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ABSTRACT

Face completion is a challenging conditional image synthesis task. This paper
proposes controllable and interpretable high-resolution and fast face completion
by learning generative adversarial networks (GANs) progressively from low res-
olution to high resolution. We present structure-aware and frequency-oriented
attentive GANs. The proposed structure-aware component leverages off-the-shelf
facial landmark detectors and proposes a simple yet effective method of integrat-
ing the detected landmarks in generative learning. It facilitates facial expression
transfer together with facial attributes control, and helps regularize the structural
consistency in progressive training. The proposed frequency-oriented attentive
module (FOAM) encourages GANs to attend much more to finer details in the
coarse-to-fine progressive training, thus enabling progressive attention to face
structures. The learned FOAMs show a strong pattern of switching their atten-
tion from low-frequency to high-frequency signals. In experiments, the proposed
method is tested on the CelebA-HQ benchmark. Experiment results show that
our approach outperforms state-of-the-art face completion methods. The pro-
posed method is also fast with mean inference time of 0.54 seconds for images
at 1024× 1024 resolution (using a Titan Xp GPU).

1 INTRODUCTION

Conditional image synthesis aims to learn the underlying distribution governing the data generation
with respect to the given conditions/context, which is also able to synthesize novel content. Much
progress (Iizuka et al., 2017; Yeh et al., 2017; Li et al., 2017; Yang et al., 2016; Denton et al., 2016;
Pathak et al., 2016; Yu et al., 2018; Liu et al., 2018; Brock et al., 2018; Karras et al., 2018) has
been made since the generative adversarial networks (GANs) were proposed (Goodfellow et al.,
2014). Despite the recent remarkable progress, learning controllable and interpretable GANs for
high-fidelity image synthesis at high resolutions remain an open problem.

We are interested in controllable and interpretable GANs. We take a step forward by focusing on
high-resolution and fast face completion tasks in this paper. Face completion is to replace target
regions, either missing or unwanted, of face images with synthetic content so that the completed
images look natural, realistic, and appealing. State-of-the-art face completion approaches using
GANs largely focus on generating random realistic content. However, users may want to complete
the missing parts with certain properties (e.g. expressions). Controllability is entailed. Existing
face completion approaches are usually only able to complete faces at relatively low resolutions
(e.g. 176 × 216 (Iizuka et al., 2017) and 256 × 256 (Yu et al., 2018)). To facilitate high-resolution
image synthesis, the training methodology of growing GANs progressively (Karras et al., 2017) is
widely used. For face completion tasks, one issue of applying progressive training is how to avoid
distorting the learned coarse structures when the network is growing to a higher resolution. Inter-
pretability is thus entailed to guide GANs in the coarse-to-fine pipeline. In addition, most existing
approaches (Iizuka et al., 2017; Yeh et al., 2017; Li et al., 2017) require post-processing (e.g. Pois-
son Blending (Pérez et al., 2003)), complex inference process (e.g. thousands of optimization itera-
tions (Yeh et al., 2017) or repeatedly feeding an incomplete image to CNNs at multiple scales (Yang
et al., 2016)) during test.
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Figure 1: Face completion results of the proposed method on CelebA-HQ (Karras et al., 2017) at 1024×1024
resolution. The leftmost column are masked images while the rightmost are synthesized images. The learned
FOAM filters are shown with higher intensities meaning more attention. At lower resolutions, the model focuses
more on learning coarse structures (i.e. the lower-frequency signals). As the resolution increases, the model
pays more attention to finer details (i.e. the higher-frequency information). Therefore, the FOAM partially
and implicitly performs as a “band-pass filter” guiding the generation process. For instance, the model pays
more attention to regions with richer details, such as hair and eyes, especially at high resolutions. The learned
FOAM is also relatively stable when the target regions are similar, see the last two rows. Best viewed in color
and magnification.

We present structure-aware and frequency-oriented attentive GANs that are progressively trained for
high-resolution and fast face completion using a fast single forward step in inference without any
post-processing. By controllable, it means that the completed face images can have different facial
attributes (e.g., smiling vs not smiling) and/or facial expressions transferred from a given source
actor. By interpretable, it means that the coarse-to-fine generation process in progressive training
is rationalized. We utilize facial landmarks as backbone guidance of face structures and propose a
straightforward method of integrating them in our system. We design a novel Frequency-Oriented
Attention Module (FOAM) to induce the model to attend to finer details (i.e. higher-frequency
content, see Fig. 1). We observe significant improvement of the completion quality by the FOAM
against the exactly same system only without FOAM. A conditional version of our network is de-
signed so that the appearance properties (e.g. male or female), and facial expressions of the synthe-
sized faces can be controlled. Moreover, we design a set of loss functions inducing the network to
blend the synthesized content with the contexts in a realistic way. Our method was compared with
state-of-the-art approaches on a high-resolution face dataset CelebA-HQ (Karras et al., 2017). Both
the evaluations and a pilot user study showed that our approach completed face images significantly
more naturally than existing methods.

