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ABSTRACT

When mastering a complex manipulation task, humans often decompose the task
into sub-skills of their body parts, practice the sub-skills independently, and then
execute the sub-skills together. Similarly, a robot with multiple end-effectors can
perform a complex task by coordinating sub-skills of each end-effector. To realize
temporal and behavioral coordination of skills, we propose a hierarchical frame-
work that first individually trains sub-skills of each end-effector with skill behavior
diversification, and learns to coordinate end-effectors using diverse behaviors of
the skills. We demonstrate that our proposed framework is able to efficiently
learn sub-skills with diverse behaviors and coordinate them to solve challenging
collaborative control tasks such as picking up a long bar, placing a block inside a
container while pushing the container with two robot arms, and pushing a box with
two ant agents.

1 INTRODUCTION

Imagine you wish to play Chopin’s Fantaisie Impromptu on the piano. With little prior knowledge
about the piece, you would first practice playing the piece with each hand separately. After inde-
pendently mastering the left hand part and the right hand part, you would move on to practicing
with both hands simultaneously, trying to coordinate between the movement of the two hands to
together create a complete piece of music. Coordinating movements of two hands requires adjusting
one-handed playing of each hand to the synchronized and coordinated movements of two hands,
which requires you to learn variations in playing the same melody. Through the decomposition of
skills into sub-skills of two hands and learning variations of sub-skills, humans make the learning
process of manipulation skills much faster than learning everything at once.

Can autonomous agents efficiently learn complicated tasks with coordination of different skills from
multiple end-effectors like humans? Learning to perform collaborative and composite tasks from
scratch requires a huge amount of environment interaction and extensive reward engineering, which
often results in undesired behaviors (Riedmiller et al., 2018). Hence, instead of learning a task at once,
modular approaches (Andreas et al., 2017; Oh et al., 2017; Frans et al., 2018; Peng et al., 2019; Goyal
et al., 2019) suggest to learn reusable primitive skills and solve more complex tasks by recombining
the skills. However, all these approaches are focused on working with a single end-effector or agent
with learned primitive skills, and learning to coordinate has not been addressed.

To this end, we propose a hierarchical framework that learns to coordinate multiple end-effectors
with their primitive skills for various robotics tasks, such as bi-manual manipulation. The main
challenge is that naive simultaneous execution of primitive skills from multiple end-effectors can
often cause unintended behaviors (e.g. collisions between end-effectors). Thus, our model needs
to learn to “correctly” coordinate each end-effector; and thus needs a way to obtain, represent, and
control detailed behaviors of each primitive skill. To address these intuitions, our method consists of
two parts: (1) acquiring primitive skills with diverse behaviors by mutual information maximization,
and (2) learning a meta policy that selects a skill for each end-effector and coordinates the chosen
skills by controlling the behavior of each skill.

The main contributions of this paper is a hierarchical approach that tackles cooperative manipulation
tasks with multiple end-effectors by (1) learning primitive skills of each end-effector independently
with skill behavior diversification and (2) coordinating end-effectors using diverse behaviors of the
skills. Our empirical results indicate that our proposed method is able to efficiently learn primitive
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Figure 1: Composing complex skills using multiple agents’ primitive skills requires proper coordina-
tion between agents since concurrent execution of primitive skills requires temporal or behavioral
coordination. For example, to move a block into a container on the other end of the table, the agent
needs to not only utilize pick, place, and push primitive skills at the right time, but also select the
appropriate behaviors for these skills, represented as latent vectors z1, z2, z3, and z4 above. Naive
methods neglecting either temporal or behavioral perspective of the coordinated process will produce
unintended behaviors, such as collisions between end-effectors.

skills with diverse behaviors and coordinate these skills to solve challenging collaborative control
tasks such as picking up a long bar, placing a block inside the container on the right side, and pushing
a box with two ant agents. We will make the training code and environments publicly available.

