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ABSTRACT

Since deep neural networks are over-parametrized, they may memorize noisy ex-
amples. We address such memorizing issue under the existence of annotation
noise. From the fact that deep neural networks cannot generalize neighborhoods
of the features acquired via memorization, we find that noisy examples do not
consistently incur small losses on the network in the presence of perturbation.
Based on this, we propose a novel training method called Learning with Ensemble
Consensus (LEC) whose goal is to prevent overfitting noisy examples by elimi-
nating them identified via consensus of an ensemble of perturbed networks. One
of the proposed LECs, LTEC outperforms the current state-of-the-art methods on
MNIST, CIFAR-10, and CIFAR-100 despite its efficient memory usage.

1 INTRODUCTION

Deep neural networks (DNNs) have shown excellent performance (Krizhevsky et al., 2012; He et al.,
2016) on visual recognition datasets (Deng et al., 2009). However, it is difficult to obtain annotated
datasets of such high quality in practice (Wang et al., 2018a). Even worse, DNNs may not generalize
training data in the presence of noisy examples (Zhang et al., 2016). Therefore, there is an increasing
demand for robust training methods. In general, DNNs trained on noisy datasets first generalize
clean examples (Arpit et al., 2017). Based on this, recent studies consider examples that incur
small training losses in the early stage of training as being clean (Han et al., 2018; Yu et al., 2019).
However, small-loss examples may be highly corrupted especially when the training set contains a
high level of annotation noise.

Therefore, choosing safe examples from the noisy training set with small-loss criteria can be im-
practical. To address this, we attempt to find a way to discriminate clean and noisy examples within
small-loss examples. Since mislabeling reduces the correlation with other examples, it is likely that
noisy examples are learned via memorization rather than generalization. In general, under the ex-
istence of a small perturbation, network predictions for memorized features easily fluctuate, while
those for generalized features do not. Based on this, we hypothesize that out of small-loss examples,
training losses of noisy examples would change dynamically by injecting perturbation, while those
of clean examples would not. This suggests that clean examples can be found out of small-loss
examples by selecting examples consistently incurring small losses on an ensemble of perturbed
networks, i.e., by selecting via ensemble consensus on small-loss examples. This idea comes from
the difference between generalization and memorization, thus it can be utilized for any architecture
optimized with the gradient-based method.

In this work, we introduce simple perturbation methods to generate the ensemble for discriminating
clean and noisy examples. By embedding those perturbation methods into training, we propose a
new robust training scheme termed learning with ensemble consensus (LEC). In LEC, the network
is first trained on the entire training set for a while and then trained on examples selected based
on whether training losses are consistently small across the ensemble of perturbed networks. We
present three LECs with different perturbations: LNEC, LSEC, and LTEC, and empirically show
that three LECs are effective at identifying noisy examples out of small-loss examples. In particular,
one of LECs, LTEC outperforms existing robust training methods on three benchmark datasets with
random label noise (Goldberger & Ben-Reuven, 2016; Ma et al., 2018) and open-set noise (Wang
et al., 2018b).
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2 RELATED WORK

Generalization of DNNs. Although DNNs are over-parametrized, they have impressive general-
ization ability (Krizhevsky et al., 2012; He et al., 2016) . To explain this, some studies argue that
gradient-based optimization plays an important role in regularizing DNNs (Neyshabur et al., 2014;
Zhang et al., 2016). As a result, DNNs optimized with SGD first generalize and then memorize the
training set (Krueger et al., 2017; Arpit et al., 2017). Due to the difference of correlation with other
examples within the training set, in general, noisy examples are learned via memorization, while
some clean examples are learned via generalization. Therefore, in order to discriminate clean and
noisy examples, we analyze the difference between generalized features and memorized features.

Training DNNs with Noisy datasets. Annotation issues can be addressed by reducing the impact
of noisy examples. One direction is to train with a modified loss function based on the noise dis-
tribution. Most studies of this direction estimate the noise distribution prior to training as it is not
accessible in general (Sukhbaatar et al., 2014; Goldberger & Ben-Reuven, 2016; Patrini et al., 2017;
Hendrycks et al., 2018). Without going through the estimation step, there is another direction to
train with modified labels by using the current model prediction (Reed et al., 2014; Ma et al., 2018).
Aside from both modification methods, recent work suggests a method of exploiting small-loss ex-
amples (Jiang et al., 2017; Han et al., 2018; Yu et al., 2019). The effectiveness of these studies
comes from the property of DNNs optimized with SGD where a considerable portion of small-loss
examples during generalization is well-annotated (Han et al., 2018). However, it is still challenging
to determine examples to be learned by using only training losses. In this study, we propose a simple
method to overcome such problem of small-loss criteria to find clean examples.

