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ABSTRACT

Pretrained language models (LMs) have shown excellent results in achieving hu-
man like performance on many language tasks. However, the most powerful LMs
have one significant drawback: a fixed-sized input. With this constraint, these
LMs are unable to utilize the full input of long documents. In this paper, we
introduce a new framework to handle documents of arbitrary lengths. We inves-
tigate the addition of a recurrent mechanism to extend the input size and utilizing
attention to identify the most discriminating segment of the input. We perform
extensive validating experiments on patent and Arxiv datasets, both of which have
long text. We demonstrate our method significantly outperforms state-of-the-art
results reported in recent literature.

1 INTRODUCTION

Neural Network based Language Models (LMs) have seen a flurry of work over the past few years,
with new design and implementation improvements to advance state-of-the-art performance in a va-
riety of natural language tasks (Devlin et al., 2018; Dai et al., 2019; Radford et al., 2019; Yang et al.,
2019; Liu et al., 2019). LMs are powerful tools because they process a collection of unlabeled text
and are able to learn a rich embedding of natural language without supervision. This representation
can be re-purposed on subsequent tasks such as classification and sentiment analysis (Korde & Ma-
hender, 2012). Lately, this technique is essential for reaching state of the art performance, as the
LM based systems are able to achieve much better results than merely working with a small, labeled
dataset. The most successful LMs are able to do this unsupervised learning by using a powerful
mechanism called “The Transformer” (Vaswani et al., 2017). The transformer has been shown to
learn strong dependencies between its inputs, and can be stacked as many times as the hardware can
handle. This ability allows LMs to take in relative large, but still fixed, size input.

For some of the largest LMs, the input size can reach up to four thousand tokens, but that is still
a limitation insomuch that one cannot have arbitrarily long documents. On many natural language
tasks, this fixed input size is sufficient. Reading comprehension tasks, for example, are often used
to analyze the quality of LMs (Wang et al., 2019), contain relatively few words on average (31 for
WLNI dataset), and do not have sufficiently long dependencies. Additionally, there are multiple
tasks where the data is of significant length and must be truncated by these LMs (Lee & Hsiang,
2019). Long and complex text, such as a novels, often have inter-referential pieces of information
that transform the meaning when taken together. Reading the final chapter of a book after all the
previous ones, takes on a different meaning than reading the same text by itself.

Recurrent Neural Networks (RNNs) have been used for short text, e.g. sentiment analysis by Socher
et al. (2011). However, solving the problem of arbitrarily long input requires more than a cursory
glance. A first intuition may be to take the pretrained LM, place a RNN after the embedding, and
simply feed multiple sequences in. Unfortunately, this causes two problems. First, RNNs are typi-
cally trained by backpropagation through time, making them prone to the problem of vanishing or
exploding gradients (Pascanu et al., 2012). And while there are many techniques to solve this issue
(Williams & Peng, 1990; Mujika et al., 2018), they do not get around the second problem of the sig-
nificant memory requirements for gradient computation. Even when intentionally selecting a small
LM, the size of the retained gradients grows quickly for multiple time steps. Further complicating
the issue, the number of parameters, for transformer based networks, is quadratic in relation to the
fixed input size.
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In order to solve this problem, we look at the brain as a biological inspiration and how it is able to
guide attention and behavioral updates. The brain processes an extraordinary amount of data, but
even from moment to moment, much of that information is filtered out. What gets filtered is not
arbitrary, but is directly influenced by one’s objective. This can be seen when watching a video
to count the number of basketball passes and missing a large gorilla in the center frame (Chabris &
Simons, 2011). Even outside the moment to moment, changes in an individual’s behavior are guided
by their value structure, self-selected or otherwise. This value structure imposes a framework on how
to determine the significance of events (Peterson, 1999). An event that may have been insignificant
in the past can go on to take a new meaning once a new value has been gained or an old one has
changed Laudet et al. (2006). This increase in valence may cause behavioral change, a reorientation
of goals, and a shift in the interpretation of experiences.

