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ABSTRACT

Survival function estimation is used in many disciplines, but it is most common
in medical analytics in the form of the Kaplan-Meier estimator. Sensitive data
(patient records) is used in the estimation without any explicit control on the in-
formation leakage, which is a significant privacy concern. We propose a first dif-
ferentially private estimator of the survival function and show that it can be easily
extended to provide differentially private confidence intervals and test statistics
without spending any extra privacy budget. We further provide extensions for dif-
ferentially private estimation of the competing risk cumulative incidence function.
Using nine real-life clinical datasets, we provide empirical evidence that our pro-
posed method provides good utility while simultaneously providing strong privacy
guarantees.

1 INTRODUCTION

A patient progresses from HIV infection to AIDS after 4.5 years. A study using the patient’s data
publishes the survival function estimates (a standard practice in clinical research). An adversary,
with only access to the published estimates (even in the form of survival function plots), can re-
construct user-level data (Wei & Royston, 2018; Fredrikson et al., 2014). Effectively leading to the
disclosure of sensitive information. This is just one scenario. The survival function is used for mod-
eling any time to an event, taking into account that some subjects will not experience the event at
the time of data collection. The survival function is used in many domains, some examples are the
duration of unemployment (in economics); time until the failure of a machine part (in engineering);
time to disease recurrence, time to infection, time to death (in healthcare); etc.

Our personal healthcare information is the most sensitive private attribute, protected by law, viola-
tions of which carry severe penalties. And as the initial example suggests, of all application areas,
information leakage in the healthcare domain is the most serious issue and is our focus in this study.
For estimation of the survival function, we focus on the Kaplan-Meier’s (KM) (Kaplan & Meier,
1958) non-parametric method. KM’s method is ubiquitous in clinical research. A quick search of
the term on PubMed1 yields 109,421 results. It is not an overstatement to say that almost every
clinical study uses KM’s method to report summary statistics on their cohort’s survival. Statistical
agencies around the world use this method to report on the survival of the general population or
specific disease-related survival estimates.

To best of our knowledge, there does not exist any model that can provide formal privacy guarantees
for estimation of survival function using the KM method. The only related work is by Nguyên & Hui
(2017), which uses the output and objective perturbation for regression modeling of discrete time to
event data. The approach is limited to “multivariate” regression models and cannot be directly used
to estimate survival function in a differentially private fashion. One can argue that generative models
such as the differentially private generative adversarial networks (Xie et al., 2018; Zhang et al., 2018;
Triastcyn & Faltings, 2018; Beaulieu-Jones et al., 2017; Yoon et al., 2019) can be trained to generate
differentially private synthetic data. Which can then be used to estimate the survival function. But,
GANs do not generalize well to the datasets typically encountered for our use-case (very small
sample size (can be less than a hundred), highly constrained dimensionality (d ∈ [2, 3]), a mixture
of categorical and continuous variables, no data pre-processing allowed, etc.).

1A free search engine indexing manuscripts and abstracts for life sciences and other biomedical topics. Link
- https://www.ncbi.nlm.nih.gov/pubmed/
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We propose the first differentially private method for estimating the survival function based on the
KM method. Grounded by the core principles of differential privacy, our method guarantees the
differentially private estimation of the survival function. Also, we show that our method easily ex-
tends to provide differentially private confidence intervals and differentially private test statistics
(for comparison of survival function between multiple groups) without any extra privacy cost. We
further extend our method for differentially private estimation of the competing risk cumulative inci-
dence function (another popular estimate in clinical research). Using nine real-life clinical datasets,
we provide empirical evidence that our proposed method provides good utility while simultaneously
providing strong privacy guarantees. Lastly, we release our method as an R2 (R Core Team, 2018)
package for rapid accessibility and adoption.

2 PRELIMINARIES AND TECHNICAL BACKGROUND

We use this section to introduce the concepts central to the understanding of our method.