2 RELATED WORK

Hierarchical reinforcement learning: Deep reinforcement learning for continuous control is an
active research area. However, learning a complex task either from a sparse reward or a heavily
engineered reward becomes computationally impractical as the target task becomes more complicated.
Instead of learning from scratch, complex tasks can be tackled by decomposing the tasks into easier
and reusable sub-tasks. Hierarchical reinforcement learning temporally splits a task into a sequence
of temporally extended meta actions. It often consists of one high-level policy and a set of low-
level policies, such as option framework (Sutton et al., 1999). The high-level policy decides which
low-level controller to activate and the chosen low-level controller generates an action sequence
until the high-level policy switches it to another low-level controller. The option can be discovered
unsupervisedly (Schmidhuber, 1990; Levy et al., 2017; Bacon et al., 2017; Nachum et al., 2018),
meta-learned (Frans et al., 2018), pre-defined (Kulkarni et al., 2016; Oh et al., 2017; Lee et al.,
2019), or attained from additional supervision signals (Andreas et al., 2017). However, these option
frameworks are not flexible to solve a task that requires simultaneous activation or interpolation of
multiple skills since only one skill can be activated at each time step.

Composition of multiple policies: To solve compositional tasks multiple policies can be simulta-
neously activated by adding Q-functions (Haarnoja et al., 2018a), additive composition (Qureshi et al.,
2019; Goyal et al., 2019), or multiplicative composition (Peng et al., 2019). As each of policies takes
the whole observation as input and controls the whole agent, it is not robust to changes in unrelated
part of observation. Hence, these skill composition approaches can fail when an agent encounters
a new combination of skills or a new skill is introduced since a policy cannot achieve its own goal
under unseen circumstances.

Multi-agent reinforcement learning: Instead of having a policy with the full observation and
action space, multi-agent reinforcement learning (MARL) proposes to explicitly split the observation
and action space according to agents (e.g. robots or end-effectors), which allows efficient low-
level policy training as well as flexible skill composition. For cooperative tasks, sharing policy
parameters (Gupta et al., 2017) and decentralized actor with centralized critic (Lowe et al., 2017;
Foerster et al., 2018) have been actively used. However, these approaches suffer from the credit
assignment problem (Sutton, 1984) among agents and the lazy agent problem (Sunehag et al., 2018).
As agents have more complicated morphology and larger observation space, learning a policy for a
multi-agent system from scratch requires extremely long training time. To resolve these issues, we
propose to first train reusable skills for each agent separately, instead of learning primitive skills of
multiple agents together. Then, we recombine these skills to complete more complicated tasks with
proper coordination between the skills.
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Figure 2: Our method is composed of two components: a meta policy and a set of agent-specific
primitive policies relevant to task completion. The meta policy selects which primitive skill to run for
each agent as well as the behavior embedding (i.e. variation in behavior) of the chosen primitive skill.
Each selected primitive skill takes the agent observation and the behavior embedding as input and
outputs action for that agent.

Learning diverse skills: Coordination of multiple skills from multiple agents requires the skills to
be flexible; hence, a skill can be adjusted to collaborate with other agents’ skills. Maximum entropy
policies (Haarnoja et al., 2017; 2018a;b) can learn diverse ways to achieve a goal by maximizing not
only reward but also entropy of the policy. Eysenbach et al. (2019) proposes to discover diverse skills
without reward by maximizing entropy as well as mutual information between resulting states and
skill embeddings (Hausman et al., 2018). To this end, our method leverages a maximum entropy
policy with a discriminability objective (Eysenbach et al., 2019) to learn a primitive skill with diverse
behaviors conditioned on a controllable skill embedding, which will be later used as a behavior
embedding for a high-level policy to adapt low-level policies for coordination.