Unfortunately, when it comes to modeling this selective learning in Artificial Intelligence systems,
typical gradient based methods fall short. For example, a typical neural network model will update
all its parameters based on all of the inputs to minimize an objective function. While this is desired
for many applications, full input based learning can cause issues for others (Pascanu et al., 2012).
Ke et al. (2018) attempt to solve this issue via selective attentive backtracking, but they focus on
remembering long-term dependencies and not on utilizing the full context of the input. In this work,
we introduce a method that can utilize the entire input, then perform objective-based filtering during
learning in the domain extremely complex data that is language.

The two areas we focus on specifically are scientific papers and patents for classification. Scientific
papers are important area of investigation as many get uploaded to the internet every day, and auto-
matic categorization could be a great use. For example, a statistics paper may not be categorized as
machine learning by its authors, but could be of interest to the machine learning community. Ad-
ditionally, Tshitoyan et al. (2019) have shown LMs can be combined with these papers to capture
material science concepts and can recommend materials for functional applications several years
before their discovery. Patent reading, for the purpose of classification, is a typical activity for
lawyers trying to find relevant documents. With the number of patents filed as increased nearly ev-
ery year since 2003 (WIPO, 2018), using an automated system to perform classification has been a
continuously growing area of interest (Trappey et al., 2006).

In this work, we use an attention mechanism to discover the significant portions of text for which
to perform backpropagation over a pretrained LM. We find this attention is vital because the most
significant portion of an input sequence may occur anywhere throughout a document. While the
datasets we study often start with highly discriminative features (titles and abstracts), we conduct
experiments to show our attention mechanism can find the important parts of text even when it does
not occur in the first segment. For more general texts, the discriminative features may be scattered
throughout the text, or have long range dependencies. And while it is the case that using the gradi-
ents from only the first input segment performs well, often better than just using a baseline of the
original language model with the input truncated to fit the max size, using the attention mechanism
consistently improves performance and achieves the best out of our experimented language models.
Therefore, our contributions are as follows:

1. We introduce a new framework for performing inference over arbitrary length documents.

2. We perform extensive validating experiments to contextualize our method within related
work, showing our method to significantly outperform alternative methods.

2 RELATED WORKS

Language model pre-training has become a popular method for tackling many natural language
understanding tasks. Bidirectional Encoder Representations from Transformers (BERT) (Devlin
et al., 2018) and Generative Pre-Training (GPT) (Radford et al., 2018) are two well-known language
model pre-training methods that we utilize in this work. BERT is trained by selectively conditioning
on part of the input sequence, masking the rest, and attempting to predict the masked tokens; and is
also trained by doing a next sentence prediction task. The token used for the next sentence prediction
task is reused for classification after the LM has been trained. GPT trains by conditioning on a set
of input text and tries to predict the next word in the sequence. By training on Wikipedia and books,
GPT is able to generate novel sequences of text. It is also able to perform classification by adding a
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Figure 1: Left: The base language model (Base BERT/GPT) for classification. Right: The frame-
work of language model enhancements for classification.

classifying token at the end of the text, encoding the token into a latent representation, and using it as
input to new linear classifier set specifically for the task. These language model pre-training methods
become state-of-art on natural language processing benchmarks such as GLUE (Wang et al., 2019)
and SQUAD (Rajpurkar et al., 2016), achieving close to human-level performance.

As both BERT and GPT are based on Transformers, their computational and storage costs scale
quadratically with the input sequence length. This limits their application to mostly relatively short
pieces of texts. To the best of our knowledge, we are not aware of any works applying these pre-
trained language models for long document classification. So in the following we discuss a few
other deep learning-based text classification approaches, with special attention to the classification
of scientific papers and patents.

