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ABSTRACT

Overparameterized neural networks trained to minimize average loss can be
highly accurate on average on an i.i.d. test set, yet consistently fail on atypi-
cal groups of the data (e.g., by learning spurious correlations that do not hold
at test time). Distributionally robust optimization (DRO) provides an approach
for learning models that instead minimize worst-case training loss over a set of
pre-defined groups. We find, however, that naively applying DRO to overparam-
eterized neural networks fails: these models can perfectly fit the training data,
and any model with vanishing average training loss will also already have van-
ishing worst-case training loss. Instead, the poor worst-case performance of these
models arises from poor generalization on some groups. As a solution, we show
that increased regularization—e.g., stronger-than-typical weight decay or early
stopping—allows DRO models to achieve substantially higher worst-group accu-
racies, with 10%−40% improvements over standard models on a natural language
inference task and two image tasks, while maintaining high average accuracies.
Our results suggest that regularization is critical for worst-group performance in
the overparameterized regime, even if it is not needed for average performance.
Finally, we introduce and provide convergence guarantees for a stochastic opti-
mizer for this group DRO setting, underpinning the empirical study above.

1 INTRODUCTION

Machine learning models are typically trained to maximize average accuracy on a test set that is
independent and identically distributed (i.i.d.) to the training set. However, even models that perform
well on average can consistently fail on rare and atypical examples (Hovy & Sgaard, 2015; Blodgett
et al., 2016; Tatman, 2017; Hashimoto et al., 2018; Duchi et al., 2019). Such models are problematic
if, e.g., they violate equity considerations (Jurgens et al., 2017; Buolamwini & Gebru, 2018) or rely
on spurious correlations, which are misleading heuristics that work for most training examples
but might not hold up on a different test distribution. For example, in natural language inference
(NLI)—determining if two sentences agree or contradict—negation words like ‘never’ tend to be
strongly correlated with contradiction due to artifacts in crowdsourced annotation of training data
(Gururangan et al., 2018). A model could achieve high average accuracy on an i.i.d. test set by
learning the correlation between negation and contradictions, but would perform poorly on test sets
where that spurious correlation does not hold (McCoy et al., 2019).

We show in this paper that in the modern regime of training overparameterized models—i.e., large
neural networks that can perfectly fit the training data—this problem is one of generalization: while
these models can generalize well on average (as in Zhang et al. (2017)), they do not generalize well
on the worst-case (sub)group (e.g., the group of contradictions with no negations).

To avoid the pitfalls of optimizing for average loss, we instead optimize for the worst-case loss over
various groups in the data, using prior knowledge of spurious associations (e.g., between negation
and contradiction) to choose these groups. This is an instance of distributionally robust optimization
(DRO), which studies worst-case performance over potential test distributions (Ben-Tal et al., 2013;
Duchi et al., 2016). In our group DRO setting, the data is distributed as a mixture of different groups
with mixture weights that can vary at test time (Hu et al., 2018; Oren et al., 2019). Optimizing for
the worst-case test distribution is thus equivalent to minimizing the worst-case loss over each group.

Prior work has applied DRO to learn models that are robust over different groups of data (Duchi
& Namkoong, 2018; Hashimoto et al., 2018) or as a data-dependent regularizer (Maurer & Pontil,
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Common training examples Test examples

(P) The economy 
could be still better.
(H) The economy has 
never been better.

y: waterbird
a: water
background

y: landbird
a: land 
background

y: waterbird
a: land    
background

y: dark hair
a: male

y: blond hair
a: female

y: blond hair
a: male

y: contradiction
a: has negation

y: entailment
a: no negation

y: entailment
a: has negation

(P) Read for Slate's take 
on Jackson's findings.
(H) Slate had an opinion 
on Jackson's findings.

(P) There was silence 
for a moment.
(H) There was a short period 
of time where no one spoke.

Waterbirds

CelebA

MultiNLI

Figure 1: Representative training and test examples for the datasets we consider. The correlation
between the label y and the spurious attribute a at training time does not hold at test time.

2009; Shafieezadeh-Abadeh et al., 2015; Duchi & Namkoong, 2016). However, a major challenge
with this approach in the modern overparameterized regime is that models can achieve vanishing
training loss (Zhang et al., 2017)); any such model would be (near) optimal for both the average and
worst-case training losses, so there is little incentive for their minimizers to differ (Wen et al., 2014).
Indeed, existing work on DRO has focused on either generative models or convex predictive models
with limited capacities, both of which cannot get vanishing training loss.

In this paper, we study group DRO in the context of large, high-performing neural networks in
three applications (Figure 1)—natural language inference with the MultiNLI dataset (Williams et al.,
2018), facial attribute recognition with CelebA (Liu et al., 2015), and bird photograph recognition
with our modified version of the CUB dataset (Wah et al., 2011). In the vanishing-training-loss
regime, we find that group DRO models do no better than ERM models: both models achieve nearly
perfect training accuracies across groups and continue to perform well on average at test time, but
suffer low test accuracies on the worst-case group (Section 3.1). In other words, the generalization
gap is small on average, but the worst-case generalization gap over groups is large.

However, group DRO models can significantly outperform ERM models when we account for these
generalization gaps—through appropriate regularization, e.g., strong weight decay or early stopping
(Section 3.2), and through group adjustments that explicitly handle the differences in generalization
gaps between groups (Section 3.3). Across the three applications, group DRO improves worst-case
test accuracies by 10% to 40% while maintaining comparably high average test accuracies. These
results give a new perspective on generalization in neural networks: regularization might not be
important for good average performance (models can, e.g., “train longer and generalize better” on
average (Hoffer et al., 2017)) but it appears critical for good worst-case performance.

Finally, we introduce a stochastic optimizer for group DRO that underpins the experiments above
and scales to large models and datasets. We derive convergence guarantees and rates for our algo-
rithm in the convex case, and empirically show it behaves well in the non-convex case (Section 5).

2 SETUP

Consider the setting where we wish to predict labels y ∈ Y from input features x ∈ X . Given a
model family Θ, loss ` : Θ×(X ×Y)→ R+, and training data drawn from some distribution P , the
standard goal is to find a model θ ∈ Θ that minimizes the expected loss under the same distribution
EP [`(θ; (x, y)]. This is typically done through empirical risk minimization (ERM):

θ̂ERM := arg min
θ∈Θ

E(x,y)∼P̂ [`(θ; (x, y))], (1)

where P̂ is the empirical distribution over the training data.