3 ROBUST TRAINING WITH ENSEMBLE CONSENSUS

3.1 PROBLEM STATEMENT

Assume that a network trained on a dataset containing ε% annotation noise learns all clean examples
without fitting noisy examples. Then (100-ε)% small-loss examples of the network are all clean.
However, it is generally hard to learn all clean examples at the beginning particularly on the highly
corrupted training set. Therefore, it may be problematic to consider (100-ε)% small-loss examples
as being clean. To mitigate this, we suggest a simple idea: to find noisy examples among (100-ε)%
small-loss examples.

3.2 LEARNING WITH ENSEMBLE CONSENSUS (LEC)

DNNs learn features either via generalization or via memorization (Krueger et al., 2017). How-
ever, the networks cannot generalize neighborhoods of the memorized features. In general, noisy
examples are learned via memorization. Therefore, even if a network trained on a noisy dataset
Dclean ∪ Dnoisy fits a certain noisy example, i.e., argmax f(x; θ) = y where (x, y) ∈ Dnoisy , it
is difficult to fit that noisy example even in the presence of perturbation δ. This can be expressed as
follows:

d(f(x; θ), y) < ζ ⇒ d(f(x; θ + δ), y) > ζ for (x, y) ∈ Dnoisy

where d indicates the cross-entropy loss for a classification task. Unlike noisy examples, some clean
examples can be generalized in the early stage of training. This suggests that network predictions
for the generalized clean examples do not fluctuate by injecting perturbation δ as follows:

d(f(x; θ), y) < ζ ⇒ d(f(x; θ + δ), y) < ζ for (x, y) ∈ Dclean

On a dataset with noise ratio of ε%, our goal is to train network f(; θ) with only clean examples by
removing noisy examples from (100-ε)% small-loss examples. To this end, we discriminate clean
and noisy examples by exploiting the consistency of training losses in the presence of perturbation δ.
More precisely, the network is trained on examples consistently incurring small losses across an
ensemble of perturbed networks. We call it ensemble consensus filtering because examples to be
trained are selected via ensemble consensus on small-loss examples.
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Algorithm 1 Learning with Ensemble Consensus (LEC)
Require: noisy dataset D, noise ratio ε%, duration of Warming-up Tw, # of predictions M , perturbation r.v. δ
1: Initialize θ randomly
2: for t = 1 : Tw do I Warming-up process
3: for mini-batch index b = 1 : B do
4: θ ← θ − α∇θ 1

|Bb|
∑

(x,y)∈Bb
CE(fθ(x), y)

5: end for
6: end for
7: for t = Tw + 1 : Tend do I Filtering process
8: for mini-batch index b = 1 : B do
9: for m = 1 :M do

10: θm = θ + δm where δm ∼ δ . Perturbation
11: Find Sm,b := (100− ε)% small-loss examples of fθm within Bb
12: end for
13: Bb′ = S1,b ∩ S2,b ∩ ... ∩ SM,b . Ensemble consensus filtering
14: θ ← θ − α∇θ 1

|Bb′|
∑

(x,y)∈Bb′
CE(fθ(x), y)

15: end for
16: end for

The pseudocode for our proposed LEC is described in Algorithm 1. We assume that noise ratio ε%
is accessible. We remark that it is easier to estimate the noise ratio than the noise distribution. Our
LEC algorithm consists of Warming-up and Filtering processes. During Tw epochs of Warming-up
process, the network is trained on all training examples. The goal of this process is to obtain θ
which generalizes clean examples as many as possible. Therefore, other techniques such as pre-
training (Hendrycks et al., 2019) may be adopted. During Filtering process, for each batch update,
an ensemble is generated by adding perturbation δ to the network M times. Then the network is
trained on the intersection of (100-ε)% small-loss examples of networks in the ensemble within a
mini-batch.