2 RELATED WORK

Recent learning based methods have shown the capability of CNNs to complete large missing con-
tent. Based on existing GANs, the Context Encoder (CE) (Pathak et al., 2016) encodes the contexts
of masked images to latent representations, and then decodes them to natural content images, which
are pasted into the original contexts for completion. However, the synthesized content of CE is of-
ten blurry and has inconsistent boundaries. Given a trained generative model, Yeh et al. (Yeh et al.,
2017) propose a framework to find the most plausible latent representations of contexts to complete
masked images. The Generative Face Completion model (GFC) (Li et al., 2017) and the Global and
Local Consistent model (GL) (Iizuka et al., 2017) use both global and local discriminators, com-
bined with post-processing, to complete images more coherently. Built on GL, Yu et al. (Yu et al.,
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2018) design a contextual attention layer (CTX) to help the model borrow contextual information
from distant locations. Liu et al. (Liu et al., 2018) incorporates partial convolutions to handle ir-
regular masks. Unfortunately, these approaches can only complete face images in relatively low
resolutions (e.g. 176× 216 (Iizuka et al., 2017) and 256× 256 (Yu et al., 2018)). Yang et al. (Yang
et al., 2016) combine a global content network and a texture network, and the networks are trained
at multiple scales repeatedly to complete high-resolution images (512× 512). But, they assume that
the missing content always shares some similar textures with the context, which is improbable for
the face completion task.

3 THE PROPOSED METHOD
3.1 PROBLEM FORMULATION
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Figure 2: Overview of the proposed completion
model. See text for details.

Denote by Λ an image lattice (e.g., 1024×1024
pixels). Let IΛ be a face color image defined on
the lattice Λ. Denote by Λt and Λctx the target
region to complete and the remaining context
region respectively (note that the target region
is not necessarily a single connected compo-
nent, and the two parts form a partition of the
lattice). IΛt is masked out with the same gray
pixel value. LetMΛ be a binary mask image with all pixels inMΛt being 1 and pixels inMΛctx being
0. For simplicity, we will omit the subscripts Λ, Λt and Λctx when the text context is clear. Unlike
existing approaches (Pathak et al., 2016; Li et al., 2017; Iizuka et al., 2017) which first utilize uncon-
ditional image synthesis to generate the target region image and then blend them with context using
using sophisticated post-processing, we address the completion problem as a coherent conditional
image generation process.

As illustrated in Fig. 2, given an observed image Iobs with the target region Iobs
Λt

masked out from a
ground-truth uncorrupted image Igt, the objective of the proposed face completion is to synthesize
an image Isyn that looks natural and realistic, and to enable a controllable generation process in terms
of a given facial attribute vector, denoted by A (such as male vs female, and smiling vs not smiling
and for simplicity we use binary attribute vector in this paper) and/or a given facial expression
encoded by facial landmark, denoted by L. Denote by XG = (Iobs,M,A,L) the input of the
generator G(·) that realizes the completion. We have,

Isyn = G(XG; θG), subject to Isyn
Λctx
≈ Iobs

Λctx
, (1)

where θG collects all parameters of the generator and ≈ represents that the two context regions Isyn
Λctx

and Iobs
Λctx

need to be kept very similar.

Structure-Aware Completion. As illustrated in Fig. 3 (left), to enable transferring facial expres-
sions in completion, we leverage the off-the-shelf state-of-the-art facial landmark detector, Face
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Figure 3: Illustration of computing facial landmarks for structure-aware
completion. See text for detail.

Alignment Network (FAN) (Bu-
lat & Tzimiropoulos, 2017)
which achieved very good re-
sults for faces in the wild. Mo-
tivated by this, we also want
to integrate the landmark infor-
mation in completion for faces
without facial expression trans-
fer required. Recent works (Isola et al., 2016; Wang et al., 2017; Zhu et al., 2017; Sangkloy et al.,
2017; Xian et al., 2017; Chen & Hays, 2018) have shown the capability of GANs to translate sketches
to photo-realistic images. We choose facial landmarks as an abstract representation of face struc-
tures in general. As illustrated in Fig. 3 (right), we first train a simple face completion model at
the resolution of 256 × 256 using reconstruction loss (Section 3.3) only. Given an image 1, we use
the trained model to generate a blurry completed image from which the landmarks are extracted
with FAN (we observed that FAN can compute sufficiently good landmarks from blurry completed
images). Not only can this unify the generation process for different controllable settings (since
the inputs to the generator are kept the same between with and without facial expression transfer),

1The coarse completion model is only needed for testing. In training, we can extract landmarks from
uncorrupted face images at the same resolution.
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but it also makes the completion process structure-aware. Since faces have very regular structures
(e.g. the eyes are always above a nose), when some facial components are occluded, it is possible to
predict which parts are missing. Given a corrupted image, the quality of synthesized image can be
further improved if the model is able to “draw” a sketch of the face first, which provides backbone
guidance for image completion.

3.2 LEARNING WITH THE FOAM BETWEEN PROGRESSIVE STAGES

On top of GANS (Goodfellow et al., 2014), the framework of Context Encoder (CE) (Pathak et al.,
2016) is adopted, so the generation process of our model is conditioned on the contextual infor-
mation. The framework of training GANs progressively (Karras et al., 2017) is also adopted to
facilitate a high-resolution completion model. This starts with the lowest resolution (such as 4× 4).
After running a certain number of iterations, higher resolution layers are added to both the gener-
ator and discriminator simultaneously until the network is grown to a desired resolution (such as
1024×1024). We present details of the proposed FOAM to stabilize and rationalize the progressive
training.

