MAKE LEAD BIAS IN YOUR FAVOR: A SIMPLE AND EFFECTIVE METHOD FOR NEWS SUMMARIZATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Lead bias is a common phenomenon in news summarization, where early parts of an article often contain the most salient information. While many algorithms exploit this fact in summary generation, it has a detrimental effect on teaching the model to discriminate and extract important information. We propose that the lead bias can be leveraged in a simple and effective way in our favor to pretrain abstractive news summarization models on large-scale unlabelled corpus: predicting the leading sentences using the rest of an article. Via careful data cleaning and filtering, our transformer-based pretrained model without any finetuning achieves remarkable results over various news summarization tasks. With further finetuning, our model outperforms many competitive baseline models. For example, the pretrained model without finetuning outperforms pointer-generator network on CNN/DailyMail dataset. The finetuned model obtains 3.2% higher ROUGE-1, 1.6% higher ROUGE-2 and 2.1% higher ROUGE-L scores than the best baseline model on XSum dataset.

1 Introduction

The goal of text summarization is to condense a piece of text into a shorter version that contains the salient information. Due to the prevalence of news articles and the need to provide succinct summaries for readers, a majority of existing datasets for summarization come from the news domain (Hermann et al., 2015; Sandhaus, 2008; Narayan et al., 2018). However, according to journalistic conventions, the most important information in a news report usually appears near the beginning of the article (Kedzie et al., 2018; Jung et al., 2019). While it facilitates faster and easier understanding of the news for readers, this lead bias causes undesirable consequences for summarization models. The output of these models is inevitably affected by the positional information of sentences. Furthermore, the simple baseline of using the top few sentences as summary can achieve a stronger performance than many sophisticated models (See et al., 2017). It can take a lot of effort for models to overcome the lead bias Kedzie et al. (2018).

Additionally, most existing summarization models are fully supervised and require time and labor-intensive annotations to feed their insatiable appetite for labeled data. For example, the New York Times Annotated Corpus (Sandhaus, 2008) contains 1.8 million news articles, with 650,000 summaries written by library scientists. Therefore, some recent work (Gusev, 2019) explores the effect of domain transfer to utilize datasets other than the target one. But this method may be affected by the domain drift problem and still suffers from the lack of labelled data.

The recent promising trend of pretraining models (Devlin et al., 2018; Radford et al., 2018) proves that a large quantity of data can be used to boost NLP models' performance. Therefore, we put forward a novel method to leverage the lead bias of news articles in our favor to conduct large-scale pretraining of summarization models. The idea is to leverage the top few sentences of a news article as the target summary and use the rest as the content. The goal of our pretrained model is to generate an abstractive summary given the content. Coupled with careful data filtering and cleaning, the lead bias can provide a delegate summary of sufficiently good quality, and it immediately renders the large quantity of unlabelled news articles corpus available for training news summarization models.

We employ this pretraining idea on a three-year collection of online news articles. We conduct thorough data cleaning and filtering. For example, to maintain a quality assurance bar for using leading sentences as the summary, we compute the ratio of overlapping non-stopping words between

the top 3 sentences and the rest of the article. As a higher ratio implies a closer semantic connection, we only keep articles for which this ratio is higher than a threshold.

We end up with 21.4M articles to use for training a transformer-based encoder-decoder summarization model. This pretrained model achieves a remarkable performance on various target datasets without *any* finetuning. This shows the effectiveness of leveraging the lead bias to pretrain on large-scale news data. We further finetune the model on target datasets and achieve better results than a number of strong baseline models. For example, the pretrained model without finetuning outperforms pointer-generator network on CNN/DailyMail dataset and is significantly better than the leading-sentence baseline in XSum dataset. The finetuned model obtains 3.2% higher ROUGE-1, 1.6% higher ROUGE-2 and 2.1% higher ROUGE-L scores than the best baseline model on XSum dataset (Narayan et al., 2018).

The rest of paper is organized as follows. We introduce related work in news summarization and pretraining in Section 2. We describe the details of pretraining using lead bias in Section 3. We introduce the transformer-based summarization model in Section 4. We show the experimental results in Section 5 and conclude the paper in Section 6.