Dai & Le (2015) consider pre-training recurrent neural networks with large corpus of texts, and
show improved performance on several text classification tasks. Kim (2014) introduced convolu-
tional neural networks for text/sentence classification. Yang et al. (2016) introduced a hierarchical
attention mechanism for document classification that attends to interesting sentences and words in
a document. However, the length of documents considered in later two works are relatively short,
with the corpus consisting of mostly individual sentences or online reviews.

For patent classification, Li et al. (2018) present a deep learning algorithm for patent classification
based on CNN and continuous skip-gram embedding called Deep Patent. They were the first to
apply deep learning to large scale real-world patent classification. Lee & Hsiang (2019) used the
pretrained BERT model to classify patents at the section and subclass level, only taking the title and
abstract, or the first claim, as input.

For scientific paper classification, He et al. (2019) introduce a relatively large scientific paper dataset
and perform classification by using a multi-network approach. They introduce a reinforcement-
based RNN Attention Learning scheme. This is used to select short text sequences to be parsed by
a CNN, and the representation learned by the CNN is fed back into the RNN for subsequent text
selections and eventual classification.

Very recently, Cohan et al. (2019) construct a joint sentence representation that allows BERT Trans-
former layers to directly utilize contextual information from all words in all sentences. However,
their task is classification at the sentence level for a single input.

3 METHODS

Our approach for classifying long documents is to divide the long document into a sequence of
segments, each of which is short enough to be processed by a pretrained language model. The
information, from the learned language model representation of each segment, is utilized to produce
a classifier (see Figure 1(right)). This strategy of information combination is very simple, and our
main contribution in this work is to investigate the effectiveness of different combination strategies.

Let x = (x1, x2, . . . , xm) be a document, where xi is a fixed-length sequence of tokens (segment),
and m the number of segments in the document. Let y ∈ Y be the respective labels in a k-class
classification problem. We use zi = LM(xi) ∈ Rd to denote the d-dimensional latent representa-
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Figure 2: Three enhancements for base LM. Left: The concatenation model (Cat-BERT/GPT). Cen-
ter: The RNN based model (RNN-BERT/GPT). Right: The full attention model (ATT-BERT/GPT).

tion, of the segment xi, for classification (e.g. the representation of the CLS token in BERT) from
a selected language model LM. Let CW ,b(v) = σ(Wv + b) be a linear classifier followed by the
softmax function, and let p the vector of probabilities of x being assigned to each class.

Base Language Model (Base LM) In the usual application of deep language models such as
BERT and GPT for text classification, the input text is truncated at a fixed length (256, 512, etc) due
to limits in the size of the model. This corresponds to our basic model:

p = CW ,b(LM(x1)), (1)

where W ∈ Rk×d, b ∈ Rk, and we assume the segment length of x1 equals to the input size limit
of the language model. This model is depicted in Figure 1(left).

Next we describe the three enhancements to the base LM, shown in Figure 2.

Concatenated Language Model (Cat-LM) The first enhancement is a natural extension to im-
prove the basic model by including information from more segments x2, . . . , xm. A very simple
way to do this is to concatenate the representation z1, z2, . . . ,zm before the classification layer.
This leads to the model:

p = CW ,b(LM(x1)⊕ LM(x2) · · · ⊕ LM(xm)), (2)

where W ∈ Rk×md, b ∈ Rk. This model is difficult to perform backpropagation directly because
we cannot hold m copies of the LM parameters in memory at the same time. We solve this problem
by stopping the backpropgation paths of some of the segments, namely z2, . . . ,zm. Section 3.1
discusses this approximation.

RNN-augmented Language Model (RNN-LM) The third model we want to consider is one that
summarizes the information from z1, . . . ,zm using a bidirectional LSTM. Let (h1,h2, . . . ,hm) =
biLSTM(z1, . . . , zm) be the q dimensional hidden state representations from a bidirectional LSTM,
where hi ∈ Rq . The biLSTM-based model can be written as:

p = CW ,b(LM(x1)⊕ h2 ⊕ hm), (3)

where W ∈ Rk×(d+2q), b ∈ Rk. For this model we also stop the gradient computation at
z2, . . . ,zm, and do not backpropagate beyond the LSTM parameters.

