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ABSTRACT

Generative adversarial networks (GANs) nowadays are capable of producing im-
ages of incredible realism. One concern raised is whether the state-of-the-art
GAN’s learned distribution still suffers from mode collapse. Existing evaluation
metrics for image synthesis focus on low-level perceptual quality. Diversity tests
of samples from GANs are usually conducted qualitatively on a small scale. In this
work, we devise a set of statistical tools, that are broadly applicable to quantitatively
measuring the mode collapse of GANs. Strikingly, we consistently observe strong
mode collapse on several state-of-the-art GANs using our toolset. We analyze
possible causes, and for the first time present two simple yet effective “black-box”
methods to calibrate the GAN learned distribution, without accessing either model
parameters or the original training data.

1 INTRODUCTION

Generative adversarial networks (GANs) (Goodfellow et al., 2014) have demonstrated unprecedented
power for various image generation tasks. However, GANs have also been suffering from generation
bias and/or loss of diversity. The underlying reasons could be compound, ranging from the data
imbalance to the training difficulty of GANs, and more:

• First of all, the training data for GANs, especially for the typical unconditional/unsupervised
generation tasks (Karras et al., 2017; 2018), might possess various subject or attribute imbalances.
As a result, GANs trained with them might be further biased towards the denser areas, similarly to
the classifier bias towards the majority class in imbalanced classification.

• More intrinsically, even when the training dataset “looks" balanced, training GANs is notoriously
more unstable (sometimes even uncontrollable) than training classifiers, potentially constituting
another source of mode collapse. One most common hurdle of GANs is the loss of diversity due to
mode collapse (Goodfellow, 2016), wherein the generator concentrates too large a probability mass
on a few modes of the true distribution. Another widely reported issue, known as co-variate shift
(Santurkar et al., 2017), could be viewed as a nuanced version of mode collapse.

This paper seeks to explore: do the state-of-the-art GANs still suffer from mode collapse? Can we
have a toolkit to detect that? And if the mode collapse happens, is there any “easy and quick" remedy
for calibrating the GAN’s learned distribution to alleviate the mode collapse?

Evaluation of Mode Collapse There are several popular metrics for GAN evaluation, e.g. Incep-
tion Score (IS) (Salimans et al., 2016), Fréchet Inception Distance (FID) (Heusel et al., 2017), MODE
(Che et al., 2016) and birthday paradox based diversity test (Arora & Zhang, 2017). IS, FID and
MODE score takes both visual fidelity and diversity into account. Birthday paradox based diversity
test gives a rough estimation of support size under the assumption of uniform sampling. Recently, a
classification-based metric (Santurkar et al., 2017) was proposed for a quantitative assessment of the
mode distribution learned by GANs. However, their approach hinge on a classifier trained on the
original (balanced) GAN training set, with class labels known, available and well-defined (e.g., object
classes in CIFAR-10, or face gender in CelebA), making it non-straightforward to extend to data
subjects where classes are hard to be defined, and/or are not enumerable (e.g, open set problems).

To tackle this problem, we propose a hypothesis test method by analyzing the clustering pattern of
samples. We exploit a statistical tool from spatial analysis, called Ripley’s K function, to quantitatively

1



Under review as a conference paper at ICLR 2020

measure the mode collapse. We demonstrate the application of our tool set in analyzing the bias in
unconditional face image generation: a popular benchmark task nowadays for GANs, yet remaining
rather unclear how to measure its mode collapse using existing tools since every generated identity
is expected to be new. The study of face identity generation bias has profound practical values for
understanding facial privacy (Filipovych et al., 2011) and fairness (Holstein et al., 2018). Using our
tools, we find the mode collapse still a prevailing problem in state-of-the-art face generation GANs
(Karras et al., 2018; 2017), and further analyze several possible causes.

Calibration Approaches on GAN Many approaches have been proposed to alleviate mode col-
lapse problem, ranging from better optimization objectives (Arjovsky et al., 2017; Mao et al., 2017),
to specialized builing blocks (Durugkar et al., 2016; Ghosh et al., 2018; Liu & Tuzel, 2016). However,
they require either tedious (re-)training, or at least the access to training data, as well as to model
parameters: we refer to the existing methods as white-box approaches.