Denote by Gr and Dr the generator and discriminator at a resolution level r, respectively, where
r ∈ {1, · · · , R} is the index of resolution (e.g., r = 1 represents 4 × 4 and r = R = 9 represents
1024 × 1024). The final stage generator GR() will be used as the generator G in Eqn. 1 in testing.
The observed masked image, its corresponding binary mask, and the facial landmarks are re-sized
to Iobs

r , Mr and Lr for each resolution respectively. In our model, both Gr and Dr are conditioned
on facial landmarks. We attach the resolution index to the input and rewrite Eqn. 1 as,

Isyn
r = Gr(XGr ; ΘGr

), subject to Isyn
r,Λctx

≈ Iobs
r,Λctx

, (2)
where XGr = (Iobs

r ,Mr, A, Lr). For the discriminator Dr, its input is XDr = (Ir, Lr) where Ir
represents either an uncorrupted image or a image synthesized by Gr. Dr has two branches which
share a common backbone and predict the fake vs real classification and the attribute estimation Â
respectively. The loss functions for training are defined in Section 3.3.

During progressive training, to avoid sudden changes to the trained parameters of Gr−1, the added
layers (i.e. the higher resolution components) need to be faded into the networks smoothly during
a growing stage. Since the parameters of added layers are initialized randomly, these layers may
generate noise that distorts the coarser structures learned by Gr−1 if they are merged with Gr−1

directly. To reduce this effect, Karras et al. (Karras et al., 2017) use a linear combination of the
higher and lower resolution branches. The synthesized image Îsyn is computed by

Îsyn = αIsyn
r + (1− α)Ĩsyn

r−1, (3)
in which Isyn

r and Ĩsyn
r−1 are the output images from the higher and lower resolution branches respec-

tively (Ĩsyn
r−1 is up-sampled from Isyn

r−1 to match the resolution of r). α is a weight increasing linearly
from zero to one during the growing stage. Therefore, at the beginning, the added layers have no im-
pact on the network. During training, the influence of the higher resolution branch increases linearly
while the weight of the lower-resolution branch decreases. In the end when α = 1, the synthesized
image depends only on the higher resolution branch (i.e. Îsyn = Isyn

r ) and the lower resolution
branch can simply be removed. Because of this, once the training is complete, a corrupted image
only needs to be fed to a single branch for image completion, and this process does not depend on
any inputs or networks of lower resolutions.

The FOAM. Eqn. 3 is equivalent to applying “all-pass filters” to the higher and lower resolution
branches, since all the pixels in images are assigned the same weight (i.e. α or 1− α) regardless of
their locations. Although this linear combination (Eqn. 3) has been shown effective for reducing the
impact of noise generated during the growing stage, we observe that it does not work well for high-
resolution face completion, as shown in Fig. 4. The coarse structures that have been learned well at
lower resolutions are still vulnerable to being distorted during the joint training (i.e., 0 < α < 1).

The intuitive idea of the proposed FOAM is to encourage the generator to focus more on learn-
ing finer details during the growing stage, which is enabled by changing the “all-pass filters”
reflected in Eqn. 3 to attentive “band-pass filters” that learn to protect what has been learned
well in the previous stages and to update finer details as needed under the guidance of the
loss functions. Existing approaches (Gregor et al., 2015; Yu et al., 2018) use spatial atten-
tion mechanisms to encourage networks to attend to selected parts of images (e.g. a rect-
angular region). As illustrated in Fig. 1, we observe that the FOAM filters indeed act like
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Figure 5: Illustration of the FOAM using an example of growing a 32× 32 network to 64× 64. The proposed
FOAM consists of a read and a write operation to realize attentive “band-pass filters”. See text for detail.

“band-pass filters” and show a strong pattern of switching its attention from coarse struc-
tures (i.e. the low-frequency information) to finer details (i.e. the high-frequency informa-
tion) as the resolution increases. But, we note that different from regular band-pass filters,

Figure 4: The ablation study shows the impact of es-
sential components of our method. A model that is
trained with adversarial Ladv and regular reconstruction
loss L1 generates only blurry images. After adopt-
ing the progressive training method and a set of de-
signed loss functions, the synthesized image quality is
improved. By incorporating FOAM, the model focuses
on learning only finer details while growing, resulting
in sharper images with fewer distortions. Best viewed
in magnification.

the filters learned by FOAM are predicted based
on image semantics through the objective func-
tion (see Equation 14). This makes them sensi-
tive to locations inferred on-the-fly in a coarse-
to-fine manner. For instance, the model learns
to pay more attention to eye regions where the
rich details aggregate, especially at high resolu-
tions. With the help of FOAM, the model is ca-
pable of learning meaningful and interpretable
filters automatically.