2 RELATED WORK

2.1 DOCUMENT SUMMARIZATION

End-to-end abstractive text summarization has been intensively studied in recent literature. To generate summary tokens, most architectures take the encoder-decoder approach (Sutskever et al., 2014). Rush et al. (2015) first introduces an attention-based seq2seq model to the abstractive sentence summarization task. However, its output summary degenerates as document length increases, and out-of-vocabulary (OOV) words cannot be efficiently handled. To tackle these challenges, See et al. (2017) proposes a pointer-generator network that can both produce words from the vocabulary via a generator and copy words from the source article via a pointer. Paulus et al. (2017); Li et al. (2018) utilize reinforcement learning to improve the result. Gehrmann et al. (2018) uses a content selector to over-determine phrases in source documents that helps constrain the model to likely phrases. You et al. (2019) adds Gussian focal bias and a salience-selection network to the transformer encoder-decoder structure (Vaswani et al., 2017) for abstractive summarization. Grenander et al. (2019) randomly reshuffles the sentences in news articles to reduce the effect of lead bias in extractive summarization.

2.2 Pretraining

In recent years, pretraining language models have proved to be quite helpful in NLP tasks. The state-of-the-art pretrained models include CoVe (McCann et al., 2017), ELMo (Peters et al., 2018), GPT (Radford et al., 2018), BERT (Devlin et al., 2018) and UniLM (Dong et al., 2019). Built upon large-scale corpora, these pretrained models learn effective representations for various semantic structures and linguistic relationships. As a result, pretrained models have been widely used with considerable success in applications such as question answering (Zhu et al., 2018), sentiment analysis (Peters et al., 2018) and passage reranking (Nogueira & Cho, 2019). Furthermore, UniLM (Dong et al., 2019) leverages its sequence-to-sequence capability for abstractive summarization; the BERT model has been employed as an encoder in BERTSUM (Liu & Lapata, 2019) for extractive/abstractive summarization.

Compared to our work, UniLM (Dong et al., 2019) is a general language model framework and does not take advantage of the special semantic structure of news articles. Similarly, BERTSUM (Liu & Lapata, 2019) directly copies the pretrained BERT structure into its encoder and finetunes on labelled data instead of pretraining with the large quantity of unlabelled news corpus available.

3 Pretraining with Leading Sentences

News articles usually follow the convention of placing the most important information early in the content, forming an inverted pyramid structure. This lead bias has been discovered in a number of studies (Kedzie et al., 2018; Jung et al., 2019; Grenander et al., 2019). One of the consequences

is that the lead baseline, which simply takes the top few sentences as the summary, can achieve a rather strong performance in news summarization. For instance, in the CNN/Daily Mail dataset (Hermann et al., 2015), using the top three sentences as summaries can get a higher ROUGE score than many deep learning based models. This positional bias brings lots of difficulty for models to extract salient information from the article and generate high-quality summaries. For instance, Grenander et al. (2019) discovers that most models' performances drop significantly when a random sentence is inserted in the leading position, or when the sentences in a news article are shuffled.

On the other hand, news summarization, just like many other supervised learning tasks, suffers from the scarcity of labelled training data. Abstractive summarization is especially data-hungry since the efficacy of models depends on high-quality handcrafted summaries.

We propose that the lead bias in news articles can be leveraged in our favor to train an abstractive summarization model without human labels. Given a news article, we treat the top three sentences, denoted by Lead-3, as the target summary, and use the rest of the article as news content. The goal of the summarization model is to produce Lead-3 using the following content, as illustrated in Figure 1.

The benefit of this approach is that the model can leverage the large number of unlabelled news articles for pretraining. In the experiment, we find that the pretrained model alone can have a strong performance on various news summarization datasets, without any further training. We also finetune the pretrained model on downstream datasets with labelled summaries. The model can quickly adapt to the target domain and further increase its performance.

It is worth noting that this idea of utilizing structural bias for large-scale summarization pretraining is not limited to specific types of models, and it can be applied to other types of text as well: academic papers with abstracts, novels with editor's notes, books with tables of contents.

However, one should carefully examine and clean the source data to take advantage of lead bias, as the top three sentences may not always form a good summary. We provide more details in the experiments about the data filtering and cleaning mechanism we apply.