3 METHOD

In this work, we address the problem of solving cooperative manipulation tasks that require collabora-
tion between multiple end-effectors or agents (we use the terms ”multiple end-effectors” and ”multiple
agents” interchangeably in this paper). Instead of learning a multi-agent task from scratch (Lowe et al.,
2017; Gupta et al., 2017; Sunehag et al., 2018; Foerster et al., 2018), modular approaches (Andreas
et al., 2017; Frans et al., 2018; Peng et al., 2019) suggest to learn reusable primitive skills and solve
more complex tasks by recombining these skills. However, concurrent execution of primitive skills of
multiple agents fails when agents never experienced a combination of skills during the pre-training
stage or skills require temporal or behavioral coordination.

Therefore, we propose a hierarchical framework that learns to coordinate multiple agents with
primitive skills to compose a complex skill. Moreover, during primitive skill training, we propose to
learn a latent behavior embedding, which provides controllability of the primitive skill to the meta
policy for skill coordination. In Section 3.2, we describe our hierarchical framework in details. Next,
in Section 3.3, we elaborate how controllable primitive skills can be achieved. Lastly, we describe
how the meta policy learns to coordinate primitive skills in Section 3.4.

3.1 PRELIMINARIES

We formulate our problem as a Markov decision process defined by a tuple {S,A, T , R, ρ, γ} of
states, actions, transition probability, reward, initial state distribution, and discount factor. In our
formulation, we assume the environment includes N agents. Hence, the state space and action
space for an agent i can be represented as Si and Ai where each element of Si is a subset of the
corresponding element in S andA = A1×A2×· · ·×AN , respectively. For each agent i, we provide
a set of skills Πi. An action distribution of an agent i is represented as a policy πi

cit
(ait|sit) ∈ Πi,

where cit is a skill index of the agent, sit ∈ Si is a state, ait ∈ Ai is an agent action at time t. An
initial state s0 is randomly sampled from ρ, and then, N agents take actions a1t , a

2
t , . . . , a

N
t sampled

from a composite policy π(a1t , a
2
t , . . . , a

N
t |st, c1t , c2t , . . . , cNt ) and receives a single reward rt, where

π(a1t , a
2
t , . . . , a

N
t |st, c1t , c2t , . . . , cNt ) = (π1

c1t
(a1t |st), π2

c2t
(a2t |st), . . . , πNcNt (aNt |st)). The performance
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Algorithm 1 ROLLOUT

1: Input: Meta policy πmeta, sets of primitive policies Π1, ...,ΠN , and meta horizon Tlow.
2: Initialize an episode and receive initial state s0.
3: t← 0
4: while episode is not terminated do
5: Sample skill indexes and behavior embeddings (c1t , . . . , c

N
t ), (z1t , . . . , z

N
t ) ∼ πmeta(st)

6: τ ← 0
7: while τ < Tlow and episode is not terminated do
8: at+τ = (a1t+τ , . . . , a

N
t+τ ) ∼ (π1

c1t
(st+τ , z

1
t ), . . . , πN

cNt
(st+τ , z

N
t ))

9: st+τ+1, rt+τ ← ENV(st+τ , at+τ )
10: τ ← τ + 1
11: end while
12: Add a transition st, (c1t , . . . , c

N
t ), (z1t , . . . , z

N
t ), st+τ , rt:t+τ−1 to the rollout buffer B.

13: t← t+ τ
14: end while

of the agent is evaluated based on a discounted return R =
∑T−1
t=0 γtrt, where T is the episode

horizon.

3.2 HIERARCHICAL FRAMEWORK

As illustrated in Figure 2, our hierarchical model is composed of two components: a meta policy
πmeta and a set of primitive skills of multiple agents Π1, . . . ,ΠN . The meta policy chooses one
primitive skill for each agent (π1

c1 , π
2
c2 , . . . , π

N
cN ) ∈ Π1 × Π2 × · · · × ΠN . To control the chosen

primitive skills, the meta policy also outputs a set of latent behavior embeddings (z1, z2, . . . , zN )
which parameterize diverse behaviors of the corresponding skills. Then, each agent simultaneously
executes the selected skill πici parameterized by the behavior embedding zi. The behavior embedding
enables the meta policy to control primitive skills and it is necessary for coordinating multiple agents’
skills. For example, in the task illustrated by Figure 1, naively placing a block in the left hand to the
container being moved by the right hand can cause collision between two robot arms. The arms can
avoid collision while performing their skills by properly adjusting their end-effector skill behaviors
(e.g. placing the block from the left side and pushing the container while leaning the hand toward
the right side). A set of skills are selected every Tlow time steps. Algorithm 1 illustrates the overall
rollout process.