As illustrated in Fig. 5, the proposed FOAM
consists of a read and a write operation. In
the read operation, only information that is im-
portant in Iobs

r but does not exist in Iobs
r−1 will

be allowed to enter the network. Similarly, in
the write operation, only when the added layers
produce information that can help reduce the
overall loss, will it be allowed to add to the syn-
thesized image Îsyn. The read and write opera-
tions, which are like two gates in a circuit, are
controlled by the read and write filters learned
by our model, respectively (denoted by Fread
and Fwrite). Fread is predicted from the lower
resolution branch and computed by,

Fread = ToFilter (Gfixed
r−1(XGr−1)), (4)

using a trained generator Gfixed
r−1 with fixed

weights and a small trainable network ToFilter.
Similarly, Fwrite is predicted from the last fea-
ture maps of the higher resolution branch. The
value in the filters represents the weight. Fread
helps extract the most valuable information in the contexts of Iobs

r and Iobs
r−1. The read operation is

implemented by,
Îobs
r = Fread � (1−Mr)� Iobs

r , Îobs
r−1 = Downsample ((1− Fread)� (1−Mr)� Ĩobs

r−1), (5)
where� denotes element-wise multiplication. Ĩobs

r−1 is up-sampled from Iobs
r−1 to match the resolution

of level r. Similar to Eqn. 3, Fread and (1 − Fread) are assigned to the higher and lower resolution
branches, respectively. The write filter Fwrite combines the outputs from two branches (i.e. Isyn

r

and the up-sampled Ĩsyn
r−1) to generate the final completed image Îsyn

r . Fwrite helps extract the most
valuable information in the contexts of Isyn

r and Ĩsyn
r−1. The write operation is defined by,

Îsyn
r = (Isyn

r · α+ Ĩsyn
r−1 · (1− α))� (1−Mr) + (Fwrite � Isyn

r + (1− Fwrite)� Ĩsyn
r−1)�Mr, (6)

so, only the target region of Îsyn
r is controlled by Fwrite. The context region is a linear combination

of the contexts of Isyn
r and Ĩsyn

r−1.
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To facilitate fast face completion in testing, we further design transformation functions to adjust the
value ranges of Fread and Fwrite, so the lower resolution branches and FOAMs can both be safely
removed when the growing process is done. Similar to the vanilla progressive training method, a
testing image only needs to go through the final stage for completion. To that end, a transformation
function (Eqn. 7) is used to adjust the upper and lower bounds of the dynamic value ranges of the
read and write filters. For instance, the transformed F̂read starts as an all-zero filter, is adjusted by a
trainable ToFilter at the growing stages, and eventually increased to all ones. The transformed filters
F̂read and F̂write are defined by,

F̂read = β · Fread + γ, F̂write = β · Fwrite + γ, (7)
where the parameters are computed by

β :

{
2α,
2− 2α,

γ :

{
0, α ≤ 0.5
2α− 1, 0.5 < α ≤ 1.0

(8)

in which α is a weight increasing linearly from zero to one proportional to the number of seen
images during growing. Eqn. 7 will be actually used in the read operation, Eqn. 5 and the write
operation, Eqn. 6.

3.3 LOSS FUNCTIONS

To induce high-fidelity face completion, we utilize the loss functions as follows.

Adversarial Loss Given an uncorrupted ground-truth image Igt, its attribute vector A, a mask M ,
landmarks L, and the corresponding corrupted image Iobs, we define the loss by,

ladv(Igt,M,L, Iobs, A|G,D) = log (1−Dcls(I
syn, L) + logDcls(I

gt, L), (9)
where Isyn = G(Iobs,M,A,L) and Dcls represents the classification branch of the discriminator.

Attribute Loss Similar to the InfoGAN models (Chen et al., 2016; Choi et al., 2017), for the at-
tribute prediction head classifier in the discriminator, we define the attribute loss based on cross-
entropy between the predicted attribute vectors, Âgt = Dattr(I

gt, L) and Âobs = Dattr(I
obs, L), and

the corresponding input attribute vectors A for both a ground-truth image and a synthesized image,
lattr(I

gt, A,M, Iobs|G,D) = CrossEntropy (A, Âgt) + CrossEntropy (A, Âobs), (10)
where Dattr represents the attribute prediction branch of the discriminator.

Reconstruction Loss Since our method generates an entire completed face, we define a weighted
reconstruction loss lrec to rebuild both the content and the context regions,

lrec(I
gt,M,L, Iobs, A|G) = ‖κ�M � Idiff‖1 + ‖(1− κ)� (1−M)� Idiff‖1, (11)

where Idiff = Igt − Isyn and κ is the trade-off parameter.

Feature Loss In additional to the reconstruction loss, we also expect a synthesized image to have
similar feature representations (Johnson et al., 2016) to a ground-truth image. Let φ be a pre-trained
deep neural network and φj be the activation of the jth layer of φ, the feature loss is defined by,

lfeat(I
gt,M,L, Iobs, A|φ,G) = ‖φj(Igt)− φj(Isyn))‖22. (12)

In our experiments, φj is the relu2 2 layer of a 16-layer VGG network (Simonyan & Zisserman,
2014) pre-trained on the ImageNet dataset (Russakovsky et al., 2015).

Boundary Loss To make the generator learn to blend the synthesized target region with the original
context region seamlessly, we further define a close-up reconstruction loss along the boundary of
the mask. Similar to (Yeh et al., 2017), we first create a weighted kernel w based on the mask image
M . w is computed by blurring the mask boundary in M with a mean filter so that the pixels closer
to the mask boundary are assigned larger weights. The kernel size of the mean filters is seven in our
experiments. We have,

lbdy(Igt,M,L, Iobs, A|G) = ‖w � (Igt − Isyn)‖1. (13)

Our model is trained end-to-end by integrating the expected loss of the loss functions defined above
under the minimax two-player game setting. The full objective is,

min
G

max
D
Ladv(G,D) + λ1Lattr(G,D) + λ2Lrec(G) + λ3Lfeat(G,φ) + λ4Lbdy(G), (14)

where λi’s are trade-off parameters between different loss terms. Fig. 4 shows an ablation study
of the importance of the loss functions. Note that the ablation study was run at 256 × 256. Since
the training of high-resolution models was very time consuming, an ablation study for 1024× 1024
networks is left for future work.
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Figure 6: Examples of high-resolution face completion results by our method at 1024 × 1024 resolution.
For each group, from left to right: masked, synthesized and real images. Our model was able to capture the
anatomical structures of faces and handle various shaped masks.

