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ABSTRACT

Imitation learning can reproduce policies by observing experts, which poses a
problem regarding policy propriety. Policies, such as human, or policies on de-
ployed robots, can all be cloned without consent by owners. How can we protect
our proprietary policies from cloning by an external observer? To answer this
question we introduce a new reinforcement learning framework, where we train an
ensemble of optimal policies, whose demonstrations are guaranteed to be useless
for an external observer. We formulate this idea by a constrained optimization
problem, where the objective is to improve proprietary policies, and at the same
time deteriorate the virtual policy of an eventual external observer. We design
a tractable algorithm to solve this new optimization problem by modifying the
standard policy gradient algorithm. It appears such problem formulation admits
plausible interpretations of confidentiality, adversarial behaviour, which enables
a broader perspective of this work. We demonstrate explicitly the existence of
such ’non-clonable’ ensembles, providing a solution to the above optimization
problem, which is calculated by our modified policy gradient algorithm. To our
knowledge, this is the first work regarding the protection and privacy of policies in
Reinforcement Learning.

1 INTRODUCTION

Imitation learning and behavioral cloning provide really strong ability to create powerful policies, as
seen in robotic tasks (Laskey et al., 2017; Finn et al., 2017) including self-driving (Codevilla et al.,
2019; 2017; Pomerleau, 1988; Bojarski et al., 2016). Such advancements suggest a need for privacy
of the demonstrations. Demonstrations, which may come from human or deployed robots, can be
cloned, which raises concerns over ownership of the cloned policy. Other fields have developed
methods to protect ownership, yet currently, policies do not have the same protection.

In this work, we tackle this issue by training policies that aim to prevent an external observer from
using behaviour cloning. Our approach draws inspiration from imitating human experts, who can
near-optimally accomplish given tasks. The setting which we analyze is presented in Figure 1. We
wish to find a collection of experts, which as an ensemble can perform a given task well, however, also
targets behaviour cloning through adversarial behaviour. Another interpretation is that this collection
of experts represents the worst case scenario for behaviour cloning on how to perform a task ”good
enough”.

Imitation learning frameworks generally make certain assumptions of the optimality of the demon-
strations (Ziebart et al., 2008; Levine, 2018), yet never considered the scenario when the experts
attempt to be adversarial to the imitator. We pose the novel question regarding this assumption: does
there exist a set of experts that are adversarial to an external observer trying to behaviour clone?

To answer this question mathematically, we use the fact that different experts can be regarded
as a latent context variable for policies to condition on to propose Adversarial Policy Ensembles
(APE), a method that simultaneously optimizes the performance of the ensemble and minimizes the
performance of policies eventually obtained from cloning it. Our experiments show that APE do not
suffer much performance loss from an optimal policy, while causing, on average, the cloned policy to
experience over 5 times degradation compared to the optimal policy.

Our main contributions can be summarized as follows:

1



Under review as a conference paper at ICLR 2020

Figure 1: Operational scheme of APE: a) sample experts, b) generate a trajectory from the sampled
expert, τ ∼ ρπ

c(i)
, c) iterate many times to aggregate the trajectories into a dataset d) try to clone a

policy, e) the cloned policy is guaranteed to be useless

• We introduce a novel method APE, as well as the mathematical justification of the notion of
adversarial experts.

• By modifying Policy Gradient (Sutton et al., 2000), a common reinforcement learning
algorithm, we suggest a tractable scheme for finding an optimal solution for this objective.

• We demonstrate the solution by numerical simulations, where we show that a cloned policy
is crippled even after collecting a significantly large number of samples from a policy
ensemble.

To our knowledge, not only is this the first work regarding the protection and privacy of policies in
reinforcement learning, but it is also the first to represent adversarial experts.

2 PRELIMINARIES

We develop APE in the standard framework of Reinforcement Learning (RL). The main components
we use are Markov Decision Processes, Policy Gradient (Sutton et al., 2000), policy ensembles, and
behaviour cloning, which we review below.