Attention-based Language Model (ATT-LM) For our attention based model, we use the same
attention mechanism as described in Yang et al. (2016). We define our attention variables as follows:

ui = tanh(Wshi + bs), i = 1, . . . ,m

αi = σ(uTi us)

a =

m∑
i=1

αihi,

(4)

whereWs ∈ R2q×q, bs ∈ Rq,us ∈ Rq are learned attention parameters for attention over segments.
Let M(α) = argmax1≤i≤m αi be the index of the segment that gives the highest attention weight.
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And that gives us our equation for the attention-based model by concatenating a set of relevant
features:

p = CW ,b(LM(x1)⊕ h2 ⊕ hm ⊕ a⊕α⊕ LM(xM(α))), (5)

where W ∈ Rk×(2d+3q+m), b ∈ Rk are the parameters of the linear classifier. For this model, we
stop the gradient computations paths for all zi’s apart from z1 and the selected zM(α).

For all four methods, we use the negative log likelihood as the loss function:

L = −
n∑
i=1

log pyi , (6)

where n is the number of training documents.

3.1 PARAMETER UPDATES

We run mini-batch stochastic gradient descent for parameter updates. We treat the parameters of
the language models and the other parameters (weight matrix W for classification, LSTM param-
eters, etc) differently. We perform full gradient computation on non-LM parameters, and only ap-
proximate gradient computation for the LM’s parameters by stopping backpropagation on selected
segments (see the model description above and the Appendix Section A).

4 EXPERIMENTS

Implementation Details. We use PyTorch (Paszke et al., 2017) to conduct all our experiments
and the HuggingFace (2019) implementation of both the Base-BERT (110M parameters) pretrained
model and the GPT pretrained model of similar size (117M parameters). Due to computational
constraints, we do not use BERT-Large or larger GPT models. We use BERT’s lower-case tokenizer
and the GPT’s tokenizer with an added classification token. Both models take a fixed input size
of 256 tokens, contain 12 transformer blocks, and have a hidden size of 768 neurons. We use an
LSTM (Hochreiter & Schmidhuber, 1997) for our recurrent neural network in the recurrent and
attention based methods. We apply dropout (Srivastava et al., 2014) (p = .1) before the final linear
layer.

Unless otherwise noted, we use a learning rate of 2e−5, scheduled ADAM optimizer (Kingma &
Ba, 2015), train for 3 epochs over each training set, use a training mini-batch size of 32 documents,
and set all other hyper parameters to their default values. For ease of processing, we use m = 8
segments for the patent datasets as patents have a relatively constrained length and 8 allows for
minimal padding to be used. We also use m = 16 segments for the Arxiv dataset as one document
typically contains 6k words, many of which are removed as non-meaningful or are intentionally
truncated as part of the bibliography.

Next, we describe the different datasets we use in our experiments.

Patents. Patents can be broken down into multiple levels of resolution according to the Interna-
tional Patent Classification System (IPC): Section, Subsection, Class, Subclass. The most broad
category, Section, has eight labels (A-H). For example, Section A is concerned with Human Neces-
sities, while Section H is concerned with Electricity. We also perform classification experiments on
a more detailed level of categorization Subclass, with 638 different labels. Patents were gathered
from the Google Patents Public Dataset via SQL queries.

We gathered all documents from the United States Patent Office (USPTO) from 2006-2014 for our
training set, and use patents from 2015 as our test set. We have 1917334 training and 296724 testing
documents, where 15172 and 1835 documents were respectively skipped for missing abstracts.

The text of a patent is composed of different parts: title, abstract, and a list of claims. For our
purposes, we consider one patent to be first the title, then the abstract, and followed by each claim
in order– claim 1, claim 2, ... until the last claim.