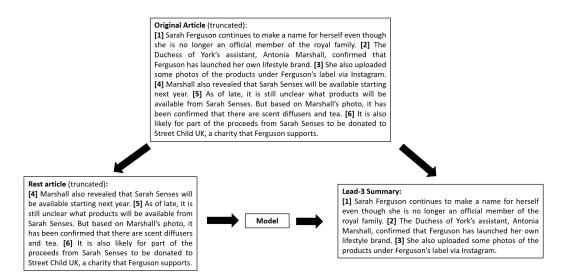


Figure 1: Using Lead-3 summary as target in pretraining.

4 Model

In this section, we introduce our abstractive summarization model, which has a transformer-based encoder-decoder structure. We first formulate the supervised summarization problem and then present the network architecture.

4.1 PROBLEM FORMULATION

We formalize the problem of supervised abstractive summarization as follows. The input consists of a pairs of articles and summaries: $\{(X_1,Y_1),(X_2,Y_2),...,(X_a,Y_a)\}$. Each article and summary are tokenized: $X_i=(x_1,...,x_{L_i})$ and $Y_i=(y_1,...,y_{N_i})$. In abstractive summarization, the summary tokens need not be from the article. For simplicity, we will drop the data index subscript. The goal of the system is to generate summary $Y=(y_1,...,y_m)$ given the transcript $X=\{x_1,...,x_n\}$.

4.2 Network Structure

We utilize a transformer-based encoder-decoder structure that maximizes the conditional probability of the summary: $P(Y|X,\theta)$, where θ represents the parameters.

4.2.1 ENCODER

Transformer. We use the transformer to incorporate contextual information. Recall that a transformer block consists of a multi-head attention layer and a feed-forward layer, both followed by layer-norm with residuals: LayerNorm(x + Layer(x)), where Layer can be the attention or feed-forward layer and x represents the input vectors.

In detail, the input consists of queries $Q \in \mathbb{R}^{n \times d}$, keys $K \in \mathbb{R}^{m \times d}$ and values $V \in \mathbb{R}^{m \times d}$, the attention is based on the inner product of the query and key:

Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d}})V \in \mathbb{R}^{n \times d}$$
 (1)

In self-attention, Q = K = V. In cross-attention, Q and K = V represent the source and target of attention, respectively.

Multi-head attention employs the attention h times, each time projecting Q, K, V to a space of $\frac{d}{h}$ dimensions:

$$MultiHead(Q, K, V) = Concat(A_1, A_2, ..., A_h)W^O$$
(2)

$$\boldsymbol{A}_{i} = \operatorname{Attention}(\boldsymbol{Q}\boldsymbol{W}_{i}^{Q}, \boldsymbol{K}\boldsymbol{W}_{i}^{K}, \boldsymbol{V}\boldsymbol{W}_{i}^{V})$$
(3)

Where the projection matrices are $\boldsymbol{W}_{i}^{Q} \in \mathbb{R}^{d \times \frac{d}{\hbar}}, \boldsymbol{W}_{i}^{K} \in \mathbb{R}^{d \times \frac{d}{\hbar}}, \boldsymbol{W}_{i}^{V} \in \mathbb{R}^{d \times \frac{d}{\hbar}}$ and $\boldsymbol{W}^{O} \in \mathbb{R}^{d \times d}$.

The feed-forward network utilizes two linear transformations:

$$FFN(x) = \max(0, xW_1 + b_1)W_2 + b_2$$
(4)

Moreover, as the attention is position agnostic, the transformer applies the positional encoding technique:

$$PE_{(i,2j)} = \sin(i/10000^{\frac{2j}{d}})$$
 (5)

$$PE_{(i,2j+1)} = \cos(i/10000^{\frac{2j}{d}})$$
(6)

where $PE_{(i,j)}$ stands for the j-th dimension of positional encoding for the i-th word in input sequence. The positional encoding is added to the input to the transformer block. Here we do not train a positional embedding matrix in order to accommodate articles of any length during inference.

In summary, a transformer block on a sequence of n input embeddings can generate n output embeddings of the same dimension as the input. Thus, multiple transformer blocks can be sequentially stacked to form a transformer network.

Encoding. The transformer in the encoder processes the article's token sequence. We encode each token using a trainable dictionary \mathcal{D} randomly initialized using a normal distribution with zero mean and a standard deviation of 0.02. Each transformer block conducts multi-head self-attention. Finally, the output of the encoder is:

$$\operatorname{Encoder-Transformer}(\{x_1,...,x_n\}) = \{u_1^E,...,u_n^E\}$$

4.2.2 DECODER

The decoder is a transformer that generates the summary tokens. The generation process is autoregressive: the input to the decoder transformer contains the k-1 previously generated summary tokens $w_1,...,w_{k-1}$. Each token is projected onto a vector using the same dictionary \mathcal{D} as the encoder.