2.1 MARKOV DECISION PROCESS

A discrete-time finite-horizon discounted Markov decision process (MDP) M is defined by
(S,A, r, p, p0, γ, T ) where S is the state space, A is the action space, r : S × A → R is the
reward function, p(st+1|st, at) is the transition probability distribution, p0 : S → R+ is the ini-
tial state distribution, γ ∈ (0, 1) is the discount factor, and H is the time horizon. A trajectory
τ ∼ ρπ, sampled from p and a policy π : S × A → R+, is defined to be the states and actions
tuple (s0, a0, ...sT−1, aT−1, sT ), whose distribution is characterized by ρπ. Define the return of a
trajectory R(τ) =

∑T−1
t=0 γtr(st, at) to be the sum of discounted rewards seen along the trajectory,

and define value function V π : S → R to be expected return of a trajectory starting from state s,
under the policy π. The goal of reinforcement learning is find a policy that maximizes the expected
return Eτ∼ρπ [r(τ)].

2.2 POLICY GRADIENT

Policy Gradient (PG) (Sutton et al., 2000) and its variants (Schulman et al., 2015) aim to directly learn
the optimal policy π, parameterized by θ. In our work, we use the estimate of ∇θE[

∑T
t=0 r(st, at)]
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using the advantage function, Aπ(st, at) = R(t)− V π(st), where R(t) =
∑T
t′=t γ

t′−tr(st′ , at′) is
the sum of the reward following action at.

Here, the value function is learned simultaneously with the the policy, and so the advantage will use
V̂ π as an estimate for V π .

2.3 POLICY ENSEMBLE (PE)

A Policy Ensemble (PE), denoted by πc, where each πc(i) , i ∈ {1, 2, ...n} represents an expert,
inspired by the idea of a collection of human experts. To rollout the PE, an expert is chosen at random
(in our case uniform), and the expert completes a trajectory. Each expert policy πc(i)(a|s) can be
viewed as a policy conditioned on a latent variable c, π(a|s, c). A PE is similar to the notion of
contexts and skills (Achiam et al., 2018; Eysenbach et al., 2018; Sharma et al., 2019) which we
discuss in Section 4.

Although πc is multiple policies, it itself is still a policy. Rolling out πc is analogous to saying that
”a human performs the task”, and encapsulates the idea that you first select a human, and then the
human performs the task.

2.4 BEHAVIOUR CLONING

To behaviour clone an expert policy (Widrow & W. Smith, 1964), a dataset of trajectoriesD consisting
of state action pairs (s, a) are collected from the the expert rollouts. Then, a policy parametized by φ
is trained to maximize the likelihood of an action given a state,

∑
(s,a)∈D − log πφ(a | s).

When cloning πc, D will not contain information of the latent variable c, and so the cloned policy
will marginalize it out. Thus, the observer will clone:

πo(a | s) :=
∑
i

p(c(i) | s)πc(i)(a | s) (1)

We stress that this policy does not exist until πc is behaviour cloned. πo is a fictitious policy to
represent what would happen in the best case scenario of the observer having access to infinite data
from πc to clone into πo.

The scope of this paper is to specifically prevent behavioral cloning from succeeding. Other imitation
learning approaches such as inverse reinforcement learning (Abbeel & Ng, 2004; Ng & Russell, 2000;
Levine et al., 2011) and adversarial imitation learning (Ho & Ermon, 2016; Peng et al., 2018) require
rollouts of non-expert policies in the environment, which may be costly, and thus are not considered.

3 METHOD

Human experts are often ”good enough”, which we would like to exploit to make the behaviour
cloning perform poorly. Viewing which expert is performing the task as a context variable, we
mathematically formulate a new objective, and show how to modify PG to optimize this objective
and produce APE.

3.1 OBJECTIVE

We wish to have experts that can perform the task, while minimizing the possible returns of the cloned
policy, denoted in Equation 1. We modify the standard RL objective to be:

argmin
θ

Eτ∼ρπo [r(τ)] s.t. Eτ∼ρπc
[r(τ)] ≥ α (2)

where α is a parameter that lower bounds the reward of the policy ensemble. This translates to
maximizing the unconstrained Lagrangian:

J(θ) = Eτ∼ρπc
[r(τ)]− βEτ∼ρπo [r(τ)] (3)

3



Under review as a conference paper at ICLR 2020

where 1/β is the corresponding Lagrangian multiplier, and is subsumed into the returns collected by
the policy ensemble. We refer to PE that optimizes this objective as Adversarial Policy Ensembles
(APE). There is a natural interpretation of the objective in Equation 2. Human experts tend to be
”good enough”, which is reflected in the constraint. The minimization is simply finding the most
adversarial experts.