(Inverted) Wireless Patents. We also selected a subset of patent data to perform additional exper-
iments. We selected wireless (H04) due to its large number of training and test examples (the second
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XXXXXXXXXMethod
Dataset Arxiv-4 Arxiv-11 section subclass wireless inverted

wireless
Li et al. (2018)
Deep Patent - - - <43 - -

Lee & Hsiang (2019)
PatentBert - - 80.98 66.80 - -

He et al. (2019)
Local Word Glimpses 94.18 80.47 - - - -

Base-GPT 96.59 84.62 83.32 67.29 89.82 87.69
Base-BERT 97.06 87.42 83.85 68.31 90.21 87.72
Cat-GPT 96.82 80.03 83.43 66.17 89.34 88.80
Cat-BERT 97.06 87.34 83.99 68.34 90.64 89.39
RNN-GPT 96.98 85.31 83.52 67.72 90.16 89.19
RNN-BERT 97.62 87.72 83.99 68.72 90.51 89.41
ATT-GPT 97.62 85.94 83.66 68.13 90.31 90.08
ATT-BERT 97.70 87.96 84.13 69.01 90.69 90.25

Table 1: Micro F1 results on our datasets.

most of all the Class data). Due to its imbalance in subclasses, the Class with the most examples
(computing) was excluded (dominated by one label with over 75% examples). We use the wireless
Class to also construct an inverted patent dataset, where a single patent starts with its last claim, up
to the first claim in the reverse order, then the abstract, and lastly the title. It is commonly believed
that the abstract and the first claim is the most useful in classifying a patent. We create this dataset
to present information in reverse order of relevance to test models that bias towards the beginning of
documents (e.g., models that truncate beyond a fixed number of tokens). After processing, the wire-
less Class contains 250,982 training and 42,892 testing documents, where 15,172 and 97 documents
were skipped, respectively, for missing abstracts.

Arxiv papers. We use the dataset provided by He et al. (2019). It consists of 33388 papers down-
loaded from the scientific article hosting website Arxiv, from 11 different categories. The least
occurring category is “math.AC” with 2885 documents, and the most occuring is ”cs.DS” with 4136
documents. We call this dataset Arxiv-11. They also provide a subset of the data using four cate-
gories and 12,195 documents, which we refer to as Arxiv-4. All downloaded pdf documents were
converted to txt files, with no document less than 1,000 words. We randomly sample 90% for train-
ing and use the remaining 10% for test.

5 RESULTS

Patents and Arxiv Datasets. We report our main results in Table 1, where the numbers are micro-
F1 scores. We make three observations. First we compare our methods to the previous work using
DeepPatent (Li et al., 2018), PatentBert (Lee & Hsiang, 2019) and Local Word Glimpses (He et al.,
2019). Table 1 shows Base LMs perform well, but the usage of attention is superior in all cases. Sec-
ond, we compare Base LMs against the three enhancements across 4 variants of the patent dataset
and 2 variants of the Arxiv dataset. We note that RNN-based and attention-based LMs show con-
sistent improvement over base LMs. Among the three enhancements, attention-based (highlighted
in the last line) is strongest of all. It is also interesting to note that BERT-based models consistently
outperform GPT-based models, and this is likely due to the use of bidirectional contexts in BERT.

Inverted Patents. As shown in recent work (Lee & Hsiang, 2019; Li et al., 2018), only the abstract
or first claim on a patent is needed for high performance. To analyze the effect of attention discover-
ing the location of discriminating content, we invert the structure of the patent – reversing the order
of claims with last claim (least important) at the beginning and first claim (most important) at the
end, this is followed by the abstract, then lastly the title. Comparing the results from the second last
column (wireless) and last column (inverted wireless), we see that Base-LMs which only take into
account of first 256 tokens, suffer from a drop of F1 scores of more than 2.0 on inverted wireless.
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XXXXXXXXXMethod
Param 3 epochs