We denote the meta policy as πmeta(c1, . . . , cN , z1, . . . , zN |st), where ci ∈ Ci represents a skill
index of an agent i ∈ [1, . . . , N ] and zi represents a behavior embedding of the skill. The meta
policy πmeta is modeled as a mixture of N categorical distributions for skill indexes and N Gaussian
distributions for behavior embeddings. The observation of the meta policy contains all available
information while each agent has limited access to a partial observation. Our meta policy selects
a skill to execute for each agent, rather than selecting one primitive skill for the entire multi-agent
system to execute. Also, we give the meta policy the capability to select which variant of a skill to
execute (see Section 3.4). Once a set of primitive skills {π1

c1 , . . . , π
N
cN } are chosen to be executed,

each primitive skill generates an action ai ∼ πici(a
i|si, zi) based on the current state si and the latent

vector zi. Note that we will not differentiate state spaces for primitive polices and omit time step t in
the rest of the paper due to the simplicity of notations. We want primitive skills to be agent-specific,
controlling motion of only one agent. This will not only make the learning of primitive skills efficient
but also enable generalization to different collaboration scenarios (see Section 3.3).

3.3 TRAINING PER-AGENT PRIMITIVE POLICIES WITH DIVERSE BEHAVIORS

For a primitive skill to adjust to and collaborate with skills of other agents in a new environment,
the skill needs to support variations of skill behaviors when executed at a given state. Moreover, a
behavioral variation of a skill should be controllable by a meta policy for skill coordination. In order
to make our primitive policies generate diverse behaviors controlled by a latent vector z, we leverage
the entropy and mutual information maximization objective introduced in Eysenbach et al. (2019).
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More specifically, a primitive policy of an agent i takes as input the current state s ∈ S and a
latent behavior embedding z ∼ p(z), and output action a ∈ Ai, where the prior distribution p(z) is
Gaussian. Diverse behaviors conditioned on a random sample z can be achieved by maximizing the
mutual information between skills and states, MI(s|z), while minimizing the mutual information
between skills and actions given the state, MI(a, z|s), together with maximizing the entropy of the
policy for the diverse behaviors,H(a|s). The objective can be written as follows (we refer the readers
to Eysenbach et al. (2019) for derivation):

F(θ) = H(a | s, z)−H(z | s) +H(z) (1)
= H(a | s, z) + Ez∼p(z),s∼π(z)[log p(z | s)]− Ez∼p(z)[log p(z)] (2)

≥ H(a | s, z) + Ez∼p(z),s∼π(z)[log qφ(z | s)− log p(z)], (3)

where the learned discriminator qφ(p|z) approximates the posterior p(z|s).

In this paper, we train a primitive policy by maximizing a weighted sum of the reward and Equation (3):

rt + λ1H(a | s, z) + λ2Ez∼p(z),s∼π(z)[log qφ(z | s)− log p(z)]. (4)

Maximizing Equation (3) encourages multi-modal exploration strategies by learning policies repre-
sented by expressive energy-based models while achieving their own goal. Moreover, by maximizing
identifiability of behaviors, the latent vector z, named behavior embedding, can represent a variation
of the learned policy and thus can be used to control the behavior of the policy. For example, when
training a robot to move an object, a policy learns to move the object quickly as well as slowly, and
these diverse behaviors map to different latent vectors z. We empirically show that the policies with
diverse behaviors achieve better compositionality with other agents in our experiments.