The decoder transformer block includes an additional cross-attention layer. The output of the self-attention layer attends to the encoder's outputs $\{u_i^E\}_{i=1}^m$, and is followed by a layer-norm with residuals. The output of the decoder transformer is denoted as:

Decoder-Transformer(
$$\{w_1, ..., w_{k-1}\}\) = \{u_1^D, ..., u_{k-1}^D\}$$
 (7)

To predict the next token w_k , we reuse the weights of dictionary \mathcal{D} as the final linear layer to decode u_{k-1}^D into a probability distribution over the vocabulary:

$$P(w_k|w_{\leq k}, u_{1:m}^E) = \operatorname{softmax}(\mathcal{D}u_{k-1}^D)$$
(8)

Training. During training, we seek to minimize the cross entropy function:

$$L(\theta) = -\frac{1}{m} \sum_{k=1}^{m} \log P(y_k | y_{< k}, X)$$
(9)

We use teacher-forcing in decoder training, i.e. the decoder takes ground-truth summary tokens as input.

Inference. During inference, we employ beam search to select the best candidate. The search starts with the special token $\langle BEGIN \rangle$. A candidate word leading to a duplicate tri-gram is ignored. The summary with the highest average log-likelihood per token is selected.

5 EXPERIMENTS

We evaluate our model on three benchmark summarization datasets: the New York Times Annotated Corpus (NYT) (Sandhaus, 2008), XSum (Narayan et al., 2018) and the CNN/DailyMail dataset (Hermann et al., 2015). These datasets contain 104K, 227K and 312K news articles and human-edited summaries respectively, covering different topics and various summarization styles. For NYT dataset, we use the same train/val/test split and filtering methods following Durrett et al. (2016).

5.1 IMPLEMENTATION DETAILS

We use SentencePiece (Kudo & Richardson, 2018) for tokenization, which segments any sentence into subwords. We train the SentencePiece model on pretrained data to generate a vocabulary of size 32K and of dimension 720. The vocabulary stays fixed during pretraining and finetuning.

Pretraining. We collect three years of online news articles from June 2016 to June 2019. We filter out articles overlapping with the evaluation data on media domain and time range. We then conduct several data cleaning strategies.

First, many news articles begin with reporter names, media agencies, dates or other contents irrelevant to the content, e.g. "New York (CNN) –", "Jones Smith, May 10th, 2018:". We therefore apply simple regular expressions to remove these prefixes.

Second, to ensure that the summary is concise and the article contains enough salient information, we only keep articles with 10-150 words in the top three sentences and 150-1200 words in the rest, and that contain at least 6 sentences in total. We also remove data where any of the top three sentences is exactly repeated in the rest of the article.

Third, we try to remove articles whose top three sentences may not form a good summary. For this purpose, we utilize a simple metric: overlapping words. We compute the portion of non-stopping words in the top three sentences that are also in the rest of an article. A higher portion implies that

Model	R1	R2	RL
LEAD-3	39.58	20.11	35.78
PTGEN	42.47	25.61	
PTGEN + COV	43.71	26.40	_
DRM	42.94	26.02	_
TransformerABS	35.75	17.23	31.41
PL-NoFT	35.32	17.80	31.88
PL-FT	44.18	27.49	40.65

Model	R1	R2	RL
LEAD-1	16.30	1.60	11.95
PTGEN	29.70	9.21	23.24
PTGEN+COV	28.10	8.02	21.72
TConvS2S	31.89	11.54	25.75
TransformerABS	29.41	9.77	23.01
PL-NoFT	24.12	5.59	19.20
PL-FT	35.06	13.12	27.86

Table 1: ROUGE recall scores on NYT test set. Table 2: ROUGE F1 results on XSum test set.

Model	R1	R2	RL
LEAD-3	40.42	17.62	36.67
PTGEN		15.66	
PTGEN+COV		17.28	
DRM		15.82	
ВоттомИР		18.68	
TransformerABS	40.21	17.76	37.09
PL-NoFT		16.27	
PL-FT	40.41	17.81	37.19

Table 3: ROUGE F1 results on CNN/DailyMail test set.

the summary is representative and has a higher chance of being inferred by the model using the rest of the article. We keep those articles with an overlapping word ratio higher than 0.65.