3.3 PERTURBATION TO IDENTIFY NOISY EXAMPLES

Depending on the way of perturbing the network δ, various LECs can be created. In the following,
we present three LECs with different perturbations to make the ensemble. The pseudocodes for the
following LECs can be found in Section A.1.

• Network-Ensemble Consensus (LNEC) : Inspired by the observation that an ensemble of
networks is correlated during generalization and is decorrelated during memorization (Mor-
cos et al., 2018), the perturbation of prediction δ comes from the difference between the
ensemble of multiple networks with the same architecture. During Warming-up process,
M networks with the same architecture are trained independently. During Filtering pro-
cess, for each batch update, the ensemble of M networks is trained on the intersection of
(100-ε)% small-loss examples of M networks within a mini-batch.

• Self-Ensemble Consensus (LSEC) : We obtain insights from Morcos et al. (2018)
and Lakshminarayanan et al. (2017): network predictions for memorized features are un-
certain and those for generalized features are certain. By noting that the uncertainty of
predictions also can be captured by multiple stochastic predictions (Gal & Ghahramani,
2016), the perturbation of prediction δ comes from the difference between multiple stochas-
tic predictions. Here, the randomness is caused by stochastic operations as in Laine & Aila
(2016). During Filtering process, for each batch update, the network is trained on the inter-
section of (100-ε)% small-loss examples evaluated with M stochastic predictions within a
mini-batch.

• Temporal-Ensemble Consensus (LTEC) : Inspired by the observation that during train-
ing, atypical features are more easily forgetful compared to typical features (Toneva et al.,
2018), the perturbation of prediction δ comes from the difference between predictions at
the current and the preceding epochs. During Filtering process, for each batch update, the
network is trained on the intersection of (100-ε)% small-loss examples evaluated with the
current prediction within a mini-batch and those evaluated at the preceding M − 1 epochs.
In order to reduce memory usage, we collect (100-ε)% small-loss examples obtained for
each batch update at the preceding M − 1 epochs, rather than network parameters.
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Figure 1: Label precision (%) of Self-training and three LECs on CIFAR-10 with random label
noise. We plot the average as a solid line and the standard deviation as a shadow around the line
over 4 runs.

4 EXPERIMENTS

In this section, we will empirically verify (i) whether three proposed perturbation methods are ef-
fective for screening noisy examples in small-loss examples and (ii) whether training on examples
selected via ensemble consensus filtering improves test accuracy.

4.1 EXPERIMENTAL SETUP

Annotation noise. We study two representative types of annotation noise: random label
noise (Goldberger & Ben-Reuven, 2016; Ma et al., 2018) and open-set noise (Wang et al., 2018b).
To simulate these types of noise, we corrupt three benchmark datasets: MNIST (LeCun et al., 1998),
CIFAR-10/100 (Krizhevsky et al., 2009) that are commonly used to assess the robustness. For each
benchmark dataset, we only corrupt its training set, while leaving its test set intact for testing.

• Random label noise. Annotation issues can occur in easy images as well as hard images in
practice (Wang et al., 2018a). We simulate this by mislabeling some of the training images
randomly chosen in two ways: sym-ε% and asym-ε%. For sym-ε%, ε% of examples
are randomly mislabeled to one of the other labels and for asym-ε%, each label of ε% of
examples i is changed to i+1. Specifically, in order to mimic a low and a high level of label
noise, we choose sym-20% and asym-20%, and sym-60% and asym-40%, respectively.

• Open-set noise. In reality, annotated datasets may contain out-of-distribution data. To
mimic such out-of-distribution data in training set as in Wang et al. (2018b), we replace
ε% of training images that are randomly chosen with images sampled from other source
datasets. We conduct the experiments on CIFAR with 20% and 40% open-noise.

Architecture and optimization. Unless otherwise specified, we use a variant of 9-convolutional
layer architecture (Laine & Aila, 2016; Han et al., 2018). All parameters are trained for 200 epochs
with Adam (Kingma & Ba, 2014) with a batchsize of 128. The details can be found in Section A.2.2.

Evaluation. To evaluate the robustness against annotation noise, we use two metrics: test accuracy
and label precision (Han et al., 2018). At the end of each epoch, test accuracy is measured as the
ratio of correctly predicted test examples to all test examples and label precision is measured as the
ratio of clean examples to examples used for training. Thus, for both metrics, higher is better. For
methods with multiple networks, the averaged precision and the averaged accuracy are reported. We
report peak accuracy in the course of training as well as final accuracy because test accuracy can be
measured with a small validation set during training in practice.