In contrast, we are interested in an almost unexplored aspect: assuming some generation bias is
known, how can be calibrate the GAN, without accessing either the training data or the current model
parameters? Such black-box calibration is desirable due to many practical demands: the training data
might be protected or no longer available; the GAN model might be provided as a black box and
cannot be altered (e.g., as APIs); or we simply want to adjust the generated distribution of any GAN
with minimized re-training efforts. For the first time, we explore two “black-box” approaches to
calibrate the GAN learned distribution, i.e., latent space reshaping via Gaussian mixture models, and
importance sampling. They are observed to alleviate the mode collapse without re-touching training
data, nor even needing any access to model parameters.

2 RELATED WORKS

2.1 EVALUATION METRICS OF MODE COLLAPSE IN GANS

GAN models are often observed to suffer from the mode collapse problem (Salimans et al., 2016);
(Sutskever et al., 2015), where only small modes subsets of distribution are characterized by the
generator. The problem is especially prevalent for high-dimensional data, e.g. face image generation,
where the training samples are low-density w.r.t. the high-dimensional feature space.

Salimans et al. (2016) presented the popular metric of Inception Score (IS) to measure the individual
sample quality. IS does not directly reflect the population-level generation quality, e.g., the overfitting
and loss of diversity. It also requires pre-trained perceptual models on ImageNet or other specific
datasets (Barratt & Sharma, 2018). Heusel et al. (2017) propose the Fréchet Inception Distance
(FID), which models the distribution of image features as multivariate Gaussian distribution and
computes the distance between the distribution of real images and the distribution of fakes images.
Unlike IS, FID can detect intra-class mode dropping. However, the multivariate Gaussian distribution
assumption hardly holds very well on real images, and low FID score cannot rule out the possibility
of the generator’s simply copying the training data. Besides the two most popular metrics, (Che
et al., 2016) develop an assessment for both visual quality and variety of samples, known as the
MODE score and later shown to be similar to IS (Zhou et al., 2017). (Arora et al., 2018) and (Arora
& Zhang, 2017) proposed a test based upon the birthday paradox for estimating the support size of
the generated distribution. Although the test can detect severe cases of mode collapse, it falls short in
measuring how well a generator captures the true data distribution. It also heavily relies on human
annotation, making it challenging to scale up to larger-scale evaluation.

(Santurkar et al., 2017) took a classification-based perspective and view loss of diversity as a form of
covariate shift. As we discussed above, their approach cannot be straightforwardly extended to data
subjects without pre-known and closed-set class definition, in addition to the need of training an extra
classifier on the original labeled training set.

2.2 MODEL CALIBRATION APPROACHES OF GANS

There are many efforts to address the mode collapse problem in GANs. Some focus on discriminators
by introducing different divergence metrics (Metz et al., 2016) and optimization losses (Arjovsky
et al., 2017; Mao et al., 2017). The minibatch discrimination scheme allows the discriminator
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to discriminate between whole mini-batches of samples instead of between individual samples.
(Durugkar et al., 2016) adopted multiple discriminators to alleviate mode collapse. ModeGAN (Che
et al., 2016) and VEEGAN (Srivastava et al., 2017) enforce the bijection mapping between the input
noise vectors and generated images with additional encoder networks. Multiple generators (Ghosh
et al., 2018) and weight-sharing generators (Liu & Tuzel, 2016) are developed to capture more modes
of the distribution. However, these approaches are designed to easily calibrating trained GANs.

A handful of existing works attempt to combine GANs with sampling methods to improve generation
quality. (Turner et al., 2018) introduced the Metropolis-Hastings generative adversarial network
(MH-GAN). The MH-GAN uses the learned discriminator from GAN training to build a wrapper for
the generator for improved sampling, at the generation inference stage. With a perfect discriminator,
the wrapped generator can sample from the true distribution exactly even with a deficient generator.
(Azadi et al., 2018) proposed discriminator rejection sampling (DRS) for GANs, which performs
rejection sampling on the outputs of the generator by using the probabilities given by the discrimi-
nator, to approximately correct errors in the generator’s distribution. Yet still, these approaches are
white-box calibration since both require access to trained discriminators (which might be even less
available/accessible than the generator after a GAN is trained).