3.4 COMPOSING PRIMITIVE SKILLS WITH META POLICY

We design the meta policy πmeta : S → ΠN
i=1

(
Ci × Zi

)
to take as input the current state containing

information about the environment as well as the states of all agents and output (1) the primitive skill,
denoted as ci, to execute for each agent; and (2) the behavior embedding vector zi to be used as input
for the primitive skill ci. Since there are a finite number of skills for each agent to execute, the meta
action space for each agent Ci is discrete, while the behavior embedding space for each agent Zi
is continuous. Thus, the meta policy can be implemented using a |Ci| + Nz-head neural network
which represents a mixture of |Ci|-way categorical distributions for skill selection and Nz Gaussian
distributions for behavior control of the chosen skill.

3.5 IMPLEMENTATION

We model the primitive policies and posterior distributions qφ as neural networks. We train the
primitive policies using soft actor-critic (Haarnoja et al., 2018b). When we train a primitive policy,
we use unit Gaussian distribution as the prior distribution of latent variables p(z). Each primitive
policy outputs the mean and standard deviation of a Gaussian distribution over an action space. For a
primitive policy, we apply tanh activation to normalize the action between [−1, 1]. We model the
meta policy as neural network with multiple heads that outputs the skill ci and behavior embedding
zi for each agent. The meta policy is trained using PPO (Schulman et al., 2017; 2016; Dhariwal et al.,
2017). All policy networks in this paper consist of 3 fully connected layers of 64 hidden units with
ReLU nonlinearities. The discriminator network for primitive training with DIAYN (Eysenbach et al.,
2019) is a 2-fully connected layers network with 64 hidden units.

4 EXPERIMENTS

To demonstrate the effectiveness of our framework, we compare our method to prior methods in the
field of multi-agent RL and ablate the components of our framework to understand their importance.
We conducted our experiments on a set of challenging robot control environments that require
coordination of different agents to complete: collaborative robotic manipulation and locomotion.

Through our experiments, we aim to answer the following questions: (1) can our framework efficiently
learn to combine primitive skills to execute a complicated task; (2) can our learned agent exhibit
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(a) JACO PICK-PUSH-PLACE (b) JACO BAR-MOVING (c) ANT PUSH

Figure 3: The composite tasks pose a challenging combination of object manipulation and locomotion
skills, which requires coordination of multiple agents and temporally extended behaviors. (a) The left
Jaco arm needs to pick up a block while the right jaco arm pushes a container. Then, it places the
block into the container. (b) Jaco arms are required to pick and place a bar-shaped block together. (c)
Two ants push the red box to the goal location (green circle) together.

collaborative behaviors during task execution; (3) can our framework leverage the controllable
behavior variations of the primitive skills to achieve better coordination?

For details about environments and training, please refer to the supplementary material. As the
performance of training algorithms varies between runs, we train each method on each task with 3
different random seeds and report mean and standard deviation of each method’s success rate.

4.1 BASELINES

We compare the performance of our method with various single- and multi-agent RL methods:

Centralized Policy: a single policy modeled by multi-layer preceptron takes as input the full obser-
vation including observation of every agent and outputs actions for every agent in the environment.

Decentralized Policy: a set of n agent policies modeled by multi-layer perceptrons takes the
observation of a single agent as input and outputs action for that agent. The global critic is used to
train decentralized policies from a single task reward.

Modular Network: a modular framework composed of a meta policy and N sets of primitive skills.
The meta policy takes the full observation as input and selects a primitive skill for each agent policy.
Each agent policy takes as input the agent observation and outputs action for that agent.

Modular Network with Skill Coordination: our proposed method, which consists of a meta policy
and N sets of primitive skills, where each primitive skill is conditioned on a behavior embedding z.
The meta policy takes the full observation as input and selects both a primitive skill and a behavior
embedding for each agent policy. Each primitive skill takes the agent observation and the behavior
embedding as input and outputs action for that agent.

4.2 JACO PICK-PUSH-PLACE

We develop JACO-PICK-PUSH-PLACE and JACO-BAR-MOVING environments using two Kinova
Jaco arms, where each Jaco arm is a 9 DoF robotic arm with 3 fingers. A Jaco arm starts with a block
on the left and a container on the right. To complete the task, the robot needs to pick up the block,
push the container to the center, and place the block inside the container.