In distributionally robust optimization (DRO) (Ben-Tal et al., 2013; Duchi et al., 2016), we aim
instead to minimize the worst-case loss over an uncertainty set of distributions Q,

min
θ∈Θ

{
R(θ) := sup

Q∈Q
E(x,y)∼Q[`(θ; (x, y))]

}
. (2)
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The uncertainty setQ encodes the possible test distributions that we want our model to perform well
on, and it is typically chosen as a large divergence ball around the training distribution P . Choosing
a general familyQ confers robustness to a wide set of distributional shifts but can be too pessimistic
because it optimizes for implausible worst-case scenarios (Hu et al., 2018; Oren et al., 2019).

Instead, following the above prior work on group DRO, we assume that the data-generating dis-
tribution P is a mixture of m different groups, G = {1, 2, . . . ,m}, with each g ∈ G defining a
distribution Pg over (x, y). (In our experiments, m = 4 or 6.) We further assume that the test
and training distributions can have arbitrarily different mixture weights; in other words, we choose
Q = {

∑m
g=1 qgPg : q ∈ ∆m}, where ∆m is the (m− 1)-dimensional probability simplex. Because

the optimum of a linear program is always attained at a vertex, this choice ofQ allows us to express
the worst-case risk over Q as a maximum over the expected loss of each group

R(θ) = max
g∈G

E(x,y)∼Pg
[`(θ; (x, y))]. (3)

To optimizeR(θ), we assume we additionally observe group identities at training—i.e., our training
data comprises (x, y, g) triplets—but not at test time, so the model cannot use g directly. Instead, we
use the training data to learn the group DRO model that minimizes the empirical robust risk R̂(θ):

θ̂DRO := arg min
θ∈Θ

{
R̂(θ) := max

g∈G
E(x,y)∼P̂g

[`(θ; (x, y))]
}
, (4)

where P̂g is the empirical distribution over all training points (x, y, g′) with g′ = g. Group DRO
learns models with good robust training loss across groups. This need not imply good robust test
loss because of the generalization gap δ := R(θ̂DRO)−R̂(θ̂DRO). We will show that for overparam-
eterized neural networks, δ is large and requires the use of regularizers.

2.1 APPLICATIONS

In the rest of this paper, we study three applications that share a similar structure (Figure 1): each
data point (x, y) has some input attribute a(x) ∈ A that is spuriously correlated with the label y,
and we use this prior knowledge to form m = |A| × |Y| groups, one for each value of (a, y). We
expect that models that learn the correlation between a and y in the training data would do poorly
on groups for which a 6= y, and hence do worse on the robust lossR(θ).

Object recognition with correlated backgrounds (Waterbirds dataset). Object recognition
models can learn to make predictions from image backgrounds instead of the actual object (Ribeiro
et al., 2016). We investigate this by constructing a new dataset, Waterbirds, which combines
bird photographs from the Caltech-UCSD Birds-200-2011 (CUB) dataset (Wah et al., 2011) with
image backgrounds from the Places dataset (Zhou et al., 2017). We label each bird as one of
Y = {waterbird, landbird} and place it on one of A = {water background, land background}, with
waterbirds (landbirds) more frequently appearing against a water (land) background (Appendix B.1).
There are n = 4795 training examples and 89 in the smallest group (waterbirds against land).

Object recognition with correlated demographics (CelebA dataset). Object recognition mod-
els (and other ML models more generally) have also been shown to learn spurious associations
between the target label and demographic information like gender and ethnicity (Buolamwini & Ge-
bru, 2018). We examine this on the CelebA celebrity face dataset (Liu et al., 2015), using hair color
(Y = {blond, dark}) as the target and gender (A = {male, female}) as the spurious attribute. There
are n = 162770 training examples, with 1387 in the smallest group (blond-haired males).

Natural language inference (MultiNLI dataset). In natural language inference, the task is to
determine if a given hypothesis is entailed by, neutral with, or contradicts a given premise. Prior
work has shown that crowdsourced training datasets for this task have significant annotation artifacts,
such as the spurious correlation between contradictions and the presence of the negation words
nobody, no, never, and nothing (Gururangan et al., 2018). We divide the MultiNLI dataset (Williams
et al., 2018) into m = 6 groups, one for each pair of labels Y = {entailed, neutral, contradictory}
and spurious attributes A = {no negation, negation}. There are n = 206175 examples in the
training set, with 1521 examples in the smallest group (entailment with negations); we modify the
standard MultiNLI split to better estimate accuracy on small groups (Appendix B.1).
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3 COMPARISON BETWEEN GROUP DRO AND ERM

To study the behavior of group DRO vs. ERM in a modern setting, we fine-tuned ResNet50 models
(He et al., 2016) on Waterbirds and CelebA, and a BERT model (Devlin et al., 2018) on MultiNLI;
these are popular and high-performing models for image and natural language tasks, respectively.

We train the ERM models using standard (minibatch) stochastic gradient descent. For the DRO
models, we introduce a stochastic minibatch algorithm based on online mirror descent that optimizes
for an adaptively-weighted training distribution at each iteration; we defer discussion of this to
Section 5. We tune the learning rate for ERM and use the same setting for DRO (Appendix B.2).

For each model, we measure its average (in-distribution) accuracy over training and test sets drawn
from the same distribution, as well as its robust accuracy over the worst-performing group.

3.1 ERM AND DRO HAVE POOR ROBUST ACCURACY IN THE OVERPARAMETERIZED REGIME

We start by examining the robust accuracy of models when they are trained to convergence using
standard hyperparameter settings (He et al., 2016; Devlin et al., 2018).1 These overparameterized
models can attain near-perfect training accuracy and vanishing training loss even in the presence of
default regularization (batch normalization and weight decay for ResNet50, and dropout for BERT).

ERM. As expected, ERM models reach near-perfect training accuracies of at least 99.8% on all
three datasets, even on the worst-case group, and also obtain high average test accuracies (82.5%,
97.0%, and 94.8% on MultiNLI, Waterbirds, and CelebA). However, they perform poorly on the
worst-case group at test time (66.4%, 55.4%, and 41.1%; Table 1, Figure 2). Their low robust
accuracies imply that these models are brittle under distributional shifts; they are accurate only
when the test and training distributions match.