2.1 SURVIVAL FUNCTION

The survival function is used to model time to event data, where the event may not have yet occurred
(but the probability of occurrence is non-zero). Such as for HIV infection to AIDS timeline data, at
the end of the follow-up period, some patients would have progressed (our event of interest), while
others would not have yet progressed (censored observations). Accounting for censored observa-
tions (patients that never experience the event during our follow-up) is the central component in the
estimation of the survival function. Formally,

S(t) = P (T > t) =

∫ ∞
t

f(u) du = 1− F (t) (1)

this gives the probability of not having an event just before time t, or more generally, the probability
that the event of interest has not occurred by time t.

In practice, survival function can be estimated using more than one approach. Several parametric
methods (that make assumptions on the distribution of survival times) such as the ones based on
the exponential, Weibull, Gompertz, and log-normal distributions are available. Or one can opt for
the most famous and most often used non-parametric method (Kaplan-Meier’s method (Kaplan &
Meier, 1958)), which does not assume how the probability of an event changes over time. Our focus
in this paper is the latter, which has become synonymous with survival models in clinical literature.
KM estimator of the survival function is defined as follows

Ŝ(t) =
∏
j:tj≤t

rj − dj
rj

(2)

where tj , (j ∈ 1, · · · , k) is the set of k distinct failure times (not censored), dj is the number of
failures at tj , and rj are the number of individuals “at risk” before the j-th failure time. We can see
that the function Ŝ(t) only changes at each failure time, not for censored observations, resulting in
a “step” function (the characteristic feature of KM estimate).

2.2 DIFFERENTIAL PRIVACY

Differential privacy (Dwork et al., 2006) provides provable privacy notion, with the intuition that a
randomized algorithm behaves similarly on similar input datasets. Formally,
Definition 1. (Differential privacy (Dwork et al., 2006)) A randomized algorithmM with domain
N|X | preserves (ε, δ)-differentially privacy if for all S ⊆ Range(M) and for all x, y ∈ N|X | such
that ||x− y||1 ≤ 1, we have

Pr[M(x) ∈ S] ≤ eεPr[M(y) ∈ S] + δ (3)

where the two datasets (x, y) only differ in any one row (neighboring datasets) and the probability
space is over the coin flips of the mechanismM. If δ = 0, we have “pure ε-differential privacy”.
Smaller (ε, δ) provide stronger privacy guarantees.

2Most often used programming language in medical statistics
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Differential privacy has some interesting properties. We briefly introduce the main property that
is crucial to our proposal of differentially private survival function estimation. That is, the post-
processing, formally

Theorem 1. (Post processing (Dwork et al., 2006)) LetM : N|X | → R be a randomized algorithm
that is (ε, δ)-differentially private. Let f : R → R′ be an arbitrary randomized mapping. Then
f ◦M : N|X | → R′ is (ε, δ)-differentially private.

Theorem 1 states that differential privacy is immune to post-processing. That is, an adversary acting
only on the output ofM, cannot increase the privacy loss. This notion is central to our approach
and we will revisit it in the following sections.

3 DIFFERENTIALLY PRIVATE ESTIMATION OF SURVIVAL FUNCTION

Now we introduce our method for differentially private estimation of the survival function using the
Kaplan-Meier’s method. We follow the basic principles of differential privacy to ensure that our
estimate of the survival function is differentially private. We subsequently show that following our
simple approach, it is possible to estimate a wide variety of accompanying statistics (such as the
confidence intervals, comparison test statistics, etc.) in a differentially private way without spending
any extra privacy budget.

3.1 ESTIMATION

Before we begin, we recap some of the notations introduced in Section 2.1. We have a vector of time
points (tj , j ∈ {1, · · · , k}), and for each time point, we have a corresponding number of subjects at
risk rj (number of subjects not experiencing a progression up to that time point), and we have the
number of subjects experiencing the event at that time point (number of progressions), which we
denote as dj .

We first create a dataset (a matrix) where each row has the data on the number of events (dj) and
the number at risk (rj) for each unique time point (tj). Let’s denote this matrix by M . Then using
the L1 sensitivity (S) of M , we draw a noise matrix Z from the Laplace distribution (Lap(S/ε)),
where ε is the privacy parameter and Z is of the same size as M . We then create a differentially
private version of M by adding Z, that is, M ′ = M + Z. All subsequent calculations use M ′. We
succinctly present our method as Algorithm 1.

