can ensure the continuity of the gradient
in training process. All that show it is necessary to detect the wheel firstly and then regress the
grounding points.

In order to verify the significance of obtaining wheel position information when the proportion of
invisible points fluctuate greatly and the derivative of gradient is continuous, we also conducted an
experiment to fix the position of invisible points, experimental results are shown in Table 4.

Table 4: Contrast between fixing the position of invisible points and our method

Method Position AP AP 50 AP 75 APM APL

Fix the position of invisible points
Center 69.8 79.9 74.9 66.2 75.8

Left-top 30.9 42.3 38.1 26.0 35.7
Right-down 33.5 45.4 39.2 27.9 36.6

Our method – 78.8 90.3 85.4 75.8 82.7

When the position of invisible points is fixed, the accuracy is 10 percent lower than the method of
detecting wheel information. Comparing with the mainstream methods of truncating the gradient,
it is essential to control the fluctuation of the gradient when the number of invisible points is large
and the fluctuation is severe. Detecting wheel information will avoid ambiguity of target space
constructed, and the proposed method can learn location information better.
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Figure 6: Keypoint detection results by our method. The cyan and creamy yellow points are real
rear-left and front-left grounding points separately, the green and orange points are the predicted
results separately.

As shown in Table 5, the proposed method of ground point detection is faster than the method of
directly using 3D detection to obtain 3D information of the vehicle.

Table 5: Speed comparison between 3D detection and our ground keypoint dection

Method FPS
MV3D(Chen et al., 2016) 2.8

F-PointNet(Qi et al., 2017) 5.9
AVOD(Ku et al., 2017) 12.5

VoxelNet(Zhou & Tuzel, 2017) 4.3
ComplexYOLO(Simon et al., 2018) 50.4

Our method 67.2

5 CONCLUSION

In this paper, we proposed a 3D trajectory prediction method based on a vision system. The main
contribution points of the method proposed in this paper are as follows:

1) A novel 3D vehicle poses prediction method based on grounding points is proposed. This method
can avoid the use of 3D detection results or Lidar information, which allows our method to work in
real-time and reduce the use cost.

2) Wheel detection is adopted to avoid the drastic fluctuation of gradient updating and effectively
optimize the training process.

3) In our future work, we will further combine the Re-ID and Kalman filters to obtain real3D real
trajectory information for vehicle trajectory prediction.
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