DRO. In this vanishing-training-loss regime, there exist models that do almost perfectly on both
the ERM (1) and DRO (4) objectives. We train group DRO models in the same way as above, and
indeed find that they perform similarly to ERM models, attaining near-perfect training accuracies
and high average test accuracies, but poor robust test accuracies (Table 1, Figure 2).

Discussion. The high average test accuracies of our ERM and DRO models are consistent with
the widely-reported observation that neural networks can generalize well on average despite per-
fectly fitting the training data (Zhang et al., 2017). However, we observe that these models do not
generalize well on the worst-case group, and consequently suffer from low robust accuracies. In
other words, the gap between average and robust test accuracies arises not from poor robust train-
ing performance—the models are near-perfect at training time, even on the worst-case groups—but
from variations in the generalization gaps across groups.

3.2 GROUP DRO IMPROVES ROBUST ACCURACY UNDER APPROPRIATE REGULARIZATION

Classically, regularization techniques control the generalization gap by constraining the model fam-
ily’s capacity to fit the training data. In the modern overparameterized regime, however, regularized
models like those trained above can still perfectly fit the training data, and models still tend to do
well even when all regularization is removed (Zhang et al., 2017).

Here, we explore increasing regularization strength until the models no longer perfectly fit the train-
ing data. We find that while average test accuracy remains high (as in the standard models trained
above), the departure from the vanishing-training-loss regime allows group DRO models to signifi-
cantly outperform ERM models on robust accuracy. We investigate two types of regularization:

Weight decay. The default weight decay strength (i.e., the coefficient of the L2-norm penalty
λ‖θ‖22) in ResNet50 is λ = 0.0001 (He et al., 2016). Increasing this by several orders of

1Training to convergence is a widespread practice for image models (Zhang et al., 2017; Hoffer et al.,
2017). Pre-trained language models are typically pretrained until convergence (Devlin et al., 2018; Radford
et al., 2019) but fine-tuned for a fixed small number of epochs because average test accuracy levels off quickly;
we verified that training to convergence gave equally high average test accuracy.
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ERM DRO ERM DRO
Train 100.0 100.0 100.0 100.0
Test 97.0 97.0 55.4 65.6

Train 100.0 100.0 99.9 100.0
Test 94.8 94.7 41.1 41.1

Train 99.9 99.4 99.8 99.0
Test 82.5 82.0 66.4 66.4

Train 97.0 98.9 37.1 97.1
Test 95.8 96.1 21.5 86.1

Train 95.6 94.8 40.4 93.4
Test 95.8 93.5 37.8 86.7

Train 86.0 82.0 9.0 73.8
Test 93.3 92.7 5.5 84.9

Train 93.9 92.3 14.2 85.1
Test 94.6 91.8 25.0 88.3

Train 92.1 86.1 78.6 83.3
Test 82.8 81.4 66.0 77.7

Average Accuracy Robust Accuracy
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Table 1: Average and robust accuracies for each training method. Both ERM and DRO models
perform poorly on the worst-case group in the absence of regularization (top). With regularization
(middle, bottom), DRO achieves high worst-group performance, significantly improving from ERM.
Cells are colored by accuracy, from low (red) to medium (white) to high (blue) accuracy.

Training Time0

1

Ac
cu

ra
cy

ERM
Standard Regularization

Training Time

DRO
Standard Regularization

Training Time

ERM
Strong Weight Decay

Training Time

DRO
Strong Weight Decay

Dark hair, female Dark hair, male Blond, female Blond, male

Figure 2: Training (light) and validation (dark) accuracy for CelebA throughout training. With de-
fault hyperparameters and training to convergence, ERM and DRO models achieve perfect training
accuracy across groups, but generalize badly on the worst-case group (blond male, panels 1-2). With
stronger weight decay, ERM models achieve high average train and test accuracies at the cost of the
rare group (panel 3). DRO models achieve high train and test accuracies across groups (panel 4).

magnitude—to λ = 1.0 for Waterbirds and λ = 0.1 for CelebA—does two things: 1) it prevents
both ERM and DRO models from achieving perfect training accuracy, and 2) substantially reduces
the generalization gap for each group.

Both ERM and DRO models still achieve high average test accuracies that are comparable to each
other and to the standard models with weaker regularization. However, because no model can
achieve perfect training accuracy in this regime, ERM models sacrifice training accuracy on the
worst-case group (robust accuracies of 37.1% and 40.4% for Waterbirds and CelebA; Table 1,Fig-
ure 2), and consequently obtain poor robust test accuracy.

In contrast, DRO models optimize for (and can still attain) high robust training accuracy (93.4% and
97.1% on Waterbirds and CelebA). The small generalization gap in this weight decay regime means
that high robust training accuracy translates to high robust test accuracy: with group DRO, robust
test accuracy improves from 21.5% to 86.1% on Waterbirds and from 37.8% to 86.7% on CelebA.

While these results show that strong weight decay has a striking impact on ResNet50 models for
Waterbirds and CelebA, our initial experiments did not show a similar effect on BERT model for
MultiNLI. Weight decay is not typically tuned for this task (Devlin et al., 2018)—our default hyper-
parameters set weight decay to zero (Appendix B.2)—so we turn to other forms of regularization.
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Early stopping. A different, implicit form of regularization is early stopping (Hardt et al., 2015).
We use the same settings in Section 3.1, but only train each model for a fixed (small) number of
epochs (Section B.2). As with strong weight decay, curtailing training reduces the generalization
gap and prevents models from fitting the data perfectly. In this setting, DRO also does substantially
better than ERM on robust test accuracy, improving from 66.0% to 77.7% on MultiNLI, 5.5% to
84.9% on Waterbirds, and 25.0% to 88.3% on CelebA. Average test accuracies are comparably high
in both ERM and DRO models, though there is a small drop of 1-2% for DRO (Table 1, Figure 2).

Discussion. We conclude that regularization—preventing the model from perfectly fitting the
training data—does matter for robust accuracy. Specifically, regularization can control the gen-
eralization gap across each group, even on the worst-case group; good robust test accuracy then
becomes a question of good robust training accuracy. ERM and DRO models make different train-
ing trade-offs in the regularized regime, since no model can perfectly fit the training data; ERM
models sacrifice robust for average training accuracy and therefore do poorly at test time, while
DRO models maintain high robust training accuracy and therefore do well at test time. Our findings
raise additional questions about the nature of generalization in neural networks, which has been
predominantly studied in the context of average accuracy (Zhang et al., 2017; Hoffer et al., 2017).