In the end, we collect 21.4M news articles, 12,000 of which are randomly sampled for validation.

We run the pretraining task for 10 epochs and select the model with the best ROUGE-L score on the validation set. The pretrained model has 10 layers of 8-headed transformer blocks in both its encoder and decoder, with 154.4M parameters.

During pretraining, we use a dropout rate of 0.3 for all inputs to transformer layers. The batch size is 1,920. We use RAdam (Liu et al., 2019) as the optimizer, with a learning rate of 10^{-4} . Also, due to the different numerical scales of the positional embedding and initialized sentence piece embeddings, we divide the positional embedding by 100 before feeding it into the transformer. The beam width is set to 5 during inference.

Finetuning. During finetuning, we keep the optimizer, learning rate and dropout rate unchanged as in pretraining. The batch size is 32. We pick the model with the highest ROUGE-L score on the validation set and report its performance on the test set. More details are given in the Appendix.

Our strategy of Pretraining with unlabelled Lead-3 summaries is called **PL**. We denote the pretrained model with finetuning on target datasets as **PL-FT**. The model with only pretraining and no finetuning is denoted as **PL-NoFT**, which is the same model for all datasets.

5.2 BASELINE

To compare with our model, we select a number of strong abstractive summarization models as baseline systems. LEAD-X uses the top X sentences as a summary (Liu & Lapata, 2019). The value of X is 3 for NYT and CNN/DailyMail datasets and 1 for XSum to accommodate the nature of summary length. PTGEN (See et al., 2017) is the pointer-generator network. DRM (Paulus et al., 2017) leverages deep reinforcement learning for summarization. TCONVS2S (Narayan et al., 2018) is based on convolutional neural networks. BOTTOMUP (Gehrmann et al., 2018) uses a bottom-up approach to generate summarization. TransformerABS is the transformer-based encoder-decoder summarizer implemented in Liu & Lapata (2019).

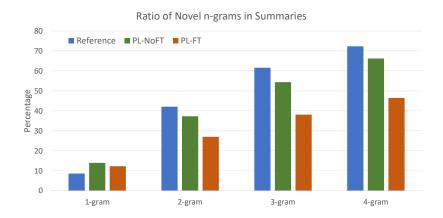


Figure 2: Ratio of novel n-grams in summaries from reference, PL-NoFT and PL-FT models in NYT test set.

5.3 METRICS

We employ the standard ROUGE-1, ROUGE-2 and ROUGE-L metrics (Lin, 2004) to evaluate all summarization models. These three metrics respectively evaluate the accuracy on unigrams, bigrams and longest common subsequence. ROUGE metrics have been shown to highly correlate with the human judgment (Lin, 2004).

5.4 RESULTS

The results are shown in Table 1, Table 2 and Table 3. We follow Durrett et al. (2016) by using limited-length ROUGE recall score for the NYT dataset, where the predicted summaries are truncated to the length of the ground-truth summaries.

As shown, on both NYT and XSum dataset, PL-FT outperforms all baseline models by a large margin. For instance, PL-FT obtains 3.2% higher ROUGE-1, 1.6% higher ROUGE-2 and 2.1% higher ROUGE-L scores than the best baseline model on XSum dataset. On CNN/DailyMail dataset, PL-FT outperforms all baseline models except BottomUp (Gehrmann et al., 2018).

It's worth noting that PL-NoFT, the pretrained model without any finetuning, gets remarkable results as well. On NYT dataset, PL-NoFT outperforms TransformerABS in ROUGE-2 and ROUGE-L, which has been extensively trained on target dataset. On XSum dataset, PL-NoFT is almost 8% higher than Lead-1 in ROUGE-1 and ROUGE-L. On CNN/DailyMail dataset, PL-NoFT outperforms the pointer-generator network by 2.5% in ROUGE-1, 0.6% in ROUGE-2 and 1.7% in ROUGE-L, and is closely behind other baselines. Thus, the same pretrained model PL-NoFT can achieve good summarization quality over different news corpus, which shows the effectiveness of our pretraining strategy.

5.5 ANALYSIS

Example Summaries. We showcase two examples of LEAD-3, reference summaries and the summaries generated by our models in Figure 3. As shown, even without finetuning on the target dataset, PL-NoFT model can generate summaries with salient information, often shortening and reorganizing the original article's contents. After further finetuning, PL-FT captures more relevant content from the article that is similar to that in the reference summary.