3 METHOD

We instead study the bias of the most representative features of the generated face, the face identity
distribution, that almost all face attribute can be derived based on the representations. To detect
face identity collapse, we are aiming to detect high-density regions in features space caused by any
possible attribute non-diversified. Or, if being slightly imprecise in terms,(Santurkar et al., 2017)
examined the marginalized distribution through some discrete categorical attributes’ lens, while ours
looks at the joint distribution of all possible attributes in the continuous feature space holistically.

Algorithm 1 Identity Clustering Pattern Analysis via Sampling and Neighboring Function N
. Given a pre-trained generator G, an identity descriptor fid, a random distribution N(0,Σ), a
neighbor distance threshold d0 and a face embedding space distance range [db, de]ds (ds: step size)
. S ← {IS1 , · · · , ISm} // Randomly sampled m face images
for each ISi ∈ S do // Count neighbors within d0 distance for each sampled ISi

. NISi ← N (ISi ,S\ISi , d0)

.Robs ← {ĨS1 , · · · , ĨSp }
// Find the region for observation by selecting the top p face images in S with largest NISi

.Rref ← {ÎS1 , · · · , ÎSq } // Find the region for reference by randomly selecting q face images from S

. T ← {IT1 , · · · , ITM} // Randomly sampled M face images (M � m)
for each d in [db, de]ds do

for each ĨSi ∈ Robs do // Count neighbors within d distance for each ĨSi inRobs

. Nd
ĨSi
← N (ĨSi , T , d)

for each ÎSi ∈ Rref do // Count neighbors within d distance for each ÎSi inRref

. Nd
ÎSi
← N (ÎSi , T , d)

. Compute the pointwise confidence regions of [Nd
ÎSi
|1−α2 , N

d
ÎSi
|α
2

] for each d ∈ [db, de]ds , at
confidence level of α (default 0.05). The intervals between the upper and lower confidence bounds
for all samples inRref define the confidence band (Eubank & Speckman, 1993).
. Reject the hypothesis that the clustering pattern of Robs is the same as that of Rref , if the curve
of Nd

ĨSi
falls outside of the confidence band.

Given an unconditional face generator G and an identity descriptor fid, we sample images I = G(z)
using a random distribution z∼N(0,Σ). The unit vector fid(I) describes the identity feature in the
face embedding space. The normalized cosine distance between image I0 and I1 is defined as:

d(I0, I1) = 1
π cos

−1(< fid(I0), fid(I1) >) (1)
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For a given anchor face image I0, a distance threshold d0 and a collection of randomly sampled face
images S, the neighboring function N (I0,S, d0) is defined to compute the number of neighbors
within d0 distance of I0, among all images in S:

N (I0,S, d0) =
∑
I∈S

1

2
(1 + sgn(d0 − d(I0, I))) (2)

We refer to the tool of Ripley’s K function (Dixon, 2014), a spatial analysis method used to describe
point patterns over a given area of interest. Ripley’s K function can be used to determine if the
points of interest appears to be dispersed, clustered, or randomly distributed throughout the area. Our
defined neighboring function N (I0,S, d0) serves as a surrogate of the Ripley’s K function K(d).

Hypothesis Testing Given an observed high-identity-density regionRobs and a reference region
Rref , we want to test the hypothesis that the clustering pattern ofRobs is the same asRref . We use
N to get the clustering pattern for the anchor images inRobs andRref respectively. We can reject
the hypothesis if the clustering pattern of Robs is significantly different from Rref . The detailed
algorithm is outlined in Algorithm 1.

4 EMPIRICAL STUDY AND ANALYSIS

We choose two state-of-the-art GANs: PGGAN (Karras et al., 2017) and StyleGAN (Karras et al.,
2018), as our model subjects of study. Both are known to be able to produce high-resolution, realistic
and diverse images. We find that the observations below drawn from the two models also generalize
to a few other GAN models. We choose the CelebAHQ benchmark (Karras et al., 2017) and FFHQ
benchmark (Karras et al., 2018) as our data subject of study. Both benchmarks are composed of
diverse and realistic face images. All images are 1024× 1024 resolution unless otherwise specified.