3.3 ACCOUNTING FOR GENERALIZATION THROUGH GROUP ADJUSTMENTS IMPROVES DRO

We have optimized thus far for the robust training loss via DRO (4), relying on regular-
ization to translate good training loss to good test loss by controlling the generalization gap
δ. Here, we show that we can improve performance by directly optimizing for an estimated
upper bound on the robust test loss, using ideas from structural risk minimization (Vapnik,
1992). The key consideration is that each group g has its own generalization gap δg =
E(X,Y )∼Pg

[`(θ; (X,Y ))] − E(X,Y )∼P̂g
[`(θ; (X,Y ))]. To approximate optimizing for the robust

test loss R(θ) = maxg∈G E(X,Y )∼P̂g
[`(θ; (X,Y ))] + δg , we propose using the simple, parameter-

independent heuristic δg = C/
√
ng , where ng is the group size of g and C is a model capacity

constant which we treat as a hyperparameter. This gives the group-adjusted DRO estimator

θ̂adj := arg min
θ∈Θ

max
g∈G

E(X,Y )∼P̂g
[`(θ; (X,Y ))] +

C
√
ng
. (5)

The scaling with 1/
√
ng reflects how smaller groups are more prone to overfitting than larger groups,

and is inspired by the general size dependence of model-complexity-based generalization bounds
(see, e.g., Cao et al. (2019)). Indeed, even in the regularized setting of Section 3.2, different groups
g can have significant differences in their generalization gaps δg: for example, in the strong-weight-
decay DRO model, the smallest group in Waterbirds has a train-test robust accuracy gap of 13.9%
compared to just 0.6% for the largest group. By incorporating group adjustments in (5), we encour-
age the model to focus more on fitting the smaller groups.

Note that if we were optimizing for average loss, incorporating generalization through this penalty
term would not affect the learned model because the penalty is independent of θ (i.e., the minimizer
is unchanged by adding a constant to the objective). However, it matters in the DRO objective (5)
because each group gets a different penalty term, and the outer max couples the groups together.

Results. We evaluate the group adjustments in the strong-weight-decay setting of Section 3.2. In
Waterbirds (λ = 1.0), group adjustments improve robust test accuracy by 6.3%, cutting the error
rate almost in half (Table 2 and Figure 3). The improvements in CelebA (λ = 0.1) are more modest,
with robust accuracy increasing by 1.6%; weight decay is more effective in CelebA and there is not
as much variation in the generalization gaps by group at λ = 0.1.

Empirically, we find that group adjustments also help in the early stopping setting of Section 3.2 (in
the benchmark in the next section, we consider models with group adjustments and early stopping
across a grid of weight decays, and report on the one with highest validation accuracy). However, it
is difficult to rigorously study the effects of early stopping (e.g., because the group losses have not
converged to a stable value), so we leave a more thorough investigation of the interaction between
early stopping and group adjustments to future work.
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93.4 93.5 88.3 86.7
Naïve Adjust Naïve Adjust 92.8 96.1 92.4 86.1

Waterbirds 96.1 92.8 86.1 92.4
CelebA 93.5 93.4 86.7 88.3

Average Accuracy Robust Accuracy

Table 2: Average and robust accuracies with and without group adjustments. Group adjustments
improve robust accuracy at a small cost in average accuracy.

Training Time0.7

1.0

Ac
cu

ra
cy

C = 0

Landbird, land Landbird, water Waterbird, land Waterbird, water
Training Time

C = 1

Training Time

C = 3

Training Time

C = 5

Figure 3: Training (light) and validation (dark) accuracies for each group over training progress, for
different values of the adjustment constant C. When C = 0, the generalization gap for group 2 is
large, dragging down robust accuracy; at C = 3 (which has the best robust validation accuracy), the
accuracies are balanced; and at C = 5, we overcompensate for group sizes, so the smaller groups
(e.g., waterbirds on land) do better at the expense of the larger groups (e.g, landbirds on land).

4 COMPARISON BETWEEN DRO AND IMPORTANCE WEIGHTING

We now compare DRO against importance weighting, which is frequently used in machine learning
for tasks where the train and test distributions differ (Shimodaira, 2000; Byrd & Lipton, 2019),
especially when weights are assigned according to low-dimensional features. Recall that in our
setting, the test distribution can be any mixture of the group distributions. For some assignment of
weights w ∈ ∆m to groups, an importance-weighted estimator would learn

θ̂w := arg min
θ∈Θ

E(x,y,g)∼P̂ [wg `(θ; (x, y))]. (6)

While importance weighting can be a reasonable heuristic for hedging against group distribution
shifts, we show that it does not reliably optimize the worst-group loss.

Empirical benchmark. We consider an importance-weighted baseline with weights set to the
inverse training frequency of each group, wg = 1/Eg′∼P̂ [I(g′ = g)]. This optimizes for a test
distribution with uniform group frequencies and is analogous to the common reweighting technique
for label shifts (Cui et al., 2019; Cao et al., 2019). Concretely, we train our weighted model by
sampling with equal probability from each group for each minibatch (Shen et al., 2016), since a
recent study found this to be more effective than similar methods (Buda et al., 2018).

Unlike group DRO, resampling for uniform group size does not necessarily yield uniformly low
training losses across groups in practice, as some groups are easier to fit than others. To compare
resampling (RS) with ERM and group DRO, we benchmark each objective, training models across
the same grid of weight decays and early stopping at the epoch with best robust validation accuracy
(Table 3).2 In CelebA and Waterbirds, resampling performs much better than ERM but is slightly
outperformed by group DRO. However, resampling fails on MultiNLI, achieving lower clean and
robust accuracies than even ERM. With resampling, it appears that the rare group is overemphasized
and extremely low training loss is achieved for that group at the cost of others.

Theoretical comparison. Should we expect importance weighting to learn models with good
worst-case loss? We show that importance weighting and DRO can learn equivalent models in the
convex setting under some importance weights, but not necessarily when the models are non-convex.