Abstractiveness. We measure the abstractiveness of our model via the ratio of novel n-grams in summaries, i.e. the percentage of n-grams in the summary that are not present in the article. Figure 2 shows this ratio in summaries from reference and generated by PL-NoFT and PL-FT in NYT dataset. Both PL-NoFT and PL-FT yield more novel 1-grams in summary than the reference. And PL-NoFT has similar novelty ratio with the reference in other n-gram categories. Also we observe that the

Lead-3:

china's recent test of an antisatellite weapon sent a confusing message to the world about its military intentions, but the united states and china are slowly building stronger military-to-military ties, the top-ranking united states military officer said friday.

gen. peter pace, chairman of the joint chiefs of staff, said he urged his chinese counterparts in meetings on thursday and friday to provide more information about the aims of their military buildup.

he called the meetings "encouraging" but said he did not get concrete answers.

Reference:

gen peter pace says he urged his chinese counterparts to provide more information about aims of their military buildup.

calls meetings in beijing encouraging, but says he did not get concrete answers.

says china's recent test of antisatellite weapon sent confusing message to world about its military intentions, but us and china are slowly building stronger military-to-military ties.

PL-NoFT Summary:

china's recent test of an antisatellite weapon sent a confusing message to the world about its military intentions, but the united states and china are slowly building stronger military-to-military ties. the test, which china said nothing about for more than a week, raised alarms in washington that the chinese military might seek the capacity to cripple the pentagon.

PL-FT Summary:

chairman gen peter pace urges chinese counterparts in meetings to provide more information about aims of their military buildup.

china's recent test of antisatellite weapon sends confusing message to world about its military intentions, but us and china are slowly building stronger military-to-military ties.

Lead-3:

in the first major investigation of medicare marketing, the oklahoma insurance commissioner has documented widespread misconduct by agents working for humana and has ordered the company to take corrective action to protect consumers against high-pressure sales tactics.

the commissioner, kim holland, said some agents had enrolled medicare recipients in humana products that "they did not understand and did not want."

at least 68 agents did not have the licenses needed to sell insurance in oklahoma, ms. holland said monday in an interview.

Reference:

oklahoma insurance commissioner kim holland, in first major probe of medicare marketing, documents widespread misconduct by agents working for humana.

orders company to take corrective action to protect consumers against high-pressure sales tactics.

contends some agents enrolled medicare recipients in humana products they did not understand or want.

PL-NoFT Summary:

the state's top insurance regulator said monday that it had found widespread misconduct by agents working for humana and has ordered the company to take corrective action to protect consumers against high-pressure sales tactics.

the oklahoma state insurance commissioner said that some agents had enrolled medicare recipients in humana products that they did not understand or want.

PL-FT Summary:

oklahoma insurance comr kim holland, in first major investigation of medicare marketing, documented widespread misconduct by agents working for humana and has ordered company to take corrective action to protect consumers against highpressure sales tactics.

says some agents had enrolled medicare recipients in humana products that they did not understand or want.

Figure 3: Two summary examples in NYT test set. The summaries are from the leading three sentences of the article, the reference, the pretrained-only model PL-NoFT and the pretrained+finetuned model PL-FT.

novelty ratio drops after finetuning. We attribute this to the strong lead bias in the NYT dataset which affects models trained on it.

6 Conclusions

In this paper, we propose a simple and effective pretraining method for news summarization. By employing the leading sentences from a news article as its target summary, we turn the problematic lead bias for news summarization in our favor. Based on this strategy, we conduct pretraining for abstractive summarization in a large-scale news corpus. Experiments show that the same pretrained model without any finetuning can achieve a remarkable performance in various summarization datasets. After finetuning on target domains, the model outperforms many strong baseline models. This pretraining method can be applied in more scenarios where structural bias exists.