4 EXPERIMENTS

Datasets and Experiment Settings. We used the CelebA-HQ (Karras et al., 2017) dataset for

Figure 7: Examples of controlling attributes. All images are at
512 × 512 resolution. The leftmost column are masked images,
and the rest are generated faces.

evaluation. It contains 30,000 aligned
face images at 1024 × 1024 resolu-
tion. The dataset is split randomly
while ensuring there is no identity
overlap between test/training sets:
3,009 images for testing, and 26,991
for training. There were two types
of masks in training: center and ran-
dom. The center mask was a square
region in the middle of the image
with a side length of half the size of
the image. The random masks, gen-
erated in a similar way to previous
methods (Iizuka et al., 2017; Yu et al.,
2018), were rectangular regions with
random width-to-height ratios, sizes
and locations covering about 5% to
25% of the original images. Network
architectures, hyper-parameters and
more results are provided in the Ap-
pendix.

Completion without Attribute Con-
trol. We first trained a high-
resolution (1024 × 1024) model with center masks (examples shown in Fig. 6) to test whether
our model is capable of learning high-level semantics and structures of faces and synthesizing large
missing regions. The second model was trained with random rectangular masks, but was able to
handle various shaped masks (e.g. irregular hand-drawn masks). Fig. 6 shows that our model was
able to capture the anatomical structures of faces and generate content that is consistent with the
holistic semantics.

Completion with Attribute Control. Two attributes (“Male vs Female” and “Smiling vs Not Smil-
ing”) were chosen. This model was trained from scratch and the result was run at a 512 × 512
resolution. Fig. 7 shows that the attributes of synthesized images were controlled by our model
explicitly. Fig. 8 shows the facial expression transfers together with attribute control.

Quantitative Evaluation. In current literature (Yeh et al., 2017; Yu et al., 2018), reconstruction
metrics such as mean L1, L2 errors and peak signal-to-noise ratio (PSNR) are commonly used for
the evaluation of in-painting methods. We show the comparison between our method and state-
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Figure 8: Examples of joint attribute and expression control. All images are at 512× 512 resolution. Though
the source and synthesized faces have different identities, their expressions are very similar.

of-the-art models at their reported resolutions respectively (Table 1). The result shows that our
model outperformed state-of-the-art approaches. In addition to comparing how well each model

Table 1: The quantitative comparison between our
method and state-of-the-art methods

Method Resolution L1 (%) L2 (%) PSNR
GL (Iizuka et al., 2017) 128× 128 9.34 1.75 18.22

Ours 128× 128 7.8 1.42 19.15
CTX (Yu et al., 2018) 256× 256 8.53 1.75 18.41

Ours 256× 256 7.05 1.21 19.97

reconstructs the missing regions, it is
also important to evaluate the natural-
ness of synthesized images since im-
age completion aims to generate re-
alistic and plausible content rather
than restoring the original images per-
fectly. Due to the lack of good met-
rics for naturalness, we ran a pilot
user study, which is considered the “gold standard” to evaluate GAN models. Our
method obtains significantly better results
(Fig. 9, see detail in the Appendix).

Figure 9: Comparisons on the naturalness: ours and
CTX (Yu et al., 2018). Left: There was a significantly
higher percentage of images completed by our model
that looked more realistic than those completed by CTX.
Right: The percentage that a synthesized image is con-
sidered more realistic than a ground-truth (GT) one.
There is a significantly higher probability that images
completed by our method were classified as real sam-
ples versus those generated by CTX.

Computation Time. We tested our model with
a Titan Xp GPU by processing 3000 1024 ×
1024 images with 512 × 512 holes. The mean
completion time is 0.54 second per image. It
takes about one minute for the model of Yang
et al. (Yang et al., 2016) to complete a 512×512
scene image with a Titan X GPU.

Limitations Though our method has low infer-
ence time, the training time is long due to the
progressive growing of networks. In our ex-
periment, it takes about three weeks to train a
1024 × 1024 model on a Titan Xp GPU. By
carefully zooming in our results, we find that
our high-resolution model fails to learn low-
level skin textures, such as furrows and sweat
holes. Moreover, the model could generate distorted content when removing large parts (e.g. hats)
or synthesize some plausible but unnatural faces (Fig. 10). Furthermore, for facial expression trans-
fer, our method requires that the head poses of the source and target faces are similar. These issues
are left for future work.

5 CONCLUSION

Figure 10: Some failure cases. From left to
right: masked, synthesized, and real images.