We use ensemble model of InsightFace (Deng et al., 2019b; Guo et al., 2018; Deng et al., 2018;
2019a), FaceNet (Schroff et al., 2015) and CosFace (Wang et al., 2018) as fid to serve as the face
identity descriptor. We emphasize that the due diligence of “sanity check” has been performed on
those classifiers, e.g., their face recognition results are manually inspected one-by-one and confirmed
to be highly reliable on the generated images. q (|Rref |) is set to be 1000. We empirically set db, de
and ds are set to be 0.1, 0.5 and 0.01 respectively.

4.1 OBSERVATION OF THE MODE COLLAPSE

Mode Collapse Analysis For both StyleGAN and PGGAN, despite of the observed diversity and
high quality of their generated images, we empirically find some high-density regions in both learned
distributions. Figure 1 shows that the clustering pattern ofRobs is significantly different from that of
Rref , showing that even the learned distributions of two currently best models have strong dense
regions towards some specific identities. For simplicity, our study target is the worst-case dense
mode, i.e. the identity with the largest number of neighbors within a given distance threshold.

Consistency of the Dense Mode The dense region Robs is obtained by selecting the top p images
in S with the largest number of neighbors. In order to test the consistency of the worst-case dense
mode Im against sampling, we visualize the Im w.r.t. different size of S in Figure 2. We consistently
observe roughly the same identity as the sampling size increases. Im can be reliably obtained even
when |S|= 1k. The consistency of Im demonstrate that the support size of Im is unnegligible.

4.2 EMPIRICAL STUDY OF THE CAUSE OF MODE COLLAPSE

We hypothesize multiple factors that may potentially lead to the observed dense mode of face identity.
We perform additional experiments, aiming to validate one by one: unfortunately, none of them was
observed to reduce the observed mode collapse. That implies the existence of some more intrinsic
reason for the mode collapse in GAN, which we leave for future exploration.

Imbalance of Training Data? CelebAHQ is a highly imbalanced dataset: among its 30, 000 high-
resolution face images of 6, 217 different celebrities, the largest identity class has 28 images and the
smallest one has only 1. Would a balanced dataset alleviate the mode collapse?
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(b) StyleGAN-CelebAHQ
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(c) PGGAN-FFHQ
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Figure 1: Identity clustering pattern analysis on StyleGAN and PGGAN, both trained on CelebAHQ.
The blue region is a confidence band formed by the pointwise intervals between the upper and lower
confidence bounds for all identities in Rref . The red curve is the neighboring function curve for
identity inRobs, the worst-case dense mode. We empirically set m (|S|) to be 100, 000 and M (|T |)
to be 10, 000, 000. To study the worst-case dense mode, p (|Robs|) is set to be 1.

(a) |S|= 1k (b) |S|= 10k (c) |S|= 100k (d) |S|= 1m (e) |S|= 10m

Figure 2: Visualization of the worst-case dense mode Im w.r.t. different size of the S . S is a collection
of randomly sampled images.

We turn to the Flickr-Faces-HQ Dataset (FFHQ), a high-quality human face dataset created in (Karras
et al., 2018), consisting of 70, 000 high-resolution face images, without repeated identities (we
manually examined the dataset to ensure so. It is thus “balanced” in terms of identity, in the sense that
each identity class has one sample. We train StyleGAN on FFHQ: somehow surprisingly, the mode
collapse persists and seems no less than StyleGAN on CelebAHQ, as shown in Figure 1c and 1d.
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(a) StyleGAN-Randomness
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(b) StyleGAN-Overfitting/Underfitting
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(c) StyleGAN-Architecture
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(d) PGGAN-Architecture

Figure 3: Empirical study on possible causes of the mode collapse. The shaded areas denote the
variances of neighboring statistics for different experiments (caused by re-initialization/training;
running different iterations; and varying architectures: see the texts for details). We empirically set m
(|S|) to be 100, 000 and M (|T |) to be 1, 000, 000. To study the worst-case dense mode, p (|Robs|)
and is set to be 1.