REFERENCES

- Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. *arXiv preprint arXiv:1810.04805*, 2018.
- Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xiaodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou, and Hsiao-Wuen Hon. Unified language model pre-training for natural language understanding and generation. *arXiv* preprint arXiv:1905.03197, 2019.
- Greg Durrett, Taylor Berg-Kirkpatrick, and Dan Klein. Learning-based single-document summarization with compression and anaphoricity constraints. *arXiv* preprint arXiv:1603.08887, 2016.
- Sebastian Gehrmann, Yuntian Deng, and Alexander M Rush. Bottom-up abstractive summarization. *arXiv preprint arXiv:1808.10792*, 2018.
- Matt Grenander, Yue Dong, Jackie C.K. Cheung, and Annie Louis. Countering the effects of lead bias in news summarization via multi-stage training and auxiliary losses. *EMNLP*, 2019.
- Ilya Gusev. Importance of copying mechanism for news headline generation. *arXiv preprint* arXiv:1904.11475, 2019.
- Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa Suleyman, and Phil Blunsom. Teaching machines to read and comprehend. Advances in neural information processing systems, pp. 1693–1701, 2015.
- Taehee Jung, Dongyeop Kang, Lucas Mentch, and Eduard Hovy. Earlier isnt always better: Sub-aspect analysis on corpus and system biases in summarization. *EMNLP*, 2019.
- Chris Kedzie, Kathleen McKeown, and Hal Daume III. Content selection in deep learning models of summarization. *arXiv* preprint arXiv:1810.12343, 2018.
- Taku Kudo and John Richardson. Sentencepiece: A simple and language independent subword tokenizer and detokenizer for neural text processing. *arXiv* preprint arXiv:1808.06226, 2018.
- Piji Li, Lidong Bing, and Wai Lam. Actor-critic based training framework for abstractive summarization. *arXiv preprint arXiv:1803.11070*, 2018.
- Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. *Text Summarization Branches Out*, 2004.
- Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei Han. On the variance of the adaptive learning rate and beyond. *arXiv preprint arXiv:1908.03265*, 2019.
- Yang Liu and Mirella Lapata. Text summarization with pretrained encoders. EMNLP, 2019.
- Bryan McCann, James Bradbury, Caiming Xiong, and Richard Socher. Learned in translation: Contextualized word vectors. In *Advances in Neural Information Processing Systems*, pp. 6294–6305, 2017.
- Shashi Narayan, Shay B Cohen, and Mirella Lapata. Don't give me the details, just the summary! topic-aware convolutional neural networks for extreme summarization. *arXiv* preprint *arXiv*:1808.08745, 2018.
- Rodrigo Nogueira and Kyunghyun Cho. Passage re-ranking with bert. *arXiv preprint* arXiv:1901.04085, 2019.
- Romain Paulus, Caiming Xiong, and Richard Socher. A deep reinforced model for abstractive summarization. *arXiv preprint arXiv:1705.04304*, 2017.
- Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer. Deep contextualized word representations. *arXiv preprint arXiv:1802.05365*, 2018.

- Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language understanding by generative pre-training. 2018.
- Alexander M Rush, Sumit Chopra, and Jason Weston. A neural attention model for abstractive sentence summarization. *arXiv preprint arXiv:1509.00685*, 2015.
- Evan Sandhaus. The new york times annotated corpus. *Linguistic Data Consortium*, *Philadelphia*, 6(12):e26752, 2008.
- Abigail See, Peter J Liu, and Christopher D Manning. Get to the point: Summarization with pointer-generator networks. *arXiv preprint arXiv:1704.04368*, 2017.
- Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks. *Advances in neural information processing systems*, pp. 3104–3112, 2014.
- Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. pp. 5998–6008, 2017.
- Yongjian You, Weijia Jia, Tianyi Liu, and Wenmian Yang. Improving abstractive document summarization with salient information modeling. *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*, pp. 2132–2141, 2019.
- Chenguang Zhu, Michael Zeng, and Xuedong Huang. Sdnet: Contextualized attention-based deep network for conversational question answering. *arXiv preprint arXiv:1812.03593*, 2018.

APPENDIX

MODEL SPECIFICATIONS IN FINETUNING

For NYT dataset, we apply a minimum and maximum summary generation length of 50 and 150 sentence pieces, respectively. The article is truncated to the first 400 sentence pieces. The beam width is 8.

For XSum dataset, we apply a minimum and maximum summary generation length of 30 and 150 sentence pieces, respectively. The article is truncated to the first 400 sentence pieces. The beam width is 1.

For CNN/DailyMail dataset, we apply a minimum and maximum summary generation length of 60 and 150 sentence pieces, respectively. The article is truncated to the first 350 sentence pieces. The beam width is 5.