We propose a progressive GAN with frequency-oriented
attention modules (FOAM) for high resolution and fast
controllable and interpretable face completion, which
learns face structures from coarse to fine guided by the
FOAM. By consolidating information across all scales,
our model not only outperforms state-of-the-art methods
by generating sharper images in low resolution (such as
256 × 256), but is also able to synthesize faces in higher
resolutions (such as 512 × 512 and 1024 × 1024) than
existing techniques. Our attribute and expression con-
troller allows users to manipulate the appearance and fa-
cial expressions of generated images explicitly with at-
tribute vectors and landmarks. Our system is designed in an end-to-end manner, in that it learns to
generate completed faces directly and more efficiently.
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A APPENDIX

In this section, we first show more results of high resolution face completion. Then, we present
detail of the user study. We also provide detail of the network architectures and hyper-parameters
used in training.

A.1 MORE RESULTS OF FACE COMPLETION

Fig. 11, Fig. 12 and Fig. 13 show more results of high resolution face completion with masks of
various shape. Our model is capable of learning high-level semantics and structures of faces and
handling challenging mask types that were not included in the training set (e.g. hand-drawn masks
in Fig. 13).

Fig. 14 and Fig. 15 show more results of attribute and expression control.
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Figure 11: High-resolution face completion results with center masks. All images are at 1024× 1024 resolu-
tion. For each group, from left to right: masked, synthesized, and real images.
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Figure 12: More examples of High-resolution face completion results with center masks. All images are at
1024× 1024 resolution. For each group, from left to right: masked, synthesized, and real images.
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Figure 13: More examples of High-resolution face completion results with hand-drawn masks. All images are
at 1024× 1024 resolution. For each group, from left to right: masked, synthesized, and real images.

13



Under review as a conference paper at ICLR 2020

Figure 14: Face completion results with attribute controller. Attribute “Male vs Female” is used to control the
appearance. Landmarks from source actors are used to control the facial expressions of synthesized images.
The leftmost column shows masked images and faces generated with ground-truth attributes and landmarks.
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Figure 15: Face completion results with attribute controller. Attribute “Male vs Female” is used to control the
appearance. Landmarks from source actors are used to control the facial expressions of synthesized images.
The leftmost column shows masked images and faces generated with ground-truth attributes and landmarks.

Figure 16: Examples of images used in the user study. The preferred images are marked with red boxes.
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A.2 DETAIL OF USER STUDY

We compared our method with CTX (Yu et al., 2018), which is a state-of-the-art CNN-based face
completion approach capable of completing face images at 256 × 256 resolution, with a pilot user
study at 256× 256 resolution with random masks. 27 subjects (15 male and 12 female participants,
with ages from 22 to 32) volunteered to participate.

There were four sessions in the experiments. For each trial, a user was shown two images and asked
to choose the more realistic one. In the first session, two images completed from the same image
by different methods were chosen (one by our model and another by CTX). In sessions two to four,
a real image and a corresponding synthesized image were shown. In the first session, time was
unlimited. In session two to four, images were on display for 250ms, 1000ms, 4000ms respectively.
We randomly chose 100 pairs of images [Ours, CTX] from the test set for session one and another
100 groups of images [Ours, CTX, GT] for session two to four. The display order of images was
randomized.

The result (Fig. 9) shows that there was a significantly higher chance that images completed by our
model looked more realistic than those completed by CTX in session one. While comparing with
the ground-truth images in session two to four, the highest possible percentage that a method can
achieve is 50%, which is a random guessing. There was a probability of about 40% that our method
could fool a human observer when the display time was 250 ms. As the display time increased,
users started to notice more detailed artifacts, so all the percentages dropped. Regardless, our model
always significantly outperformed CTX. Statistical analysis was performed to confirm the significant
differences between our method and CTX. The details of analysis are listed in the supplemental
materials.

Some of the most-frequently-picked images by participants are shown in Fig. 16. Overall, our
approach generated sharper images with more details and fewer distortions. Sometimes, the synthe-
sized faces looked even more natural than the ground-truth images.

Table 2: The results of the two-way repeated measures ANOVA of the user study. There was a strong main
effect for Method, which indicated that the images generated by our method were recognized as real ones by
the human observers significantly more frequently than those completed by CTX (Yu et al., 2018).

Source F p
Method F(1,26) = 352.645 p<0.001

Time F(1.657,43.079) = 203.235 p<0.001
Method×Time F(1.283,33.346) = 1.760 p=0.194

Statistical Analysis of the User Study. In order to confirm the intuition of our comparison results,
we tested for statistical significance. To do this, we first collapsed each participant’s rankings into a
frequency list. Once frequency lists were built for all participants, the frequencies for each method
were again averaged over the 27 participants to produce a final list of averages from n = 27 samples.
For session one, we performed the paired samples t-test to compare the means of frequencies for
these two methods: t(26) = 46.368, p < 0.001. The results confirmed that our method was favored
significantly more often than CTX. For session two through four, a two-way repeated measures
analysis of variance (ANOVA) was used because there were two factors: Method (ours and CTX)
and Time (250 ms, 1000 ms, and 4000 ms). Since the sphericity assumption was not met in our
data, we used the correction of Huynh-Feldt for the Method and Time factors, and the Greenhouse-
Geisser correction for the Method×Time interactions. Not surprisingly, results (Table 2) showed a
significant difference in means of different method groups for a standard α = 0.05, which denoted
that there was a significantly higher probability that images completed by our method were classified
as real samples versus those generated by CTX.