Hyperparameter. Our proposed LEC involves three hyperparameters: duration of Warming-up
Tw, noise ratio ε%, and the number of predictions M . Unless otherwise specified, Tw and M are set
to 10 and 5, respectively, and we assume that noise ratio ε% is given.

4.2 EFFECTIVENESS OF LECS AT IDENTIFYING NOISY EXAMPLES

Comparison with Self-training. In Section 3.1, we argue that on a dataset with ε% noise, it
is inappropriate to regard (100-ε)% small-loss as clean examples. To show this, we train 9-conv
architecture on the entire training set for 10 epochs and then on (100-ε)% small-loss examples for
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Table 1: Average of final/peak test accuracy (%) over 4 runs of Self-training and three LECs on
CIFAR-10 with random label noise. The best is highlighted in bold.

Dataset Noise type Self-training LNEC LSEC LTEC

CIFAR-10 sym-20% 84.96/85.02 86.72/86.78 85.42/85.63 88.18/88.28
sym-60% 73.99/74.35 79.61/79.64 76.73/76.92 80.38/80.52

asym-20% 85.02/85.24 86.90/87.11 85.44/85.64 88.86/88.93
asym-40% 78.84/79.66 84.01/84.48 80.74/81.49 86.36/86.50
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Figure 2: Label precision (%) of after (in red) and before (in green) consensus filtering in LTEC on
CIFAR-10 with random label noise. We plot the average as a solid line and the standard deviation
as a shadow around the line over 4 runs.

the remaining epochs. This methodology is similar to the idea of Jiang et al. (2017). For simplicity,
we call it Self-training. As shown in Figure 1, on CIFAR-10 with random label noise, the label
precision of Self-training is quite high. This suggests that a substantial portion of (100-ε)% small-
loss examples is well-annotated. However, the label precision of (100-ε)% small-loss examples
decreases as the noise ratio ε% increases. Indeed, this shows the unreliability of small-loss criteria
to identify clean examples. Compared to Self-training, our proposed LECs are trained on examples
of higher label precision, resulting in higher test accuracy as seen in Table 1. Out of three LECs,
LTEC performs the best in both label precision and test accuracy. Furthermore, Figure 1 states that
the label precision of (100-ε)% small-loss examples in LTEC does not decrease as training proceeds.
This indicates that filtering via temporal-ensemble consensus is most effective in identifying noisy
examples out of small-loss examples on CIFAR-10.

Noisy examples are removed via filtering. In order to examine whether noisy examples are re-
moved by ensemble consensus filtering, we compare label precision of (100-ε)% small-loss exam-
ples (before) and that of remaining examples after ensemble consensus filtering on those small-loss
examples (after) in the course of running LTEC. As seen in Figure 2, on CIFAR-10 with random
label noise, the label precision of after filtering is always higher than that of before filtering. Specif-
ically, the gain of filtering is larger on sym-60% and asym-40%. This implies that as learning clean
examples in the early stage gets more difficult, (100-ε)% small-loss examples become more cor-
rupted, resulting in higher contribution of the filtering.

4.3 COMPARISON WITH STATE-OF-THE-ART METHODS

Under the existence of annotation noise, we compare the performance of our proposed LTEC with
those of other existing methods.

Competing methods. The competing methods include a regular training method: Standard, a
method of training with corrected labels: D2L, a method of training with modified loss function
based on the noise distribution: Forward, and a method of exploiting small-loss examples: Co-
teaching. We tune all the methods individually as described in Section A.2.3.

Results on MNIST/CIFAR with random label noise. The overall results can be found in Fig-
ure 3, Figure 4, and Table 2. Figure 3 states that the test accuracies of Standard and D2L sharply
drop in the early stage of training. In the highly corrupted settings such as sym-40% and asym-60%,
the test accuracy of D2L does not increase as training progresses. Since D2L puts large weights
on given labels in the early stage, the performance of D2L is relevant to that of Standard. For-
ward shows its strength only in a few settings. Co-teaching does not work well on CIFAR-100 with
asym-40%. This reveals that the cross-training scheme of Co-teaching is vulnerable to small-loss
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Figure 3: Test accuracy (%) of different algorithms on random label noise. We plot the average as
a solid line and the standard deviation as a shadow around the line over 4 runs.
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Figure 4: Label precision (%) of different algorithms on random label noise. We plot the average
as a solid line and the standard deviation as a shadow around the line over 4 runs.