Although we assume that the observer can only map states to actions, it may be the case that they
can train a sequential policy, which is dependent on its previous states and actions. Our method can
be generalized to sequential policies as well, and the impact of such observers is discussed in the
Section 6.

3.2 MODIFIED POLICY GRADIENT ALGORITHM

Intuitively, since there are the returns of two policies that are being optimized, both should be sampled
from to estimate the returns.

The optimization procedure, as well as gradient back propagation, is summarized in Figure 2.

We show how we can modify PG to train APE, by maximizing Equation 3. The two terms suggest
a simple scheme to estimate the returns of the policy ensemble twice: once using πc that we wish
to maximize, and a second time using πo, which approximates the returns of an eventual observer
who tries to clone the policy ensemble. Along with our PE, we train value functions Ṽ πc(i) for each
expert, jointly parameterized by φ which estimates V πc(i) − βV πo . The loss function for the value
functions of two sampled trajectories τ1, τ2 is

T1−1∑
t=0

1

2

(
Ṽ
π
c(i)

φ (st1)−Rτ1(t)
)2

+

T2−1∑
t=0

1

2

(
Ṽ
π
c(i)

φ (st2) + βRτ2(t)
)2

(4)

The policy gradient update from N1 and N2 trajectories is then

1

N1

N1∑
j=1

T1∑
t=0

∇θ log πc(i)(a
(j)
t1 | s

(j)
t1 )Ãπc(i) (t) +

1

N2

N2∑
j=1

T2∑
t=0

∇θ log πo(a(j)t2 | s
(j)
t2 )Ãπo(t) (5)

where Ãπc(i) (t) = R(t)− Ṽ πc(i) (st) and Ãπo(t) = −βR(t)− Ṽ πo(st) are the modified advantage
functions, and c(i) identifies the chosen expert of the trajectory.

Equations 4 and 5 formulate our policy gradient approach of APE, which is summarized in Algorithm
1.

Algorithm 1: PG-APE
Require: θ, φ,M, β

1: for each iteration do:
2: Generate trajectories τ1 with πc fromM
3: Generate trajectories τ2 with πo fromM
4: θ ← θ + αθ∇̂θJτ1,τ2(θ)
5: φ← φ− αφ∇̂φJτ1,τ2(φ)
6: end for

4 RELATED WORK

Imitation Learning

Since we comply to the standard imitation learning setting of cloning from a dataset with many
experts providing the demonstrations, latent variables w.r.t. imitation learning is well-studied. For
example, Codevilla et al. (2017) show that conditioning on context representation can make imitation
learning a viable option for autonomous driving. Li et al. (2017) demonstrate that the latent contextual
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Figure 2: Gradient Estimation. The gradient for πc (shown on top) is straightforward. However, to
estimate the gradient for πo (shown on the bottom), we must re-sample the context of the expert at
each state. The back-propagation occurs to πc(i)(a | s) for the context sampled at each state. The
intuition is as follow. While sampling πo, if a selected action causes high return, we should decrease
the probability, which lowers the expected reward of πo.

information in expert trajectories is often semantically meaningful. As well, Providing extra context
variables to condition on also appears in forms of extra queries or providing labels (Brown et al.,
2019; de Haan et al., 2019; Hristov et al., 2018). Our method is different as instead of experimenting
for success in imitation learning, we study how to prevent it.

Multiple Policies

(Achiam et al., 2018; Eysenbach et al., 2018; Sharma et al., 2019) have similar schemes of sampling
a latent variable and fixing it throughout a trajectory, although their latent variables (contexts or
skills) are used to solve semantically different tasks. The reason to solve different tasks is due to the
objective of using the context variable/skills for learning in an unsupervised setting. Our approach
differs in both motivation and implementation, as we learn experts that all solve the same task, and
constrain so that observers can not clone the policy.