A.3 NETWORK ARCHITECTURES AND HYPER-PARAMETERS

The generator G in our model is implemented by a U-shape network architecture consisting of
the first component Genc transforming the observed image and its mask to a latent vector and the
second component Gdec transforming the concatenated vector (latent code and input attributes) to
a completed image. There are residual connections between layers in Genc and the counterpart in
Gdec similar in the spirit to the U-Net (Ronneberger et al., 2015) and the Hourglass network (Newell
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et al., 2016) to consolidate information across multiple scales. Fig. 18 illustrates the two structures
of a layer in the generator for training without and with the attribute controller respectively, which
are adapted from the U-Net and Hourglass network.

Every convolutional layer (Conv) is followed by an Instance Normalization (InsNorm) and a
LeakyReLU layer, except that the Conv before the latent vector (i.e. the second Conv layer in
Table 3) is not followed by an InsNorm. Additionally, the there are no InsNorms or LeakyReLUs af-
ter the last Convs of bothDcls andDattr. All Convs used in the residual block of the skip connections
of our conditional model have a kernel size of three and a stride of one.

Since we use Instance Normalization rather than Batch Normalization, the batch size is not an im-
portant hyper-parameter. Technically, for faster computation, we use as large a batch size as possible
so long as it does not exceed the GPU memory limit.

Tables 3 and 5 demonstrate the architecture of the components of the generator G while Tables 6
shows the components of the discriminator D. In Table 6, depending on the operation of the skip
connection (Skip), the number of filters is either doubled (for a concatenation operation) or remains
the same (for an addition operation).

The progressive training process is illustrated in Fig. 17. At a resolution lower than 1024 × 1024,
the input face images, masks, landmarks and real images are all down-sampled with average pool-
ing to fit the given scale. One of the major challenges of generating high resolution images is
the limitation of Graphics Processing Unit (GPU) memory. Most completion networks use Batch
Normalization (Ioffe & Szegedy, 2015) to avoid covariate shift. However, with the limited GPU
memory, only a small number of batch sizes are supported at high resolution, resulting in low qual-
ity of generated images. We use the Instance Normalization (Ulyanov et al., 2016), similar to Zhu et
al. (Zhu et al., 2017), and update D with a history of completed images instead of the latest generated
one (Shrivastava et al., 2016) to stabilize training.

At the growing stage, new layers are added for both D and G and these layers are faded in with
current networks smoothly. After the fade-in process, the network is trained on more images for
stabilization. We used 300K, and 150K training images for resolution [8 × 8 to 256 × 256] and
[512 × 512, 1024 × 1024] respectively at growing stage, and 600K, 430K images for 4 × 4 and
[8× 8 to 1024× 1024] at stabilizing stage respectively.

In the experiments, the reconstruction trade-off parameter was set to κ = 0.7 to focus more on the
target region. To balance the effects of different objective functions, we used λattr = 2, λrec = 500,
λfeat = 8, and λbdy = 5000. The Adam solver (Kingma & Ba, 2014) was employed with a learning
rate of 0.0001.
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Figure 17: The progressive training process of our approach. The training of the completion network
(or the “generator” G) and the discriminator D starts at low resolution (4 × 4). Higher layers are
added to both G and D progressively to increase the resolution of the synthesized images. The
r x r cubes in the figure represent convolutional layers that handle resolution r. For the conditional

version, attribute labels Aobs are concatenated to the latent vectors. The discriminator D splits into
two branches in the final layers: Dcls that classifies if an input image is real, and Dattr that predicts
attribute vectors. Note that XG and XD are both a set of inputs as defined in the paper. We use
images in this Figure as a simplified illustration.

Figure 18: Illustrations of a single layer of our architecture. There are skip connections between
mirrored encoder and decoder layers. Left: the structure of the completion network; the skip con-
nection is a copy-and-concatenate operation. This structure helps preserve the identity information
between the synthesized images and real faces, resulting in little deformation. Right: the structure
of the conditional completion network; residual connections are added to the encoder, and the skip
connections are residual blocks instead of direct concatenation. The attributes of the synthesized
contents can be manipulated more easily with this structure. Each blue rectangle represents a set of
Convolutional, Instance Normalization and Leaky Rectified Linear Unit (LeakyReLU) (Maas et al.,
2013) layers.
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Table 3: Top: the Encoding component of generator Genc; Bottom: Latent Layer. N is the length
of an attribute vector. The attribute concatenation operation (AttrConcat) is only activated for our
conditional model.

Type Kernel Stride Output Shape
Input Image - - 4× 1024× 1024
Conv 1× 1 1× 1 16× 1024× 1024
Conv 3× 3 1× 1 32× 1024× 1024
Conv 3× 3 1× 1 32× 1024× 1024
Downsample - - 32× 512 × 512
Conv 3× 3 1× 1 64× 512 × 512
Conv 3× 3 1× 1 64× 512 × 512
Downsample - - 64× 256 × 256
Conv 3× 3 1× 1 128× 256 × 256
Conv 3× 3 1× 1 128× 256 × 256
Downsample - - 128× 128 × 128
Conv 3× 3 1× 1 256× 128 × 128
Conv 3× 3 1× 1 256× 128 × 128
Downsample - - 256× 64 × 64
Conv 3× 3 1× 1 512× 64 × 64
Conv 3× 3 1× 1 512× 64 × 64
Downsample - - 512× 32 × 32
Conv 3× 3 1× 1 512× 32 × 32
Conv 3× 3 1× 1 512× 32 × 32
Downsample - - 512× 16 × 16
Conv 3× 3 1× 1 512× 16 × 16
Conv 3× 3 1× 1 512× 16 × 16
Downsample - - 512× 8 × 8
Conv 3× 3 1× 1 512× 8 × 8
Conv 3× 3 1× 1 512× 8 × 8
Downsample - - 512× 4 × 4