Algorithm 1 Differentially Private Estimation of Ŝ(t)

1: procedure DP(Ŝ(t))
2: Create a matrix M ; [rj , dj ] ∈M ; for every tj
3: M ′ = M + Lap(S/ε); [r′j , d

′
j ] ∈M ′

4: Ŝ′(t) =
∏
j:tj≤t

r′j−d
′
j

r′j

5: return Ŝ′(t)
6: end procedure

We use this paragraph to briefly discuss Algorithm 1. We begin with the noticeable simplicity of
the procedure, that is, the minimal changes required to the original estimation procedure to make
it differentially private. This further boosts the accessibility of our differentially private version (it
can be implemented using any readily available software package). Also, the required changes for
differential privacy come with no computational overhead compared to the original estimation (our
method is computationally cheap). Below we provide the formal privacy guarantees and further
details on how this method can be easily extended for differentially private estimation of “other”
associated statistics.
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3.2 PRIVACY GUARANTEES

Now we are ready to formally state the differential privacy guarantees of our proposed method.
Before we state our main theorem, we start with a supporting Lemma for establishing the global L1

sensitivity (S) of our method.
Lemma 1. L1 sensitivity (S) of M is two.

Proof. As M only contains count variables for the number of events and number at risk for each
unique time point. Adding or removing any single individual can change the counts by at most two
(that is being in at-risk group and having an event).

Theorem 2. Algorithm 1 is ε-differentially private.

Proof. Sketch: We have established the L1 sensitivity of M . Using it to add Laplace noise (M ′ =
M +Lap(2/ε)) makes sure M ′ is differentially private and so are its individual components (that are
r′j , d

′
j). Using (r′j , d

′
j) to calculate the survival function (Eqn. 2) ensures that the estimated function

is differentially private by the post-processing theorem (Dwork & Roth, 2014). Complete formal
proof is provided in the Appendix.

4 EXTENDING TO OTHER ESTIMATES

As mentioned in the introduction, one of the advantages of our approach is its easy extension to other
essential statistics often required and reported along with the estimates of the survival function. Such
as the confidence intervals, test statistics for comparing the survival function distributions, etc. Here
we formally define the extensions with their privacy guarantees.

4.1 CONFIDENCE INTERVALS AND TEST STATISTICS

When reporting survival function estimates, it is often required to include the related confidence
intervals, reported to reflect the uncertainty of the estimate. And for group comparison, such as
comparing the infection rates between two treatment arms of a clinical trial, hypothesis testing is
used with the help of test statistic. So, it is of paramount interest to provide the differentially private
counterparts of both (confidence intervals and test statistics). We start with the confidence intervals.

Confidence Intervals for survival function estimates are calculated in a “point-wise” fashion, that is,
they are calculated at discrete time-points whenever an event is observed (for the same time points at
which the survival function changes its value). We start with proving that the calculations required
for obtaining confidence intervals are differentially private following the changes made to the data
in Algorithm 1.

Theorem 3. Confidence Intervals for Ŝ′(t) are ε-differentially private.

Proof. There are more than one type of confidence intervals available for the survival function. Here
we focus on the most often used Greenwood’s (Greenwood et al., 1926) linear-point-wise confidence
intervals.

Greenwood’s formula for the confidence intervals is given as

Ŝ(t)± z1−α/2σS(t) (4)

where
σ2
s(t) = V̂ [Ŝ(t)] (5)

and
V̂ [Ŝ(t)] = Ŝ(t)2

∑
tj≤t

dj
rj(rj − dj)

(6)

Replacing by their respective differentially private counterparts from Algorithm 1.

V̂ ′[Ŝ(t)] = Ŝ′(t)2
∑
tj≤t

d′j
r′j(r

′
j − d′j)

(7)
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estimate for V̂ ′[Ŝ(t)] is now differentially private, using it in conjunction with Ŝ′(t) makes the
confidence intervals differentially private by the post-processing theorem (Dwork et al., 2006).

As we don’t need any additional access to the sensitive data for calculating confidence intervals.
Hence, calculating and providing differentially private confidence intervals with the differentially
private survival function estimates does not incur any additional privacy cost. In other words, we get
the differentially private confidence intervals for free.