2To avoid advantaging the DRO models by allowing them to tune additional hyperparameters, we restrict
our search for group adjustments to the single value of weight decay used in Section 3.3. See Appendix B.2.
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Waterbirds 97.0 (0.2) 93.0 (0.3) 92.3 (0.3) 58.7 (2.2) 88.8 (1.4) 91.5 (1.2)
CelebA 94.9 (0.2) 92.9 (0.2) 92.9 (0.2) 47.8 (3.7) 83.3 (2.8) 88.9 (2.3)

MultiNLI 82.8 (0.1) 81.2 (0.1) 81.4 (0.1) 66.4 (1.6) 64.8 (1.6) 77.7 (1.4)

Average Accuracy Robust Accuracy
ERM DRORS ERM DRORS

Table 3: Average and robust test accuracy of the model with the best validation accuracy for ERM,
resampling, and group DRO, with binomial standard deviation in parenthesis. For each objective,
we conduct a grid search over regularization, number of epochs, and group adjustments and report
the performance of the model with highest validation accuracy.

0

0.6
1

(
;z

1)

1 * 2
0

0.6
1

(
;z
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Figure 4: Toy example illustrating that DRO and importance weighting are not equivalent. The
robust solution is θ∗, while any importance weighting would result in solutions at θ1 or θ2.

For this analysis, we shift to a more general framework of importance weighting, in which we
minimize the expected loss Ez∼P [w(z)`(θ; z)] over some source distribution P . Here, we assign
weights to each data point z, abstracting away from our particular choice of assigning the weights
according to its group. Minimizing the weighted objective is equivalent to minimizing the expected
unweighted loss Ez∼Q[`(θ; z)] over a target distribution Q such that Q(z) ∝ w(z)P (z).

In our setting, however, we want good worst-case performance over a family of Q ∈ Q instead of
optimizing for a single Q. Do there exist weights w such that the resulting model θ̂w achieves the
optimal robust risk? In the convex regime, standard arguments from convex analysis show that this
is true (see Appendix A.1 for the proof):

Proposition 1. Suppose that the loss `(·; z) is continuous and convex for all z in Z , and the
model family Θ ⊆ Rd and uncertainty set Q ⊆ Rm are convex and compact. Let θ∗ be a
minimizer of the robust objective R(θ). Then there exists a distribution Q∗ ∈ Q such that
θ∗ = arg minEz∼Q∗ [`(θ; z)].

In other words, any model θ∗ that minimizes the robust objective also minimizes the importance-
weighted objective with weights w = Q∗/P for a particular choice of Q∗.

However, when the loss ` is non-convex—as is the case in the modern, neural-network regime—this
equivalence breaks down. As a counterexample, consider a uniform data distribution P supported
on just two points Z = {z1, z2}, and let `(θ; z) be as in Figure 4, with Θ = [0, 1]. The robust
solution θ∗ achieves a worst-case loss of R(θ∗) = 0.6. However, consider w.l.o.g. any weights
(w1, w2) ∈ ∆2 with w1 ≥ w2; the minimizer of the weighted loss w1`(θ; z1) + w2`(θ; z2) is θ1,
which attains a weighted loss of ≤ 0.5 but a worst-case loss of 1.0. This negative result implies that
in the non-convex setting, there may not be any choice of weights w that will lead to a robust model.

We note that even if there exist some importance weights that will lead to a robust model, the values
of such importance weights are unknown a priori. In particular, the weights depend on θ∗, highlight-
ing the merit of algorithms that simultaneously learn θ and Q like group DRO. Common choices
of weights, such as inverse training frequency, are heuristics that may not yield robust solutions, as
we observed in MultiNLI. As another example, we can expect these heuristics to perform poorly if
we labeled backgrounds in Waterbirds in a more fine-grained fashion such that each group were of
equal size: resampling would be the same as ERM, whereas DRO would still identify groups with
poor performance (e.g., because their background is more unique) and upweight them.
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5 ALGORITHM

To train group DRO models efficiently, we introduce an online optimization algorithm; there are no
existing stochastic optimization algorithms for group DRO with convergence guarantees.

In the convex and batch case, there is a rich literature on distributionally robust optimization which
treats the problem as a standard convex conic program (Ben-Tal et al., 2013; Duchi et al., 2016;
Bertsimas et al., 2018; Lam & Zhou, 2015). For general non-convex DRO problems, two types of
stochastic optimization methods have been proposed: (i) stochastic gradient descent (SGD) on the
Lagrangian dual of the objective (Duchi & Namkoong, 2018; Hashimoto et al., 2018), and (ii) direct
minimax optimization (Namkoong & Duchi, 2016). The first approach fails for group DRO because
the gradient of the dual objective is difficult to estimate in a stochastic and unbiased manner.3 An
algorithm of the second type has been proposed for group DRO (Oren et al., 2019), but it lacks
convergence guarantees and we observed instability in practice under some settings.

Recall that we aim to solve the optimization problem

min
θ∈Θ

sup
q∈∆m

m∑
g=1

qgE(X,Y )∼Pg
[`(θ; (X,Y ))]. (7)

Extending existing minimax algorithms for DRO (Namkoong & Duchi, 2016; Oren et al., 2019),
we interleave gradient-based updates on θ and q. Intuitively, we maintain a distribution q over
groups, with high masses on high-loss groups, and update on each example proportionally to the
mass on its group. Concretely, we interleave SGD on θ and exponentiated gradient ascent on q
(Algorithm 1). The key improvement from the existing group DRO algorithm (Oren et al., 2019)
is that q is updated using gradients instead of picking the group with worst average loss at each
iteration, which is important for algorithmic stability and obtaining convergence guarantees. In
practice, we implement the algorithm with minibatching and evaluate model performance with the
last iterate θ(T ); we observe that the algorithm reliably converges in loss.

Algorithm 1: Online optimization algorithm for group DRO
Input: Step sizes ηq, ηθ;Pg for each g ∈ G
Initialize θ(0) and q(0)

for t=1,. . . ,T do
g ∼ Uniform(1, . . . ,m)
x, y ∼ Pg
qg

(t) ∝ qg(t−1) exp(ηq`(θ
(t−1); (x, y)))

θ(t) ← θ(t−1) − ηθqG(t)∇`(θ; (x, y))
end

We analyze the convergence rate by studying the error εT of the average iterate θ̄(1:T ):

εT = max
q∈∆m

L
(
θ̄(1:T ), q

)
−min
θ∈Θ

max
q∈∆m

L
(
θ, q
)
, (8)

where L(θ, q) :=
∑m
g=1 qgE(x,y)∼Pg

[`(θ; (x, y))] is the expected worst-case loss. Applying results
from Nemirovski & Rubinstein (2002), we can show that Algorithm 1 has a standard convergence
rate of O

(
1/
√
T
)

in the convex setting (proof in Section A.2):

Theorem 1. Suppose that the loss `(·; (x, y)) is non-negative, convex, B∇-Lipschitz continuous,
and bounded by B` for all (x, y) in X × Y , and ‖θ‖2 ≤ Bθ for all θ ∈ Θ with convex Θ ⊆ Rd.
Then, the average iterate of Algorithm 1 achieves an expected error at the rate

E[εT ] ≤ 2m

√
10[B2

θB
2
∇ +B2

` logm]

T
. (9)

where the expectation is taken over the randomness of the algorithm.