Randomness during Initialization/Optimization? We repeat training StyleGAN on CelebAHQ
(128 × 128) for 10 times. The experimental results are shown in Figure 3a, with the shaded areas
denoting the variances. Despite the variance for the neighboring function curves plotted for repeated
experiments, a large gap between the curves of Robs and Rref can be consistently observed.

Unfitting/Overfitting in Training? We train StyleGAN on CelebAHQ (128 × 128) again, and
store model checkpoints at iteration 7707 (FID = 7.67, same hereinafter), 8307 (7.02), 8908 (6.89),
9508 (6.63), 10108 (6.41), and 12000 (6.32). We plot their corresponding neighboring function
curves in Figure 3b. Similarly, despite the variances, the identity mode collapse persists due to the
consistent large gap between Robs and Rref curves.

Model Architecture Differences? Both StyleGAN and PGGAN progressively grow their archi-
tectures that can generate images of different resolutions: 128, 256, 512 and 1024. Utilizing this
property, we train StyleGAN and PGGAN on CelebAHQ-128, CelebAHQ-256, CelebAHQ-512 and
CelebAHQ-1024 respectively, and plot the neighboring function curves correspondingly. According
to Figures 3c and 3d, varying the architectures does not eliminate the mode collapse either.

5 BLACK-BOX CALIBRATION APPROACHES

Given a pre-trained generator G and target dense mode for alleviation, the goals of calibration are
three-fold: (1) the density of the mode is maximally alleviated; (2) the diversity and quality of the
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generated images (measured by FID) are minimally sacrificed; and (3) the calibration is black-box,
which does not require access to training data or model parameters.

We propose two calibration approaches: reshaping latent space via Gaussian mixture models and
importance sampling. They operate on the latent codes, and require no modification of the trained
model, nor even any access to the model parameters or training data, making them “black-box".

Both approaches are evaluated with StyleGAN trained on CelebAHQ-128. For simplicity, we only
target to eliminating the worst-case dense mode Im, i.e. the identity with the largest number of
neighbors within a specified distance threshold.

5.1 RESHAPING LATENT SPACE VIA GAUSSIAN MIXTURE MODELS

Since we consistently observe close neighbors to Im, when interpolating near Im, we hypothesize
that the latent codes of a dense mode Im lay on a smooth manifold. Based on this assumption, we
attempt to re-shape that into a Gaussian mixture.

5.1.1 METHOD DESCRIPTION

The original latent space distribution φ(z; θ0) can be approximated with a mixture of Gaussian

distributions
K∑
i=1

wiφ(z; θi). We randomly sample N latent code and use K-means to explore

θi = (µi, σi). We denote p(Im) as the probability of sampling the worst-case dense mode Im.

p(Im) =

∫
p(Im|z)φ(z; θ0)dz =

K∑
i=1

wi

∫
p(Im|z)φi(z; θi)dz. If p(Im|θi) is large, we reduce

wi to make the overall p(Im) small. p(Im|θi) is estimated by the number of neighbors within d0
distance to Im in cluster Ci, i.e. N (Im, Ci, d0).

5.1.2 EXPERIMENTS
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Figure 4: Identity clustering pattern analysis of Style-
GAN on CelebA, before/after latent space reshaping.

Starting from a StyleGAN modelM pre-
trained on CelebAHQ-128, we aim at al-
leviating the collapse on the worst-case
dense mode Im in Robs with the largest
number of neighbors. We reshape the latent
space ofM via Gaussian mixture models
to get the new modelM′. We get the new
worst-case dense mode I ′m in the new re-
gionR′obs with the largest number of neigh-
bors. We next randomly sample 106 images
from the original Gaussian distribution and
new GMM distribution, to form T and T ′
respectively. We then plot the neighboring
function curves for Im in T and T ′, and I ′m
in T and T ′ respectively. We expect the re-
shaping latent space via Gaussian mixture
models to alleviate the worst-case dense
mode with the minimal sacrifice of gener-
ated image quality and diversity.