Primitives skills. There are three primitive skills available to each arm: Picking up, Pushing, and
Placing (see Figure 3a). Picking up requires the robotic arm to pick up a small block, which is
randomly placed on the table. If the block is not picked up after a certain amount of time or the arm
drops the block, the agent fails. Pushing learns to push a big container to its opposite side (e.g. from
left to the center or from right to center). The agent fails if it cannot place the container to the center.
Placing is to place an object in the gripper to the table. The agent only succeeds when it stably place
the object to the desired location on the table.
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(a) JACO PICK-PUSH-PLACE
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(b) JACO BAR-MOVING
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(c) ANT PUSH

Figure 4: Learning curves (success rates) of our model (green), our model without skill coordination
(red), centralized policy (yellow), and decentralized policy (blue). For our models, we shift the
learning curves rightwards the total number of environment steps the agent takes to learn the primitive
skills (1.2 M, 0.9 M, and 2.0 M, respectively). Our method substantially improves learning speed and
performance on JACO PICK-PUSH-PLACE and ANT PUSH. The shaded areas represent the standard
deviation of results from three different seeds.

Composite task. Our method can successfully perform JACO PICK-PUSH-PLACE task while all
baselines fail to compose primitive skills as shown in Figure 4a. The Centralized Policy baseline
cannot efficiently learn the task mainly since the RL agent requires to learn the combinatorial number
of skill composition. Table 1 demonstrates that the baseline cannot generalize to unseen combination
of skills. On the other hand, the Decentralized Policy baseline fails to learn the task mainly due to the
difficulty of credit assignment problem. Since the composite task requires multiple primitive skills to
learn for multiple agents, a reward signal about a failure case cannot be assigned to the correct agent
or skill. By using pre-trained primitive skills, the credit assignment problem is relaxed and all agents
can perform their skills concurrently.

4.3 JACO BAR-MOVING

A Jaco robot needs to pick up a long bar with its two arms, move the bar towards a target location
while maintaining its rotation, and place it on the table (see Figure 3b). The initial position of the bar
will be randomly initialized every episode and it requires an agent to find appropriate coordination
between two arms for each initialization.

Primitives skills. There are three pre-trained primitive skills available to each arm: Picking up,
Moving, and Placing. Picking up requires the robotic arm to pick up a small block, which is randomly
placed on the table. If the block is not picked up after a certain amount of time or the arm drops
the block, the agent fails. Moving learns to move a block in the hand to the specified location. The
agent fails if it drops the block or does not reach the target position within a certain amount of time.
Placing is to place an object in the gripper to the table. It only succeeds when it stably place the
object straight down to the table.

Composite task. Our method can successfully perform JACO BAR-MOVING task while both
baselines fail to compose primitive skills as shown in Figure 4b. The modular framework without
explicit coordination of skills solve the composite task fairly well but doesn’t achieve as high success
rate as the one with explicit coordination of skills because the task requires the two end-effectors
to work very closely together. For example, picking up skill of both arms should be synchronized
when they start to lift the bar and two arms require to lift the bar while maintaining the relative
position between them since they are connected by holding the bar. The modular framework without
explicit coordination of skills can synchronize the execution of picking, moving, and placing. But the
inability to micro-adjust to the movement of the other arm causes instability to the process of bar
picking and moving, which results in the gap in success rate compared to the framework with explicit
coordination.