A PE πc can also be viewed as a mixture of experts (Jacobs et al., 1991), except the gating network
assigns probability 1 to the same expert for an entire trajectory. As such, we do not learn the gating
network, although it may still be useful to see πc as a special case of a mixture of experts where the
gating network learns immediately to fix the expert for each trajectory.

Zhang et al. (2019) also proposes a method to train multiple policies that complete the same task but
uses the uncertainty of an autoencoder as a reward augment. Their motivation is to find multiple novel
policies, while our motivation has no connection to novelty. Due to these differences in motivation,
they train each policy one after the other, while our policies are trained simultaneously.

Policy ensembles are also used in the multi-task and goal conditioned settings in which case the
task that is meant to be solved can be viewed as the context. Marginalizing out the context variable
(Equation 1) of these context-conditioned policies is studied in the case of introducing a KL divergence
regularizing term for learning new tasks (Goyal et al., 2019) and for sharing/hiding goals (Strouse
et al., 2018). However, the main motivation is different in that both Goyal et al. (2019); Strouse et al.
(2018) use πo to optimize mutual information, while we directly optimize its performance.

5 EXPERIMENTS

We perform experiments on a navigation task, where the objective is to reach a goal state as fast as
possible. The purpose is to illustrate that an APE can cause the cloned policy to take significantly
longer to reach the goal state. We do so by first training a PE and behaviour cloning it. We then
compare the performance of the PE to that of the clone. We use a discrete environment to best demon-
strate the validity of the equation. This is because all discrete policies can be parameterized, which is
not true in continuous. As such, continuous environments would have to make assumptions about
how both the PE and the cloner parameterizes policies, as well as tackle problems of distributional
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Figure 3: Visualization of APE. We set β = 0.6. Arrows indicate action probabilities, and the
colour scale represents the hitting time. Yellow indicates expected reward of 0, while purple indicates
expected reward of −100, which is the maximum episode length. The top left corner is the goal state,
and the adjacent states that are purple are an example of how APE is adversarial to cloning, as those

states will cause the cloned policy to suffer larger losses.

drift, that we would like to avoid. However, with these assumptions, our setting can extend to the
continuous domain. In our experiments, we use a 10 × 10 grid-world environment as our main
testbed. This is to have large enough expression that would not be found in smaller grids, while still
small enough to visualize the behaviour of the APE. The discrete actions will show precisely how the
experts can be jointly adversarial.

Using gridworld allows for precise expected return estimates. In an environment where closed-form
returns cannot be calculated, approximation error can accumulate through estimating the returns of
both the trained PE and the clone. This noise would only increase in continuous state space, where
the returns of πo may not be tractable to estimate due to issues such as distributional drift (Ross et al.,
2010; Codevilla et al., 2019; de Haan et al., 2019).

Our results answer the following questions. How much optimality is compromised? How useless can
we make the cloned policy? Is it possible to use non APE to prevent behaviour cloning?

5.1 TRAINING

The environment is a 10× 10 grid, with the goal state at the top left corner. The agent spawns in a
random non-goal state, and incurs a reward of −1 for each time-step until it reaches the goal. At the
goal state, the agent no longer receives a loss and terminates the episode. The agent is allowed five
actions, A = { Up, Down, Left, Right, Stay }. Moving into the wall is equivalent to executing a Stay
action. We choose this reward function for the benefit of having a clear representation good enough,
which is reflected in how long it takes to reach the goal state. Having such representation exemplifies
how the APE can prevent an observer from cloning a good policy.

Even though our method can compute a policy ensemble with any finite number of experts, we chose
to visualize a solution with 2 experts, which is sufficient to reveal the essential properties of the
method. Specifically, we train n = 2 experts with PG-APE. Our code is written in Tensorflow (Abadi
et al., 2016), and will be publicly available on GitHub. Training details and hyper-parameters are in
Section A.1 of the Appendix.