Hypothesis tests are often used to compare the distribution of survival function estimates between
groups. For example: To compare infection rates between two treatment arms of a clinical trial.
Most often used statistical test in such scenarios is the Logrank test (Mantel, 1966). Below we show
that using our method (Algorithm 6), the hypothesis testing using the Logrank test is differentially
private.

Theorem 4. Hypothesis test for Ŝ′(t) is ε-differentially private.

Proof. Logrank test statistic (Z) is given as

Z =

∑k
j=1(O1j − E1j)√∑k

j=1 Vj

(8)

where O1j are observed number of failures (events) (d1j) and E1j are the expected number of
failures at time j in group 1, we have

E1j = dj
r1j

rj
(9)

and Vj is the variance, given as

Vj =
r1jr2jdj(rj − dj)

r2
j (rj − 1)

(10)

Replacing the corresponding quantities by their differentially private counterparts using Algorithm
1, we get

V ′j =
r′1jr

′
2jd
′
j(r
′
j − d′j)

r′2j (r′j − 1)
(11)

which makes V ′j differentially private as no other sensitive information is required for its estimation.

Using it in conjunction with O1j and E1j , which can be made differentially private following the
same argument, makes the test statistic Z differentially private by the post-processing theorem
(Dwork et al., 2006).

The calculation, again being the case of standard post-processing on differentially private data does
not add to our overall privacy budget. Hence, after using Algorithm 1, we can output the related
confidence intervals and the test statistic without spending any additional privacy budget.

4.2 EXTENDING TO COMPETING RISKS (CUMULATIVE INCIDENCE)

In certain scenarios, we can have more than one type of event. Using our prior example of HIV
infection, we might have a scenario where patients die before progression to AIDS, making the
observation of progression impossible. Such events (death) that preclude any possibility of our
event of interest (progression) are known as competing events. Competing events are a frequent
occurrence in clinical data and require specialized estimates that take this phenomenon into account,
without which our estimates will be biased. One such estimate is the competing risk cumulative
incidence, which is also the most widely used and reported estimate in the literature, akin to the KM
estimate, but for competing events.

Here we show that using Algorithm 1, we can easily extend differential privacy to competing risk
scenarios.

Theorem 5. Competing risk cumulative incidence using our method is ε-differentially private.
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Proof. Cumulative incidence extends Kaplan-Meier estimator and is given by

Îj(t) =
∑
i:ti<t

Ŝ(ti)
dij
ni

(12)

where dij is the number of events of type j at time t(i) and Ŝ(ti) is the standard Kaplan-Meier
estimator at time t(i).

Replacing associated quantities with their differentially private counterparts (using same reasoning
as Algorithm 1).

Îj(t)
′ =

∑
i:ti<t

Ŝ(ti)
′ d
′
ij

n′i
(13)

Its not hard to see that Îj(t)′ is differentially private by the post-processing theorem.

4.3 MORE EXTENSIONS

Further statistics associated with the cumulative incidence such as the confidence intervals and hy-
pothesis tests, hazard function and hazard ratios, etc. that directly depend on the quantities made
differentially private using Algorithm 1 can be similarly argued to be differentially private. An-
other popular extension that we easily get from our method is the differentially private version of
the Nelson-Aalen estimate of the cumulative hazard (Nelson, 1972; 1969; Aalen, 1978). Which is
simply Ĥ ′(t) =

∑
tj≤t d

′
j/r
′
j , or can be estimated directly from its relationship with the survival

function (Ŝ′(t) = exp(−Ĥ ′(t))).

5 EMPIRICAL EVALUATION

Here we present the empirical evaluation of our method on nine real-life clinical datasets of varying
properties. We start with the dataset description.

5.1 DATASETS

Nine real-life clinical datasets with time to event information are used to evaluate our proposed
method. Dataset details are provided in Table 1. For space constraints, we provide further details
(dataset properties, pre-processing, group comparison details for hypothesis tests, etc.) in the Ap-
pendix.

Table 1: Datasets used for evaluation of our proposed method, observations are the number of
observations (rows) in the dataset. Wide variety of datasets are used to simulate real-world clinical
scenarios.