4.4 ANT PUSH

We developed a multi-ant environment, ANT-PUSH, inspired from Nachum et al. (2019), simulated
in the Mujoco (Todorov et al., 2012) physics engine and models from OpenAI Gym (Brockman
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Jaco Pick-Push-Place Jaco Bar-Moving Ant Push
Centralized Policy 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

Decentralized Policy 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
Ours w/o Skill Coordination 0.213 ± 0.410 0.940 ± 0.237 0.003 ± 0.058
Ours w/ Skill Coordination 0.807 ± 0.395 0.997 ± 0.058 0.323 ± 0.468

Table 1: Success rates for all tasks, comparing our method against baselines. Each entry in the table
represents average success rate and standard deviation over three random seeds and 100 runs. The
baselines learning from scratch fail to learn complex tasks with multiple agents.

et al., 2016). In this environment, two ants need to push a large object toward a green target place,
collaborating with each other to keep the angle of the object as stable as possible (see Figure 3c).

Primitives skills. We train walking skills of an ant agent in 4 directions: up, down, left, and right.
During primitive skill training, a block is randomly placed and pushing the block gives an additional
reward to the agent. The learned policies have different speed and trajectories conditioned on the
latent behavior embedding.

Composite task. Our method achieves 32.3% success rate on ANT PUSH task while all baselines
fail to compose primitive skills as shown in Figure 4c. The poor performance of centralized policy
and decentralized policy baselines shows the difficulty of credit assignment between agents, which
leads one of the ants moves toward a block and pushes it but another ant does not move. As can be
seen in Table 1, the ablated model seldom succeeds while our method with behavior embeddings
succeeds in 32.3% of episodes. This result illustrates the importance of coordination of agents, which
helps synchronizing and controlling the velocities of both ant agents to push the block toward the
goal position while maintaining its rotation.

4.5 EFFECT OF DIVERSITY OF PRIMITIVE SKILLS
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Figure 5: Reward curves of our
model with different diversity co-
efficients on ANT PUSH.

To analyze the effect of the diversity of the primitive skills,
we compare our model with primitive skills trained with dif-
ferent diversity coefficients λ2 = [0.0, 0.05, 0.1, 0.5, 1.0] in
Equation (4). The reward curves are shown in Figure 5. We can
observe only with small diversity coefficients λ2 = 0.05, 0.1,
the agent can control detailed behaviors of primitive skills,
while primitive skills without diversity (λ2 = 0) cannot be co-
ordinated. The meta policy tries to synchronize two ant agents’
positions and velocities by switching primitive skills, but it is
not able to achieve proper coordination. On the other hand,
large diversity coefficients λ2 = 0.5, 1.0 make the primitive
skills often focus on demonstrating diverse behaviors and fail
to achieve the goals of the skills. Hence, these primitives do
not have enough functionality to solve the target task.

5 CONCLUSIONS

In this paper, we propose a hierarchical framework with skill coordination to tackle challenges of
compositions of sub-skills. Specifically, we use entropy maximization policies with the mutual
information maximization to train controllable primitive skills with diverse behaviors. To coordinate
learned primitive skills, the meta policy predicts not only the skill to execute for each end-effector
but also the behavior embedding that controls the chosen primitive skill’s behavior. Our experimental
results on robotic manipulation and locomotion tasks demonstrate that our proposed framework is
able to efficiently learn primitive skills with diverse behaviors and coordinate multiple end-effectors
to solve challenging cooperative control tasks.
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A ENVIRONMENT DETAILS

The details of observation spaces, action spaces, number of agents, and episode lengths are described
in Table 2. All units in this section are in meters unless otherwise specified.

Jaco Pick-Push-Place Jaco Bar Moving Ant Push
Observation Space 88 88 100
- Robot observation 62 62 82
- Object observation 26 26 18
Action Space 18 18 16
Number of Agents 2 2 2
Episode length 150 100 200

Table 2: Environment details

A.1 ENVIRONMENT DESCRIPTIONS

In both Jaco environments, the robot works on a table with size (1.6, 1.6) and top center position
(0, 0, 0.82). The two Jaco arms are initialized at positions (−0.16,−0.16, 1.2) and (−0.16, 0.24, 1.2).
Left arm and right arm objects are initialized around (0.3, 0.2, 0.86) and (0.3,−0.2, 0.86) respectively
in all primitive training and composite task training environments, with small random position and
rotation perturbation.