Figure 3 shows an example of a PE that is trained, and Figure 4 shows the corresponding cloned
policy, as well as a comparison to an optimal policy. The colour scale represents the expected return
of starting at a given state.
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In the case of an optimal policy (β = 0), actions are taken to take the agent to the goal state as fast as
possible. However, when β > 0, such a solution is no longer the optimum. Similar to β = 0, the
experts would like to maximize the expected reward, and reach the goal state. However, to minimize
the reward of the observed policy, the two expert policies must jointly learn to increase the number
of steps needed for πo to reach the goal state. The expert policies must use adversarial behaviour
while reaching the goal state, such as taking intelligent detours or Stay in the same state, which are
learned to hinder πo as much as possible. These learnt behaviours cause the cloned policy to take
a drastically longer time to reach the goal. For example, note the two purple squares at the top-left
near the goal, which indicates that the experts understand that they should not move to prevent the
observer from attaining reward. Even though these sub-optimal decisions are made, on expectation,
the experts are not bad and achieve an average of −15.27 reward.

5.2 BASELINES

Figure 4: Visualization of the cloned APE. The
policy obtained from cloning the APE trained has av-
erage expected reward of −45.18, while the optimal
policy has an average expected reward of −9, which
is over a 5× increase.

We use behaviour cloning to clone our PG-
APE trained policies. To support our claims of
preventing even in the horizon of infinite data,
we collect a million timesteps of the trained
PE in the environment. Further details of be-
haviour cloning are in the appendix. Shown in
Figure 4 is an optimal policy, and the resulting
cloned policy from Section 5.1.

As well, we evaluate against other PE, to show
that preventing against behaviour cloning is
non-trivial. We use several baselines. We first
test policies that have approximately the same
return as our ensemble by training PG with,
and halting early rather than running until con-
vergence. In the optimal case, we simply train
Policy Gradient to maximize the standard RL
objective. Conversely, ”Random” policies are
used as a comparison to show that it is pos-
sible to cause the cloned policy to do poorly,
but the tradeoff is that the PE itself cannot per-
form well, which is undesirable. These poli-
cies are also policies trained with PG, except
they are halted when they have approximately
the same return as the cloned policy from our
APE. For each setting, we use 2 different poli-
cies treated as an ensemble, which we then
clone, and average across 3 seeds.

Table 1: Comparison of cloned PE

PE Returns Clone Returns Returns Difference

PG-APE -16.33 ±1.50 -44.14 ±1.16 -27.81
Near-Optimal PE -16.74 ±1.32 -16.67 ±1.31 +0.07
Random Policy -44.59 ±0.52 -44.52 ±0.77 +0.07

As presented in Table 1, all other PE have an insignificant difference (returns of the PE subtracted
from returns of the cloned policy) between the performance of the PE and the cloned policy, except for
our method. These empirical findings show that preventing behaviour cloning difficult, but possible
using APE.
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6 DISCUSSION

Confidential Policies: There are promising research directions regarding the protection of policies,
due to the many applications where confidentiality is crucial. As long as there is a model of the
observer, our presented method provides a worst-case scenario of experts.

In our work, we focused on the case where the observer does not use the current trajectory to
determine their policy. Instead, it may be the case that the observer uses a sequential policy (one that
depends on its previous states and/or actions), such as an RNN to determine the context of the current
expert.

Formally, the observer will no longer learn the policy formulated in Equation 1 that is solely dependent
on the current state, but rather a policy that is dependent on the current trajectory:

πo(a | τ1:t) :=
∑
i

p(c(i) | τ1:t)πc(i)(a | s) (6)

We found in our preliminary results that using an RNN classifier which outputs p(c|τ1:t) simply
ended up in with either optimal policies or crippled policies. In both cases, there was a relatively
minor difference in performance between the policy ensemble and the cloned policy.

Unsurprisingly, when the observer has access to a strong enough representation for their policy, then
they should be able to imitate any policy. In this case, the worst-case set of experts cannot do much
to prevent the cloning. We believe that this is an exciting conclusion, and is grounds for future work.

Continuous: Although our methods are evaluated in discrete state spaces, our approach can be
generalized to continuous domains.