3 The dual optimization problem for group DRO is minθ,β
1
α
Eg[max(0,Ex,y∼P̂g

[`(θ; (x, y)) | g]−β)]+β
for constantα. The max over expected loss makes it difficult to obtain an unbiased, stochastic gradient estimate.

9
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6 RELATED WORK

The problem of non-uniform accuracy. Other approaches to addressing non-uniform accuracy
over the data distribution include domain adaptation techniques for known target distributions (Ben-
David et al., 2006; Ganin & Lempitsky, 2015) and work in ML fairness (Hardt et al., 2016; Kleinberg
et al., 2017; Dwork et al., 2012). As discussed in Section 4, a classic example of the former is
importance weighting (Shimodaira, 2000). Byrd & Lipton (2019) empirically study importance
weighting in neural networks, demonstrating that it has little effect unless regularization is applied.
This is consistent with the theoretical analysis in Wen et al. (2014), which points out that weighting
has little impact in the zero-loss regime, and with our own observations in the context of DRO.

Distributionally robust optimization. Prior work has explored various definitions of the uncer-
tainty setQ of possible test distributions. This is most commonly defined as a divergence ball around
the training distribution over (X,Y ) (Miyato et al., 2015; Esfahani & Kuhn, 2018; Ben-Tal et al.,
2013; Duchi et al., 2016; Bertsimas et al., 2018; Lam & Zhou, 2015; Blanchet & Murthy, 2016).
In the case of small divergence balls with radii on the order of O(1/n), DRO has been used as a
regularizer (Duchi & Namkoong, 2016; Shafieezadeh-Abadeh et al., 2015). Our work demonstrates
that additional regularization is necessary in the large radius setting for models such as neural net-
works. In large radius settings, the uncertainty sets can be too pessimistic; in response, group DRO
had been proposed in context of label shifts (Hu et al., 2018) and training on multiple data sources
(Oren et al., 2019). DRO in general has been applied empirically, but in a different regime than
ours: prior work operates in settings with training loss trade-offs and reasonable generalization, due
to the low capacity of models (Duchi et al., 2019; Namkoong & Duchi, 2017), choice of conservative
uncertainty set (Sinha et al., 2018), or application in generative modeling (Oren et al., 2019).

Generalization of robust models. There is extensive work investigating generalization of neural
networks in terms of average loss, theoretically and empirically (Szegedy et al., 2016; Hardt et al.,
2015; Hoffer et al., 2017). However, analysis on robust losses is limited. In label shifts, overfitting on
rare labels has been observed and mitigative algorithms have been proposed (Buda et al., 2018; Cui
et al., 2019; Cao et al., 2019). In the DRO literature, generalization bounds on the DRO objective
exist for particular uncertainty sets (Duchi & Namkoong, 2018), but these bounds do not apply
directly to group DRO. Invariant predictions models from the causal inference literature similarly
aim to achieve high performance on a range of test distributions (Yang et al., 2019; Heinze-Deml
& Meinshausen, 2017; Bühlmann & Meinshausen, 2016; Rothenhäusler et al., 2018; Peters et al.,
2016). The maximin regression framework (Meinshausen & Bühlmann, 2015) also assumes group-
based shifts, but focuses on settings without the generalization problems identified in our work.

7 DISCUSSION

In this paper, we analyze group DRO in the context of overparameterized, deep neural networks,
highlighting the role of regularization and generalization in achieving high robust accuracy. By ac-
counting for these factors, group DRO can significantly improve robust accuracy at only a small cost
in average accuracy. The group DRO approach shows promise for preventing models from learning
spurious correlations. There remain many open avenues of exploration; as an example, we could
optimize for the worst α-fraction of groups instead of a single worst group, as Oren et al. (2019);
Duchi et al. (2019), which would enable control over the trade-off between robust and average ac-
curacy. More generally, our observations raise questions about the uniformity of generalization in
neural networks, and suggest that future work on DRO in neural networks could have significant
practical impact on applications where robust accuracy is important.

REPRODUCIBILITY

We will provide code for training group DRO models and scripts that replicate the experiments
above. The constructed Waterbirds dataset will be publically available for download, with a script
to adjust its generation (e.g., to choose different object backgrounds or proportions).
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A PROOFS

A.1 EQUIVALENCE OF DRO AND IMPORTANCE WEIGHTING IN THE CONVEX SETTING

Proposition 1. Suppose that the loss `(θ;Z) is continuous and convex in θ for all Z in Z , and
the model family Θ ⊆ Rd and uncertainty set Q ⊆ Rm are convex and compact. Let θ∗ be a
minimizer of the robust objective R(θ). Then there exists a distribution Q∗ ∈ Q such that θ∗ =
arg minEZ∼Q∗ [`(θ;Z)].

Proof. Let h(θ,Q) := EZ∼Q[`(θ;Z)]. Since the loss `(θ;Z) is continuous and convex in θ for
all Z in Z , we have that h(θ,Q) is continuous, convex in θ, and concave (linear) in Q. More-
over, since convexity and lower semi-continuity are preserved under arbitrary pointwise suprema,
supQ∈Q h(θ,Q) is also convex and lower semi-continuous (therefore proper).

Together with the compactness of Θ and Q, the above conditions imply (by Weierstrass’ theorem,
proposition 3.2.1, Bertsekas (2009)), that the optimal value of the DRO objective

inf
θ∈Θ
R(θ) = inf

θ∈Θ
sup
Q∈Q

h(θ,Q). (10)

is attained at some θ∗ ∈ Θ.

A similar argument implies that the sup-inf objective

sup
Q∈Q

inf
θ∈Θ

h(θ,Q) (11)

attains its optimum at some Q∗ ∈ Q.