Dataset Observations
Cancer 228
Gehan 42
Kidney 76
Leukemia 23
Mgus 1384
Myeloid 646
Ovarian 26
Stanford 184
Veteran 137

5.2 SETUP AND COMPARISON

Privacy budget (ε) is varied as reported in the results. Being a “non-trainable” model, there are
no train/test splits and results are reported on the complete dataset as an average of ten runs. All
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experiments are performed in R (R Core Team, 2018) with the source code and the datasets made
publicly available on GitHub and as an R package3.

As there is no current method for producing differentially private estimates of the survival function.
We compare our approach to the original “non-private” version. This provides us with a comparison
to the upper bound (we cannot get better than the non-noisy version). Good utility in comparison
with the original non-perturbed version will add credibility to our claim of high utility and will
encourage practitioners to adopt our method for practical use.

5.3 RESULTS

Now we present the outcome of our evaluation on nine real-life datasets. We start with the estimation
of the differentially private survival function and then move on to the evaluation of the extensions
(confidence intervals, test statistic, etc.).

5.3.1 MAIN RESULTS

For the differentially private estimation of the survival function (our primary goal), Figure 1 shows
the results. We can see that our privacy-preserving estimation (green line) faithfully estimates the
survival function (black line), with little utility loss. As expected, estimation deteriorates with in-
creased privacy budget (orange line).
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(g) Ovarian
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(h) Stanford
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Figure 1: Differentially private estimation of the survival function: Followup time is on the X-axis
and the probability of survival is on the Y-axis. The black line is the original function estimate, the
green line is the differentially private estimate with ε = 2, and the orange line is the differentially
private estimate with ε = 1. We observe that our method provides good utility while protecting an
individual’s privacy. Small sample sized datasets fare worse compared to larger datasets.

3Public link omitted to respect anonymous review, available as an anonymous file on https://bit.ly/
2kNHC1J
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An observation worth making is that as the dataset size gets smaller (a small number of events; as
in ovarian, Leukemia, Gehan), the utility of our differentially private estimation gets worse. Which
is intuitive from the differential privacy point of view, because to protect an individual’s privacy
in a small dataset, we will need to add large noise (large perturbation). Whereas for moderate to
medium-sized datasets, our differentially private estimation provides good results, even for the high
privacy regime.

5.3.2 MEDIAN SURVIVAL, CONFIDENCE INTERVALS, TEST STATISTIC, AND CUMULATIVE
INCIDENCE

An important estimate often reported with survival function is the median survival time and its
associated confidence intervals. Median survival time is defined as the time point when the survival
function attains the value of 0.5, confidence intervals for the survival function at that time point serve
as the confidence intervals of the median survival. Table 2 shows the results. For “Median Survival
(95% CI)”, we see that our method estimates the median with high precision, even for high privacy
regime. For some cases due to high survival (as is the case with Myeloid and Ovarian datasets), it is
not possible to estimate the upper bounds on the confidence intervals, that is why they are marked
as “NA”. We see a similar trend as we saw with results in Figure 1, our precision increases with
increasing dataset size, an acceptable trade-off for individual-level privacy protection.

Table 2: Median Survival with associated confidence intervals and the test statistic for comparing
two survival distributions. ε is the privacy budget for our method and “No privacy” are the results
from the non-noisy model. Our method provides “close” estimates to the original non-noisy values.

Median Survival(95% CI) Test Statistic (Z)

Dataset ε = 2 ε = 1
No

Privacy ε = 2 ε = 1
No

Privacy
Cancer 9.3 (7.4, 10.2) 7.6 (7.0, 8.9) 10.2 (9.4, 11.9) 12.8 13.6 11.4
Gehan 10.0 (6.0, 15.0) 7.0 (4.0, 11.0) 12.0 (8.0, 22.0) 17.1 27.4 16.3
Kidney 2.1 (1.3, 4.3) 1.7 (1.0, 3.9) 2.6 (1.3, 5.0) 12.1 27.8 7.0
Leukemia 0.6 (0.2, 0.9) 0.3 (0.1, 0.9) 0.9 (0.6, 1.5) 4.1 4.4 3.6
Mgus 3.2 (3.0, 3.4) 3.0 (2.9, 3.3) 3.2 (3.0, 3.4) 5.9 4.8 7.6
Myeloid 27.5 (22.9, NA) 17.3 (16.3, NA) 40.1 (27.1, NA) 11.3 15.6 8.7
Ovarian 15.2 (14.2, NA) 11.9 (8.8, NA) 21.0 (15.2, NA) 2.1 6.5 1.1
Stanford 20.7 (8.6, 30.5) 9.2 (6.3, 10.8) 20.7 (10.8, 40.5) 5.9 7.7 5.6
Veteran 2.6 (1.8, 3.4) 1.7 (1.1, 1.8) 2.6 (1.7, 3.5) 1.0 3.4 0.02