examples of a low label precision (see Figure 4). Unlike Co-teaching, LTEC attempts to prevent the
network to be trained with noisy examples by eliminating them. Therefore, LTEC performs well in
all the settings. Specifically, on CIFAR-100 with asym-40% noise, LTEC surpasses the second-best
method by a wide margin of about 6% with less memory usage. (see Table 2).
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Table 2: Average of final/peak test accuracy (%) over 4 runs of different algorithms on
MNIST/CIFAR with random label noise. The best is highlighted in bold.

Dataset Noise type Standard D2L Forward Co-teaching LTEC (ours)

MNIST sym-20% 95.21/99.36 98.38/99.35 96.88/99.29 97.84/99.24 99.52/99.58
sym-60% 55.88/98.50 59.40/98.37 64.03/98.26 91.52/98.53 99.16/99.25

asym-20% 89.74/99.32 92.88/99.41 97.71/99.52 96.11/99.40 99.49/99.59
asym-40% 65.13/96.58 66.44/96.99 95.76/99.51 91.10/98.81 98.47/99.32

CIFAR-10 sym-20% 79.50/80.74 84.60/84.68 80.29/80.91 85.46/85.52 88.18/88.28
sym-60% 41.91/65.06 44.10/65.26 44.38/61.89 75.01/75.19 80.38/80.52

asym-20% 79.24/81.39 84.27/84.40 79.89/82.08 85.24/85.44 88.86/88.93
asym-40% 57.50/68.77 60.63/67.46 58.53/67.19 79.53/80.19 86.36/86.50

CIFAR-100 sym-20% 50.28/50.89 55.47/55.58 50.01/50.58 57.87/57.94 59.73/59.82
sym-60% 20.79/34.26 23.72/34.89 21.78/34.01 43.36/43.68 46.24/46.43

asym-20% 52.40/52.42 57.31/57.53 52.44/52.56 55.88/55.91 58.72/58.86
asym-40% 37.64/37.66 40.12/40.37 36.95/37.61 40.99/41.01 47.70/47.82

Table 3: Average of final/peak test accuracy (%) over 4 runs of different algorithms on CIFAR
with open-set noise. The best is highlighted in bold.

Dataset + Open-set Noise ratio Standard D2L Forward Co-teaching LTEC (ours)

CIFAR-10 + CIFAR-100 20% 86.74/86.83 89.42/89.49 86.87/86.96 88.58/88.61 88.69/88.82
40% 82.64/82.71 85.32/85.41 82.57/82.68 86.18/86.22 86.37/86.41

CIFAR-10 + ImageNet-32 20% 88.27/88.36 90.60/90.64 88.24/88.29 88.99/89.06 89.15/89.24
40% 85.90/85.99 87.91/87.95 85.84/85.99 86.99/87.03 86.63/86.78

CIFAR-100 + SVHN 20% 59.08/59.19 62.89/62.98 58.99/59.08 60.69/60.75 61.65/61.78
40% 53.32/53.35 56.30/56.38 53.18/53.30 56.45/56.52 56.95/57.18

Results on CIFAR-10/100 with open-set noise. To generate open-set noise, some of CIFAR-
10 images are replaced by images of other 32×32 image datasets including SVHN (Netzer et al.,
2011), CIFAR-100, and ImageNet-32 (Chrabaszcz et al., 2017). As in Yu et al. (2019), we leave
labels of the training set intact. We exclude some classes of the other datasets that are similar to
the original dataset. Therefore, to make open-set noise for CIFAR-10, we sample the replacing
images from 75 classes of CIFAR-100 (Abbasi et al., 2018) and 748 classes of ImageNet (Oliver
et al., 2018), respectively. The overall results can be found in Table 3. Considering that on average,
the final accuracies of the network trained on clean CIFAR-10 and CIFAR-100 are 90.59% and
64.38%, respectively (see Table A1), it is surprising that Standard achieves such high performance
in the presence of open-set noise. This indicates that there is little effect of open-set noise on
generalizing in-distribution data. We speculate that this is due to little correlation between open-set
noisy examples. This is also supported by the results that all the methods perform better on CIFAR-
10 with ImageNet-32 noise than on CIFAR-10 with CIFAR-100 noise, as ImageNet-32 has more
classes than CIFAR-100. LTEC achieves comparable or best on CIFAR-10/100 with open-set noise.
As with poorly annotated examples, out-of-distribution examples are little correlated with the other
examples, thus cannot be generalized in the early stage. Consequently, they can be distinguished
from in-distribution examples by applying ensemble consensus filtering.