The Monte Carlo sampling in Equation 7 suggests that the use of continuous context may also be
possible, given there is a strong enough function approximator to estimate the distribution of c|s. We
see this as an exciting direction for future work, to recover the full spectrum of possible adversarial
policies under the constraint of Equation 2.

The Semantics of Reward: Although the minimization in Equation 2 implies a logical equivalence
between the success of behaviour cloning to the reward the cloned policy can achieve, it may follow
that this is not the case. It may be the case that useless is defined differently by the expected reward
the cloned policy achieves on a different reward function r̃. For example, a robot that is unpredictable
should not be deployed with humans. Since the r functions in Equation 2 are disentangled, the reward
function r that is minimized in Equation 2 can be engineered to fit any definition of uselessness.

We can modify the objective of APE by modifying Equations 4 and 5 to use a different reward
function r̃ in the minimization, substituting R(t) for R̃(t) =

∑T−1
t′=t γ

t′−tr̃(st′ , at′). The rest of the
derivation and algorithm remain the same.

We think this is an exciting direction, especially for learning all different possible representations of
the worst-case experts.

7 CONCLUSION

We present APE as well as its mathematical formulation, and show that policy gradient, a basic
RL algorithm can be used to optimize a policy ensemble that cannot be cloned. We evaluated APE
against baselines to show that adversarial behaviour is not feasible without our method.

This work identifies a novel yet crucial area in Reinforcement Learning, regarding the confidentiality
of proprietary policies. The essence of our approach is that a policy ensemble can achieve high return
for the policy owner, while providing an external observer with a guaranteed low reward, making
proprietary ensemble useless to the observer.

The formulation of our problem setup and the algorithm are very general. In this first work we
demonstrate the solution in the deliberately chosen simple environments in order to better visualize
the essence of our method. In our concurrent work we study thoroughly the application of our method
in various domains, which is out of the scope of this introductory paper.
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A APPENDIX

A.1 TRAINING DETAILS & HYPERPARAMETERS

For our training, we set αθ = 0.05, and the value weight to be 0.5, use annealed entropy regularization
(Mnih et al., 2016) from 5e− 1 to 5e− 3 and set the discount factor γ = 0.99. Due to the contrasting
gradients experienced, large batch sizes are used. In our experiments, we take 1 gradient update of
AdaM (Kingma & Ba, 2015) per batch of 4096 (containing multiple trajectories), and trained for 3e6
timesteps.

To estimate p(c|s) in Equation 1, we use a replay buffer that keeps track of the previous 60 contexts
seen. Estimating the quantity in Equation 6 requires memory, which we use a single GRU (Cho et al.,
2014) as done in Strouse et al. (2018), with the exception that only states are fed in as a one-hot. Due
to our environment is deterministic, state sequences captures the action sequence information. The
single unit is then concatenated with the state, which feeds into a fully connected layer of 128, and
then a soft-max, to produce the distribution c|s over contexts.

For our behaviour cloning, we collect 1e6 state action pairs, and train a tabular policy with 0.01
learning rate on cross entropy softmax loss for 100 epochs. The large amount of data and epochs is to
ensure that we can recover πo with little to no variance.

To solve the precise returns of the policies, we inject noise of 1e− 9, to ensure a hitting time always
exists from each state. As well, we clip all the hitting times to −H = −100.

A.2 ESTIMATING ∇θ log πo

It is not obvious how ∇θ log πo should be estimated, since πo is never realized until the policy is
cloned. Literally, it is a virtual policy.

Equation 1 offers a straightforward method to back-propagate, similar to that of the Mixture of
Experts model Jacobs et al. (1991), except using an estimate of c|s instead of a gating network.

However, we can also rewrite Equation 1 as
∑
i p(c

(i)|s)πc(i)(a | s) = Ec∼p(c|s)[πc(i)(a | s)], which
results in the gradient update being:

∇θ log πo(a|s) = ∇θ logEc∼p(c|s)[πc(i)(a | s)] (7)

which suggests a method of Monte Carlo sampling the inner expectation with 1 sampled context.
Empirically, we use the Monte Carlo sampling method.
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