2e-5 lr
3 epochs
3e-5 lr

3 epochs
4e-5 lr

3 epochs
5e-5 lr

8 epochs
2e-5 lr

8 epochs
5e-5 lr

Base GPT 96.19 96.59 96.43 96.19 96.27 96.35
Base BERT 96.90 97.06 96.43 96.27 96.58 97.06
Cat-GPT 93.88 94.28 95.63 95.31 96.74 96.82
Cat-BERT 96.82 96.98 96.27 96.66 96.90 97.06
RNN-GPT 96.03 96.82 96.59 96.98 96.90 96.74
RNN-BERT 97.62 96.74 97.06 96.74 96.51 96.90
ATT-GPT 95.79 97.38 97.62 97.62 96.43 97.14
ATT-BERT 97.06 97.70 96.27 95.87 96.98 97.14

Table 2: The effect of changing the learning rate, and epoch, hyper-parameters for all models on the
Arxiv-4 dataset.

Cat-LMs and RNN-LMs reduce the gap in F1 scores to about 1.0, while the attention-based models
ATT-LMs perform the best, with the gap between wireless and inverted wireless less than 0.5.

Exploration of Hyper-parameters. Next, we investigate the effects of different hyper-parameters
on the various models using a small set of training data. For this, we use the Arxiv-4 dataset. While
the attention based models seem to do well, table 2 demonstrates the unpredictable nature of using
different learning rates along with different training epochs. This behavior aligns with the claims of
Devlin et al. (2018), who also found fine-tuning was sometimes unstable on small datasets.

Training and Evaluation Time. Lastly, we compare the training time and evaluation speed of
our models on the Arxiv-11 dataset. As shown in Table 3, due to the multiple forward passes,
all of the enhanced variants of the LMs require nearly 3-4x training time and over 2x to evaluate.
Considering there are substantially more operations required to process all the input text, this slow
down is better than expected. Furthermore, the difference in training time between the attention-
based models and non-attention-based is surprising, given the fact that the LM’s parameters must
be updated with another input’s gradients. This points towards further gradient computations being
feasible for architectures, and hardware, that can handle the additional required memory.

5.1 ABLATION EXPERIMENT

In order to understand the effects of the attention, we introduce an ablated model that allows us to
investigate how attention influences and guides back-propagation. This model is similar to ATT-
BERT, but we remove LM(x1), h2, or hm from the classifier. Therefore it can be written as:

p = CW,b(a⊕α⊕ LM(xM(α))), (7)

with W ∈ Rk×(q+m+d), b ∈ Rk being the parameters of the linear classifier. Using this model, we
carry out two experiments.

Shuffling Experiment. First, we perform a shuffled input experiment to investigate the effect of
using attention to select which segments to retain gradients for. We use all the same setup as the
experiments for the Arxiv-11 column in Table 1, except for each training iteration, we randomly
permute each segment x1 between all mini-batch examples. This means methods that use x1 will no
longer be able to rely upon those gradients to give an informative update to the model’s parameters.

Base-BERT Cat-BERT RNN-BERT ATT-BERT
BERT Training time 1.000 2.711 3.079 3.610
GPT Training time 1.000 3.088 3.551 3.558
BERT Evaluation time 1.000 2.712 2.940 3.147
GPT Evaluation time 1.000 2.520 2.689 2.839

Table 3: An analysis of the different model run times as a factor of the baseline method.
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Base BERT Cat-BERT RNN-BERT ATT-BERT Ablated
ATT-BERT

x1 gradients 11.92 12.96 11.92 81.05 81.11
No x1
gradients 11.92 46.72 70.59 81.08 81.11

Table 4: BERT model results when shuffling every x1 in the Arxiv-11 dataset.

Table 4 shows how the non-attention based methods guess the maximum occurring class when gra-
dients are updated using x1. And it also shows how these methods perform poorly without gradients
to update the language model parameters. On the other hand, the attention-based methods are able
to perform well with a loss of information, and ATT-BERT is relatively unaffected by the loss of
gradients from x1.