5 DISCUSSION: EFFECTS OF PRE-DEFINED SETTINGS

In this section, we discuss the effects of pre-defined settings in LEC on the performance.

The number of predictions. In LEC, examples to be learned are determined by whether training
losses of M networks are consistently small. To understand the effect of M on the performance,
we run LTEC with varying the value of M on CIFAR-10 with random label noise. In particular, the
range of M is set to {3, 5, 7, 9}. As shown in Table 4, the performance for M = 9 exceeds that for
M = 3, but neither for M = 7 nor M = 5. Naturally, as the number of predictions M involved in
the filtering increases, the number of examples used for learning decreases. Since merely increasing
the number of corrupted training examples is often helpful to improve the robustness (Rolnick et al.,
2017; Li et al., 2017), larger M may not lead to better performance despite higher precision.
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Table 4: Average of final/peak test accuracy (%) over 4 runs of LTEC with varying the number of
predictions M . The best is highlighted in bold.

Dataset Noise type LTEC (M = 3) LTEC (M = 5) LTEC (M = 7) LTEC (M = 9)

CIFAR-10 sym-20% 87.68/87.78 88.18/88.28 88.63/88.77 88.79/88.87
sym-60% 79.73/79.80 80.38/80.52 80.39/80.45 80.28/80.39

asym-20% 87.85/88.15 88.86/88.93 88.96/89.07 88.99/89.11
asym-40% 85.44/85.59 86.36/86.50 86.78/86.82 86.59/86.63

Table 5: Average of final/peak test accuracy (%) over 4 runs of Co-teaching and LTEC by using
small-loss examples evaluated with inaccurate noise ratios. The best is highlighted in bold.

Dataset Noise type under-estimated (0.9ε) correctly estimated (ε) over-estimated (1.1ε)

Co-teaching LTEC Co-teaching LTEC Co-teaching LTEC

CIFAR-10 sym-20% 84.51/84.58 87.93/88.08 85.46/85.52 88.18/88.28 86.40/86.45 88.72/88.75
sym-60% 70.47/73.11 77.98/78.22 75.01/75.19 80.38/80.52 79.15/79.17 79.34/79.45

asym-20% 84.61/84.73 88.15/88.39 85.24/85.44 88.86/88.93 86.41/86.57 89.04/89.22
asym-40% 76.14/77.41 84.42/84.52 79.53/80.19 86.36/86.50 82.19/82.63 86.93/86.96

Table 6: Average of final/peak test accuracy (%) over 4 runs of Standard and LTEC with ResNet.
The best is highlighted in bold.

Dataset Noise Type Standard (ResNet) LTEC (ResNet)

CIFAR-10 sym-20% 81.31/85.30 89.01/89.12
sym-60% 61.94/72.80 81.46/81.66

asym-20% 81.93/87.32 88.90/89.04
asym-40% 62.76/77.10 86.62/86.85

Noise ratio. In the previous sections, we assume that a noise ratio is given in advance. However,
we may use a poorly estimated ratio for LEC in reality. To study the negative effects of the estimation
error, we run LTEC on CIFAR-10 with random label noise by using a bit lower and higher values
than the real ratio as in Han et al. (2018). For comparison, we run Co-teaching which is another
small-loss based method requiring the noise ratio. The overall results can be found in Table 5. Since
it is difficult to learn all the clean examples in the early stage of training, training on less number of
examples by using over-estimated ratio (i.e., 1.1ε) is often helpful in both LTEC and Co-teaching.
By contrast, using under-estimated ratio (i.e., 0.9ε) leads to training on more number of examples
and thus may cause severe corruption of the training examples. In this case, the performance of
Co-teaching is drastically low, while that of LEC is not. On CIFAR-10, LTEC shows less sensitivity
to the estimation error, compared to Co-teaching. These results corroborate that LTEC can reduce
the negative effect caused by inaccurate noise ratio.