Type Kernel Stride Output Shape
Conv 3× 3 1× 1 512× 4 × 4
Conv 4× 4 1× 1 512× 1 × 1
AttrConcat optional - 512(+N)× 1 × 1
Conv 4× 4 1× 1 512× 4 × 4
Conv 3× 3 1× 1 512× 4 × 4
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Table 4: The completion component of generator Gdec. Depending on the particular operation of
the skip connection (Skip), the number of filters is either doubled (for concatenation operations) or
remains the same (for addition operations). In practice, Gdec output a feature map that can be used
to generate a RGB image (with ToRGB layers) or predict a read/write Filter (with ToFilter layers,
see Table 5).

Type Kernel Stride Output Shape
Upsample - - 512× 8 × 8
Skip - - 1024 (512)× 8 × 8
Conv 3× 3 1× 1 512× 8 × 8
Conv 3× 3 1× 1 512× 8 × 8
Upsample - - 512× 16 × 16
Skip - - 1024 (512)× 16 × 16
Conv 3× 3 1× 1 512× 16 × 16
Conv 3× 3 1× 1 512× 16 × 16
Upsample - - 512× 32 × 32
Skip - - 1024 (512)× 32 × 32
Conv 3× 3 1× 1 512× 32 × 32
Conv 3× 3 1× 1 512× 32 × 32
Upsample - - 512× 64 × 64
Skip - - 1024 (512)× 64 × 64
Conv 3× 3 1× 1 512× 64 × 64
Conv 3× 3 1× 1 512× 64 × 64
Upsample - - 512× 128 × 128
Conv 3× 3 1× 1 256× 128 × 128
Skip - - 512 (256)× 128 × 128
Conv 3× 3 1× 1 256× 128 × 128
Conv 3× 3 1× 1 256× 128 × 128
Upsample - - 256× 256 × 256
Conv 3× 3 1× 1 128× 256 × 256
Skip - - 256 (128)× 256 × 256
Conv 3× 3 1× 1 128× 256 × 256
Conv 3× 3 1× 1 128× 256 × 256
Upsample - - 128× 512 × 512
Conv 3× 3 1× 1 64× 512 × 512
Skip - - 128 (64)× 512 × 512
Conv 3× 3 1× 1 64× 512 × 512
Conv 3× 3 1× 1 64× 512 × 512
Upsample - - 64× 1024 × 1024
Conv 3× 3 1× 1 32× 1024 × 1024
Skip - - 64 (32)× 1024 × 1024

Table 5: Left: The ToRGB layers that convert feature maps to RGB images. Right: ToFilter layers
that predict a read/write filter from feature maps.

Conv 3× 3 1× 1 32× 1024 × 1024
Conv 3× 3 1× 1 32× 1024 × 1024
Conv 1× 1 1× 1 3× 1024 × 1024

Conv 3× 3 1× 1 64× 1024 × 1024
Conv 3× 3 1× 1 64× 1024 × 1024
Conv 1× 1 1× 1 1× 1024 × 1024
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Table 6: Top: Feature Network F(·) computes a feature map for an input image, which is later used
by Dcls and Dattr; Middle: The real/fake head classifier Dcls; Bottom: The attribute network Dattr.
N is the length of an attribute vector. This network is only activated for the conditional model.

Type Kernel Stride Output Shape
Input Image - - 3× 1024× 1024
Conv 1× 1 1× 1 16× 1024× 1024
Conv 3× 3 1× 1 16× 1024× 1024
Conv 3× 3 1× 1 32× 1024× 1024
Downsample - - 32× 512 × 512
Conv 3× 3 1× 1 32× 512 × 512
Conv 3× 3 1× 1 64× 512 × 512
Downsample - - 64× 256 × 256
Conv 3× 3 1× 1 64× 256 × 256
Conv 3× 3 1× 1 128× 256 × 256
Downsample - - 128× 128 × 128
Conv 3× 3 1× 1 128× 128 × 128
Conv 3× 3 1× 1 256× 128 × 128
Downsample - - 256× 64 × 64
Conv 3× 3 1× 1 256× 64 × 64
Conv 3× 3 1× 1 512× 64 × 64
Downsample - - 512× 32 × 32
Conv 3× 3 1× 1 512× 32 × 32
Conv 3× 3 1× 1 512× 32 × 32
Downsample - - 512× 16 × 16
Conv 3× 3 1× 1 512× 16 × 16
Conv 3× 3 1× 1 512× 16 × 16
Downsample - - 512× 8 × 8
Conv 3× 3 1× 1 512× 8 × 8
Conv 3× 3 1× 1 512× 8 × 8
Downsample - - 512× 4 × 4

Type Kernel Stride Output Shape
Conv 3× 3 1× 1 512× 4 × 4
Conv 4× 4 1× 1 1× 1 × 1

Type Kernel Stride Output Shape
Conv 3× 3 1× 1 512× 4 × 4
Conv 4× 4 1× 1 N × 1 × 1
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