Attention α Comparisons. Second, we measure and compare the α values on the wireless and
inverted wireless patent dataset. We average the α value for each of the eight input segments over
the entire test set. Figure 3(a) comparatively shows the alpha values of our attention based model
on the wireless and inverted wireless dataset; this clearly demonstrates the attention mechanism is
able to accurately pick up on the important sections of text. Figure 3(b) shows the comparison
between ATT-BERT and the ablated model on both the wireless and inverted wireless datasets. The
α values for both models on the inverted dataset seem relatively similar, with the ablated model
placing heavier emphasis on the first few segments. However, the effect of including x1 ∈ X can
clearly been seen on the wireless dataset, where the α1 value is over 0.7. This means enabling
backpropagation to occur for input x1 has a positive effect for ATT-BERT and, moreover, that the
title and abstract in a patent are of high discriminative importance.

(a) (b)

Figure 3: (a) An analysis of the effect on attention α values between the original wireless dataset,
and the inverted wireless dataset. (b) A comparison of α values with the ablated model.

6 CONCLUSIONS

In this work, we achieve state of the art results on multiple long document classification tasks by
utilizing pretrained language models with attention based enhancements. With language modeling
continuing to see improvements every month, we show how to different models can be integrated
into our system. We performed numerous experiments to clearly demonstrate the value added by us-
ing attention to learn from important segments. Furthermore, we showed that the additional gradient
computation as a result of attention is marginal when compared to the consistent improvement of
results; and we analyzed the effects of the attention mechanism through the loss of input information
via both shuffling and a carefully constructed dataset augmentation.
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A GRADIENT COMPUTATION FOR LANGUAGE MODEL PARAMETERS

Let us denote our language model representation be zi = LM(xi) = fθ(xi), where θ are the
language model parameters. Let hφ be the function we compute on top of the LM representations,
e.g., the classifier, LSTM, etc. The parameter φ can contain the classification weights W and the
LSTM weights. The models considered in this paper can be written as:

p = hφ(fθ(x1), . . . , fθ(xm))

Coupled with the loss function l (log loss) and the target label y, we have

l(p, y) = l(hφ(fθ(x1), . . . , fθ(xm)), y)

Computing the gradient over the LM parameters θ, by chain rule we have

∂

∂θ
l(p, y) =

∂

∂z
l(z, y) |z=hφ(...) [

∂

∂u
hφ(u, fθ(x2), . . . , fθ(xm))

∂

∂θ
fθ(x1)

+
∂

∂u
hφ(fθ(x1),u, . . . , fθ(xm))

∂

∂θ
fθ(x2) + · · ·+

∂

∂u
hφ(fθ(x1), . . . ,u)

∂

∂θ
fθ(xm)]

(8)

By stopping the gradient computation over x2, . . . , xm, we are dropping the terms related to
∂
∂θfθ(xi), i ≥ 2, from the above formula. In optimization, we say q is a descent direction if
〈q, ∂θl〉 < 0. The negative gradient −∂θl is clearly a descent direction. The gradient above in
Equation (8) is in the form ∂θl = c

∑m
i=1 gi, where gi are the gradient term of the ith segment in

the equation. By dropping terms in the backpropagation, we are assuming either the contribution
from g1 (or gM(α) in the attention model of Equation 5) dominates the contributions from other
segments, or the gradients gi from different segments point towards similar directions, so that the
truncated gradient is still a descent direction.

In some cases, if the storage of partial gradients ∂
∂uhφ(z1, . . . ,u, . . . ,zm) is feasible, it is possible

to compute the full gradient in two passes over the mini-batch. For example, in the basic Cat-BERT
model for classification, this partial gradient is Wi scaled by the derivative of softmax, where i is
the index of the segment. We can compute these Wi with the derivative of the softmax as scaling
factors in a first pass, and accumulate gradients over fθ(xi) scaled by these factors in a second pass
over the mini-batch.
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