Applicability to different architecture. In the previous sections, we explore the effectiveness of
our proposed LEC by using only one architecture. To show that LEC does not depend on any specific
architecture, we run Standard and LTEC with ResNet-20 (He et al., 2016). The network is optimized
based on Chollet et al. (2015), achieving the final test accuracy of 90.67% on clean CIFAR-10. By
considering learning pace of ResNet, we set Tw as 30. As shown in Table 6, LTEC (ResNet) beats
Standard (ResNet) in both peak and final accuracies. This supports that the performance of LEC
is agnostic to any architecture. In fact, the key idea of LEC is rooted in the difference between
generalization and memorization, thus LEC can be applied to any architecture optimized with SGD.

6 CONCLUSION

This work presents the way of identifying noisy examples out of small-loss examples via ensemble
consensus. To generate the ensemble, we explore three simple perturbation methods. Through the
experiments, we verify that the network is trained without overfitting noisy examples by eliminating
them found by ensemble consensus from training batches. Along with growing attention to the use
of small-loss examples for robust training, we expect that discriminating clean and noisy examples
by exploiting ensemble consensus will be useful for such training methods.
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A APPENDIX

A.1 PSEUDOCODES FOR LECS

We present three LECs with different perturbation methods to make the ensemble. The pseudocodes
for LNEC, LSEC, and LTEC can be found in Algorithm A1, A2, and A3, respectively.

Algorithm A1 Learning with Network-Ensemble Consensus (LNEC)
Require: noisy datasetD, noise ratio ε%, duration of Warming-up Tw , # of networksM

1: Initialize θ1, θ2, ..., θM randomly
2: for epoch t = 1 : Tw do I Warming-up process
3: for mini-batch index b = 1 : B do
4: for network indexm = 1 : M do
5: θm ← θm − α∇θm 1

|Bb|
∑

(x,y)∈Bb
CE(fθm (x), y)

6: end for
7: end for
8: end for
9: for epoch t = Tw + 1 : Tend do I Filtering process

10: for mini-batch index b = 1 : B do
11: for network indexm = 1 : M do
12: Find Sm,b := (100− ε)% small-loss examples of fθm within mini-batch Bb
13: end for
14: Bb′ = S1,b ∩ S2,b ∩ ... ∩ SM,b . Network-ensemble consensus filtering
15: for network indexm = 1 : M do
16: θm ← θm − α∇θm 1

|Bb′|
∑

(x,y)∈Bb′
CE(fθm (x), y)

17: end for
18: end for
19: end for

Algorithm A2 Learning with Self-Ensemble Consensus (LSEC)
Require: noisy datasetD, noise ratio ε%, duration of Warming-up Tw , # of predictionsM , perturbation r.v. δ
1: Initialize θ randomly
2: for epoch t = 1 : Tw do I Warming-up process
3: for mini-batch index b = 1 : B do
4: θ ← θ − α∇θ 1

|Bb|
∑

(x,y)∈Bb
CE(fθ(x), y)

5: end for
6: end for
7: for epoch t = Tw + 1 : Tend do I Filtering process
8: for mini-batch index b = 1 : B do
9: form = 1 : M do . EvaluatingM times
10: Obtain Sm,b := (100− ε)% small-loss examples of fθ within mini-batch Bb
11: end for
12: Bb′ = S1,b ∩ S2,b ∩ ... ∩ SM,b . Self-ensemble consensus filtering
13: θ ← θ − α∇θ 1

|Bb′|
∑

(x,y)∈Bb′
CE(fθ(x), y)

14: end for
15: end for

Algorithm A3 Learning with Temporal-Ensemble Consensus (LTEC)
Require: noisy datasetD, noise ratio ε%, duration of Warming-up Tw , # of predictionsM
1: Initialize θ randomly
2: for epoch t = 1 : Tend do
3: for mini-batch index b = 1 : B do
4: Obtain St,b := (100− ε)% small-loss examples of fθ within mini-batch Bb
5: if t < Tw + 1 then I Warming-up process
6: θ ← θ − α∇θ 1

|Bb|
∑

(x,y)∈Bb
CE(fθ(x), y)

7: else I Filtering process
8: Bb′ = Pt−M+1 ∩ Pt−M+2 ∩ ... ∩ Pt−1 ∩ St,b . Temporal-ensemble consensus filtering
9: θ ← θ − α∇θ 1

|Bb′|
∑

(x,y)∈Bb′
CE(fθ(x), y)

10: end if
11: end for
12: Obtain Pt := ∪Bb=1St,b
13: end for
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Table A1: Average (± stddev) of final test accuracy over 4 runs of a regular training (Standard) on
clean MNIST, CIFAR-10, and CIFAR-100.