In the Jaco Pick-Push-Place task, the right jaco arm needs to pick up the object and place it into the
container initialized at the other side of the table. Success is defined by contact between the object
and the inner top side of the container.

In the Jaco Bar-Moving task, the two Jaco arms need to together pick the long bar up by height of 0.7,
move it towards the arms by distance of 0.15, and place it back on the table. Success is defined by (1)
the bar being placed within 0.04 away from the desired destination both in height and in xy-position
and (2) the bar having been picked 0.7 above the table.

In the Ant Push task, the two ant agents need to push a big box together to the goal position. The
box has a size of 8.0× 1.6× 1.6. The distance between ants and the box is 20 cm and the distance
between the box and the goal is 30 cm. Initial positions have 1 cm of randomness and the agent has a
randomness of 0.01. The task is considered as success when both the distances between left and right
end of the box and the goal are within 5 cm.

A.2 REWARD DESIGN

For every task, we add a control penalty, −0.001 ∗ ‖a‖2, to regularize the magnitude of actions where
a is a torque action performed by an agent.

Jaco Pick: reward for pick primitive is defined by the weighted sum of pick reward, gripper-to-cube
distance reward, cube position and quaternion stability reward, hold duration reward, success reward,
and robot control reward. More concretely,
R(s) = λpick · (zbox − zinit) + λdist · d(pgripper, pbox) + λpos · d(pbox, pinit) + λquat · abs(∆quat)+

λhold · thold + λsuccess · 1success + λctrl‖a‖2,
where λpick = 500, λdist = 100, λpos = 1000, λquat = 1000, λhold = 10, λsuccess = 100, λctrl =
1e− 4.

Jaco Place: reward for place primitive is defined by the weighted sum of xy-distance reward, height
reward (larger when cube close to floor), success reward, and robot control reward.

Jaco Push: reward for push primitive is defined by the weighted sum of destination distance reward,
position and quaternion stability reward, hold duration reward, success reward, and robot control
reward.

Jaco Pick-Push-Place: reward for Pick-Push-Place is defined by the weighted sum of reach reward,
gripper contact reward, per-staged pick/push/place rewards, success reward, and control reward. We
tune the reward carefully for all baselines.
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Jaco Bar-Moving: reward for Bar-Moving is defined by the weighted sum of per-stage
pick/move/place rewards, success reward, and control reward.

Ant Moving: reward for ANT PUSH is defined by upright, velocity towards the desired direction.
We provide a dense reward to encourage the desired locomotion behavior using velocity, stability,
and posture, as following:

R(s) =λvel · abs(∆xant) + λboxvel · abs(∆xbox) + λupright · cos(θ)− λheight · abs(0.6− h)+

λgoal · dist(pgoal, pbox),

, where λvel = 50, λboxvel = 20, λupright = 1, λheight = 0.5. For ANT PUSH, we provide an
additional reward based on distance between the box and the goal position with λgoal = 200.

B EXPERIMENT DETAILS

We use PyTorch (Paszke et al., 2017) for our implementation and all experiments are conducted on a
workstation with Intel Xeon Gold 6154 CPU and 4 NVIDIA GeForce RTX 2080 Ti GPUs.

B.1 HYPERPARAMETERS

Parameters Value
learning rate 3e-4

gradient steps 50
batch size 256

discount factor 0.99
target smoothing coefficient 0.005

reward scale (SAC) 1.0
experience buffer size 1000

Tlow 1 for JACO, 5 for ANT

Table 3: Hyperparameters

12


	Introduction
	Related work
	Method
	Preliminaries
	Hierarchical framework
	Training per-agent primitive policies with diverse behaviors
	Composing primitive skills with meta policy
	Implementation

	Experiments
	Baselines
	Jaco Pick-Push-Place
	Jaco Bar-Moving
	Ant Push
	Effect of diversity of primitive skills

	Conclusions
	Environment details
	Environment Descriptions
	Reward Design

	Experiment details
	Hyperparameters