As shown in Figure 4, the latent space reshaping could suppress the clustering of Im (indicated by
a large gap between the two red curves) without intensifying the clustering of I ′m (indicated by a
little gap between the two green curves), resulting in a reduction of mode collapse on Im. Such an
alleviation is achieved with an unnoticeable degradation of generation quality, with FID increasing
from 5.93 (M) to 5.95 (M′). The large overlapping between confidence bands NMRref and NM′

Rref

shows that the diversity of generation is not sacrificed either.
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5.2 IMPORTANCE SAMPLING

Under the same hypothesis of smooth manifold in section 5.1, the high-density region corresponding
to the worst-case dense mode Im can be approximated with a convex hull.

5.2.1 METHOD DESCRIPTION

Importance sampling is a variance reduction strategy in the Monte Carlo method. Let the estimated
neighboring function densities for the dense and sparse regions be p1 and p2 respectively. We
accept the samples from G falling in the high-density region with a probability of p2/p1, so that the
calibrated densities can match.

We approximate the high-density region with a convex hull formed by the collection of latent codes
ZIm corresponding to the identities similar to Im:

Conv(ZIm) = {
|ZIm |∑
k=1

αkzk | (∀k : αk ≥ 0) ∧
|ZIm |∑
k=1

αk = 1, zk ∈ ZIm} (3)

5.2.2 EXPERIMENT

The experiment setting is mostly similar to the reshaping latent space via the Gaussian mixture
models case. We integrate importance sampling to the latent code generation stage. Given the dense
mode Im, we can find the collection of latent codes ZIm via sampling:

ZIm = {z | d(Im, G(z)) ≤ d0, z ∼ N(0,Σ)} (4)
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Figure 5: Identity clustering pattern analysis of Style-
GAN on CelebA, before/after importance sampling.

ZIm is obtained from the top 102 latent
codes whose corresponding images have
the smallest distances (1) to Im, among the
106 random samples. We randomly sample
106 images fromM andM′ to form T and
T ′ respectively. We plot the neighboring
function curves for IM in T and T ′, and
IM

′
in T and T ′ respectively. As shown

in Figure 5, the mode collapse is again al-
leviated (indicated by a gap between the
two red curves), without intensifying the
clustering of I ′m (indicated by a little gap
between the two green curves), while FID
only marginally increases from 5.93 (M)
to 5.94 (M′). The confidence bandNMRref is overlapped withNM′

Rref
, showing no loss of the diversity.

Additionally, in the appendix, we show a white-box counterpart to the importance sampling approach,
where the latent codes ZIm are obtained via explicit optimization (accessing and altering model
parameters). The white-box approach does not seem to notably outperform than our above black-box
way, implying the relative effectiveness of the latter.

6 DISCUSSIONS AND FUTURE WORK

This paper is intended as a pilot study on exploring the mode collapse issue of GANs. Using face
generation as a study subject, we quantify the general mode collapse via statistical tools, discuss and
verify possible causes, as well as propose two black-box calibration approaches for the first time to
alleviate the mode collapse. Despite the preliminary success, the current study remains to be limited
in many ways. First, there are inevitably prediction errors for the identity descriptors from generated
images, even we have performed our best efforts to find the three most accurate descriptor predictions.
Moreover, the fundamental causes of GAN mode collapse demand deeper understandings. Besides,
the two calibration approaches only handle one worst-case dense mode, leaving much improvement
room open for future work.
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A APPENDIX

Obtaining Latent Codes by Optimization (White-box Approach) The second approach of find-
ing ZIm is latent code recovery via optimization:

ZIm = {z | minLvgg(Im, G(z)) + γ||Im −G(z)||2+α||z||2, z ∼ N(0,Σ)} (5)

Here we are using a combination of perceptual loss, `2 loss and Gaussian prior. α and γ are
coefficients respectively. We run the optimization 102 times with different random initialization of z
to get 102 latent code. We then sample 106 images fromM andM′ to form T and T ′ respectively.
We plot the neighboring function curves for the worst-case dense mode Im in T and T ′, and I ′m in T
and T ′ respectively. As shown in Figure 6, the bias is again alleviated (indicated by a gap between the
two red curves), while FID only marginally increases from 5.93 (M) to 5.96 (M′). The confidence
band NMRref is overlapped with NM′

Rref
, showing no loss of the diversity.
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Figure 6: Identity clustering pattern analysis of StyleGAN on CelebA, before/after importance
sampling.
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