Dataset MNIST CIFAR-10 CIFAR-100

Test accuracy 99.60±0.02 90.59±0.15 64.38±0.20

A.2 IMPLEMENTATION DETAILS

A.2.1 CORRUPTION MATRIX

We study two types of random label noise: sym-ε% and asym-ε%. Figure A1 shows the corruption
matrices used to generate CIFAR-10 with random label noise.
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Figure A1: Corruption matrix of CIFAR-10 with random label noise

A.2.2 OPTIMIZATION DETAILS

The 9-convolutional layer architecture used in this study can be found in Table A2. The network is
optimized with Adam (Kingma & Ba, 2014) with a batchsize of 128 for 200 epochs. The learning
rate α is initially set to 0.1. The learning rate is linearly annealed to zero during the last 120 epochs
for CIFAR-10 and during the last 100 epochs for CIFAR-100. The momentum parameters β1 and
β2 are set to 0.9 and 0.999, respectively. β1 is linearly annealed to 0.1 during the last 120 epochs for
MNIST and CIFAR-10, and during the last 100 epochs for CIFAR-100. The images of CIFAR are
divided by 255 and are whitened with ZCA. Additional regularizations such as data augmentation
are not applied. The results on clean MNIST, CIFAR-10, and CIFAR-100 can be found in Table A1.

Table A2: 9-conv layer architecture

Input image

Gaussian noise (σ = 0.15)

3× 3 conv, 128, padding = ‘same’
batch norm, LReLU (α = 0.01)

3× 3 conv, 128, padding = ‘same’
batch norm, LReLU (α = 0.01)

3× 3 conv, 128, padding = ‘same’
batch norm, LReLU (α = 0.01)

2× 2 maxpooling, padding = ‘same’
dropout (drop rate = 0.25)

3× 3 conv, 256, padding = ‘same’
batch norm, LReLU (α = 0.01)

3× 3 conv, 256, padding = ‘same’
batch norm, LReLU (α = 0.01)

3× 3 conv, 256, padding = ‘same’
batch norm, LReLU (α = 0.01)

2× 2 maxpooling, padding = ‘same’
dropout (drop rate = 0.25)

3× 3 conv, 512, padding = ‘valid’
batch norm, LReLU (α = 0.01)

3× 3 conv, 256, padding = ‘valid’
batch norm, LReLU (α = 0.01)

3× 3 conv, 128, padding = ‘valid’
batch norm, LReLU (α = 0.01)

global average pooling
fc (128→ # of classes)
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A.2.3 COMPETING METHODS

The competing methods include a regular training method: Standard, a method of training with cor-
rected labels: D2L, a method of training with modified loss function based on the noise distribution:
Forward, and a method of exploiting small-loss examples: Co-teaching. We tune all the methods
individually in the following. For a fair comparison, the architecture used in LTEC (Table A2) is
applied to the implementation.

• Standard : The network is trained using the cross-entropy loss.
• D2L (Ma et al., 2018) : The input vector of a fully connected layer in the architecture

is used to measure the LID estimates. The parameter involved with identifying the turn-
ing point, window size W is set to 12. The network is trained using original labels until
the turning point is found and then trained using the bootstrapping target with adaptively
tunable mixing coefficient.

• Forward (Patrini et al., 2017) : Prior to training, the corruption matrix C where Cji =
P(y = i|ytrue = j) is estimated based on the 97th percentile of probabilities for each
class on MNIST and CIFAR-10, and the 100th percentile of probabilities for each class on
CIFAR-100 as in Hendrycks et al. (2018). The network is then trained using the corrected
labels for 200 epochs.

• Co-teaching (Han et al., 2018) : Two networks are employed. For every batch update,
they select examples based on their training losses and then provide them to each other.
The ratio of selected examples based on training losses is linearly annealed from 100% to
(100-ε)% over the first 10 epochs.
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