Moreover, because Θ and Q are compact and h is continuous, we have the max-min equality (see,
e.g., Ex 5.25 in Boyd & Vandenberghe (2004))

sup
Q∈Q

inf
θ∈Θ

h(θ,Q) = inf
θ∈Θ

sup
Q∈Q

h(θ,Q). (12)

Together, the above results imply that (θ∗, Q∗) form a saddle point (proposition 3.4.1, Bertsekas
(2009)), that is,

sup
Q∈Q

h(θ∗, Q) = h(θ∗, Q∗) = inf
θ∈Θ

h(θ,Q∗). (13)

In particular, the second equality indicates that the optimal DRO model θ∗ also minimizes the
weighted risk h(θ,Q∗) = EZ∼Q[`(θ;Z)], as desired.

A.2 CONVERGENCE RATE OF ALGORITHM 1

Theorem 1. Suppose that the loss `(·; (x, y)) is non-negative, convex, B∇-Lipschitz continuous,
and bounded by B` for all (x, y) in X × Y , and ‖θ‖2 ≤ Bθ for all θ ∈ Θ with convex Θ ⊆ Rd.
Then, the average iterate of Algorithm 1 achieves an expected error at the rate

E[εT ] ≤ 2m

√
10[B2

θB
2
∇ +B2

` logm]

T
. (14)

where the expectation is taken over the randomness of the algorithm.

Proof. Our proof is an application of the regret bound for online mirror descent on saddle point
optimization from Nemirovski & Rubinstein (2002).

Consider the saddle-point optimization problem

min
θ∈Θ

max
q∈∆m

m∑
g=1

qgfg(θ) (15)

under the following assumptions:
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Assumption 1. fg(θ) is convex on Θ.

Assumption 2. fg(θ) = Eξ∼q[Fg(θ; ξ)] for some function Fg .

Assumption 3. We can generate i.i.d. examples ξ ∼ q. For a given θ ∈ Θ and ξ ∈ Ξ, we
can compute Fg(θ, ξ) and unbiased stochastic subgradient ∇Fg(θ; ξ), that is, Eξ∼q [∇Fg(θ; ξ)] =
∇fg(θ).

Assume that we apply online mirror descent with some c-strongly convex norm ‖ · ‖θ to obtain
the iterates θ(1), . . . , θ(T ) and q(1), . . . , q(T ). From Nemirovski & Rubinstein (2002), we have the
following:

Theorem 2 (Nemirovski & Rubinstein (2002), Eq 3.23). Suppose that Assumptions 1-3 hold. Then
the pseudo-regret of the average iterates q̄g(1:T ) and q̄g(1:T ) can be bounded as

E

[
max
q∈∆m

m∑
g=1

qgfg(θ̄
(1:T ))−min

θ∈Θ

m∑
g=1

q̄g
(1:T )fg(θ)

]
≤ 2

√
10[R2

θM
2
∗,θ +M2

∗,q logm]

T
, (16)

where

E

∥∥∥∥∥∇θ
m∑
g=1

qFg(θ; ξ)

∥∥∥∥∥
2

∗,θ

 ≤M∗,θ (17)

E

∥∥∥∥∥∇q
m∑
g=1

qFg(θ; ξ)

∥∥∥∥∥
2

∗,q

 ≤M∗,q (18)

R2
θ =

1

c
(max

θ
‖θ‖2θ −min

θ
‖θ‖2θ) (19)

for c-strongly convex norm ‖ · ‖θ.

It remains to formulate our algorithm as an instance of online mirror descent applied to the saddle-
point problem above. We start by defining the following:

Definition 1. Let q be a distribution over ξ = (x, y, g) that is a uniform mixture of individual group
distributions Qg:

(x, y, g) ∼ q :=
1

m

m∑
g′=1

Qg′ . (20)

Definition 2. Let Fg′(θ; (x, y, g))) := mI[g = g′]`(θ; (x, y)). Correspondingly, let fg′ :=
EQg′ [`(θ; (x, y))].

We now check that Assumptions 1-3 hold under the original assumptions in the statement of Theo-
rem 1:

1. We assume that the loss `(·; (x, y)) is non-negative, continuous, and convex for all (x, y)
in X × Y . As a result, fg(θ) is non-negative, continuous, and convex on Θ.

2. The expected value of Fg(θ) over distribution q is fg(θ):

Ex,y,g∼q[Fg′(θ; (x, y, g))] =
1

m

m∑
i=1

EQi
[Fg′(θ; (x, y, g)) | g = i]

=
1

m
EQg′ [Fg′(θ; (x, y, g)) | g = g′]

=
1

m
EQg′ [m`(θ;x, y) | g = g′]

= EQg′ [`(θ;x, y) | g = g′]

= fg′(θ).

15



Under review as a conference paper at ICLR 2020

3. We can compute an unbiased stochastic subgradient∇Fg′(θ; (x, y, g))

Ex,y,g∼q[∇Fg′(θ; (x, y, g))] = Ex,y,g∼q[∇mI[g = g′]`(θ; (x, y))]

=
1

m

m∑
i=1

EQi
[∇mI[g = g′]`(θ;x, y)]

= EQg′ [∇`(θ; (x, y))]

= ∇fg(θ).

Finally, we compute the constants required for the regret bound in Theorem 2. Recalling the original
assumptions of Theorem 1,

1. Bounded losses: `(θ; (x, y)) ≤ B` for all x, y, θ

2. Bounded gradients: ‖∇`(θ; (x, y))‖2 ≤ B∇ for all θ, x, y

3. Bounded parameter norm: ‖θ‖2 ≤ Bθ for all θ ∈ Θ,

we obtain:

E


∥∥∥∥∥∥∇θ

m∑
g′=1

qg′Fg′(θ; (x, y, g))

∥∥∥∥∥∥
2

∗,θ

 ≤ m2B2
∇ = M∗,θ (21)

E


∥∥∥∥∥∥∇q

m∑
g′=1

qg′Fg′(θ; (x, y, g))

∥∥∥∥∥∥
2

∗,q

 ≤ m2B2
` = M∗,q (22)

R2
θ = max

θ
‖θ‖2θ −min

θ
‖θ‖2θ = B2

θ . (23)

Plugging in these constants into the regret bound from Theorem 2, we obtain

E

[
max
q∈∆m

m∑
g=1

qgfg(θ̄
(1:T ))−min

θ∈Θ

m∑
g=1

q̄g
(1:T )fg(θ)

]
≤ 2m

√
10[B2

θB
2
∇ +B2

` logm]

T
(24)

This implies Theorem 1 because the minimax game is convex-concave.

B EXPERIMENTAL DETAILS

B.1 DATASETS

MultiNLI. The standard MultiNLI train-test split allocates most examples (approximately 90%)
to the training set, with another 5% as a publicly-available development set and the last 5% as a held-
out test set that is only accessible through online competition leaderboards (Williams et al., 2018).
To accurately estimate performance on rare groups in the validation and test sets, we combine the
training set and development set and then randomly resplit it to a 50 − 20 − 30 train-val-test split
that allocates more examples to the validation and test sets than the standard split.

We use the provided gold labels as the target, removing examples with no consensus gold label (as is
standard procedure). We annotate an example as having a negation word if any of the words nobody,
no, never, and nothing appear in the hypothesis (Gururangan et al., 2018).

Waterbirds. The CUB dataset (Wah et al., 2011) contains photographs of birds annotated by
species as well as and pixel-level segmentation masks of each bird. To construct the Waterbirds
dataset, we label each bird as a waterbird if it belongs to one of the following (groups of) species:
albatross, auklet, frigatebird, fulmar, gull, jaeger, pelican, tern, fulmar, gadwall, grebe, mallard, or
guillemot; and landbird otherwise.
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To control the image background, we use the provided pixel-level segmentation masks to crop each
bird out from its original background and onto a water background (categories: ocean or natural
lake) or land background (categories: bamboo forest or broadleaf forest) obtained from the Places
dataset (Zhou et al., 2017). In the training set, we place 90% of all waterbirds against a water
background and the remaining 10% against a land background. Similarly, 90% of all landbirds are
placed against a land background with the remaining 10% against water.

We refer to this combined CUB-Places dataset as the Waterbirds dataset to avoid confusion with the
original fine-grained species classification task in the CUB dataset.

We use the official train-test split of the CUB dataset, randomly choosing 20% of the training data
to serve as a validation set. For the validation and test sets, we allocate equal numbers of birds to
each of the four groups (i.e., landbirds and waterbirds are uniformly distributed on land and water
backgrounds) so as to be able to more accurately measure the performance of the rare groups. This
is particularly important for the Waterbirds dataset because of its relatively small size; otherwise,
the smaller groups (waterbirds on land and landbirds on water) would have too few samples to
accurately estimate performance on. We note that we can only do this for the Waterbirds dataset
because we control the generation process; for the other datasets, we cannot generate more samples
from the rare groups.

Due to the above procedure, when reporting average test accuracy in our experiments, we calcu-
late the average test accuracy over each group and then report a weighted average, with weights
corresponding to the relative proportion of each group in the (skewed) training dataset.

CelebA. We use the official train-val-test split that accompanies the CelebA celebrity face dataset
(Liu et al., 2015). We use the Blond Hair attribute as the target label and the Male attribute as the
spuriously-associated variable.

B.2 MODELS

ResNet50. We use the Pytorch torchvision implementation of the ResNet50 model, starting
from pretrained weights.

We train the ResNet50 models using stochastic gradient descent with a momentum term of 0.9 and
a batch size of 128; the original paper used batch sizes of 128 or 256 depending on the dataset (He
et al., 2016). As in the original paper, we used batch normalization (Ioffe & Szegedy, 2015) and no
dropout (Srivastava et al., 2014). For simplicity, we train all models without data augmentation.

We use a fixed learning rate instead of the standard adaptive learning rate schedule to make our dif-
ferent model types easier to directly compare, since we expected the scheduler to interact differently
with different model types (e.g., due to the different definition of loss). The interaction between
batch norm and weight decay means that we had to adjust learning rates for each different setting
of weight decay (and each dataset). The learning rates below were chosen to be the highest learning
rates that still resulted in stable optimization.

For the standard training experiments in Section 3.1, we use a weight decay of λ = 0.0001 (as in
He et al. (2016)) for both Waterbirds and CelebA, with a learning rate of 0.001 for Waterbards and
0.0001 for CelebA.

For the early stopping experiments in Section 3.2, we train each ResNet50 model for 1 epoch. For
the high weight decay experiments in that section, we use λ = 1.0 for Waterbirds and λ = 0.1 for
CelebA, with both datasets using a learning rate of 0.00001. These settings of λ differ because we
found that the lower value was sufficient for controlling overfitting on CelebA but not on Waterbirds.

For the group adjustment experiments in Section 3.3, we use the same settings of λ = 1.0 for
Waterbirds and λ = 0.1 for CelebA, with both datasets using a learning rate of 0.00001. For both
datasets, we search over group adjustments of C ∈ {0, 1, 2, 3, 4, 5} and pick the model with the best
robust validation accuracy.

For the benchmark in Section 4 (Table 3), we grid search over weight decays of λ ∈
{0.0001, 0.1, 1.0} for Waterbirds and λ ∈ {0.0001, 0.01, 0.1} for CelebA, using the corresponding
learning rates for each weight decay and dataset listed above. (Waterbirds and CelebA at λ = 0.1,
which is not listed above, both use a learning rate of 0.0001.) To avoid advantaging DRO by allow-
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ing it to try many more hyperparameters, we only test group adjustments on the weight decays used
in Section 3.3, i.e., λ = 1.0 for Waterbirds and λ = 0.1 for CelebA. All benchmark models were
evaluated at the best early stopping epoch (as measured by robust validation accuracy).

BERT. We use the Hugging Face pytorch-transformers implementation of the BERT
bert-base-uncased model, starting from pretrained weights (Devlin et al., 2018).4 We use the
default tokenizer and model settings from that implementation, including a fixed linearly-decaying
learning rate starting at 0.00002, AdamW optimizer, dropout, and no weight decay, except that we
use a batch size of 32 (as in Devlin et al. (2018)) instead of 8. We found that this slightly improved
robust accuracy across all models and made the optimization less noisy, especially on the ERM
model.

For the standard training experiments in Section 3.1, we train for 20 epochs.

For the early stopping experiments in Section 3.2, we train for 3 epochs, which is the suggested
early-stopping time in Devlin et al. (2018).

For the benchmark in Section 4 (Table 3), we similarly trained for 3 epochs. All benchmark models
were evaluated at the best early stopping epoch (as measured by robust validation accuracy).

4https://github.com/huggingface/pytorch-transformers
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