For the test statistic4, in Table 2, we observe that our differentially private estimation performs at
par with the original “non-noisy” estimation, even for the high privacy regime. The test statistic
(Z) follows the χ2 distribution with one degree of freedom. Using it to derive the p-values, we
observe that none of the differentially private estimates change statistical significance threshold (at
0.05 level). That is, none of the differentially private estimates make the “non-noisy” statistically
significant results non-significant or vice-versa.

For cumulative incidence, we use two new datasets with competing risk information. Results are
similar with the estimation of competing risk cumulative incidence, that is, our proposed method
provides good utility while protecting an individual’s privacy. Our method provides faithful es-
timation even at high privacy regime. For space constraints, detailed results are presented in the
Appendix.

6 RELATED WORK

Much work has been done in the intersection of statistical modeling and differential privacy, includ-
ing many works proposing different differentially private methods for regression modeling (Sheffet,
2017; Jain et al., 2012; Zhang et al., 2012; Yu et al., 2014; Chaudhuri et al., 2011). Using the same

4Obtained from comparing the survival distribution of different groups in the dataset, group details are
provided in the Appendix.
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principles, Nguyên & Hui (2017) further developed a differentially private regression model for sur-
vival analysis. This approach is limited to the “multivariate” regression models and cannot be used
for direct differentially private estimation of the survival function. Differentially private generative
models such as the differentially private generative adversarial networks (Xie et al., 2018; Zhang
et al., 2018; Triastcyn & Faltings, 2018; Beaulieu-Jones et al., 2017; Yoon et al., 2019) have been
recently proposed. But, as discussed in the introduction, they are not suitable for generating data for
survival function estimation.

7 CONCLUSION

We have presented the first method for differentially private estimation of the survival function and
we have shown that our proposed method can be easily extended to differentially private estimation
of “other” often used statistics such as the associated confidence intervals, test statistics, and the
competing risk cumulative incidence. With extensive empirical evaluation on nine real-life datasets,
we have shown that our proposed method provides good privacy-utility trade-off.
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A APPENDIX

A.1 DATASET DETAILS

Here we provide details on the datasets used for evaluation.

1. Cancer: It pertains to the data on survival in patients with advanced lung cancer from the
North Central Cancer Treatment Group Loprinzi et al. (1994). Survival time in days is
converted into months. Groups compared are males and females.

2. Gehan: This is the dataset from a trial of 42 leukemia patients Cox (2018). Groups com-
pared are the control and treatment groups.

3. Kidney: This dataset is on the recurrence times to infection, at the point of insertion of
the catheter, for kidney patients using portable dialysis equipment McGilchrist & Aisbett
(1991). Time is converted into months and groups compared are males and females.

4. Leukemia: This pertains to survival in patients with Acute Myelogenous Leukemia
Miller Jr (2011). Time is converted into months and groups compared are whether mainte-
nance chemotherapy was given or not.

5. Mgus: This dataset is about natural history of subjects with monoclonal gammopathy of un-
determined significance (MGUS) Kyle (1993). Time is converted into months and groups
compared are males and females.

6. Myeloid: Dataset is based on a trial in acute myeloid leukemia. Time is converted into
months and groups compared are the two treatment arms.

7. Ovarian: This dataset pertains to survival in a randomized trial comparing two treatments
for ovarian cancer Edmonson et al. (1979). Time is converted into months and groups
compared are the different treatment groups.

8. Stanford: This dataset contains the Stanford Heart Transplant data Escobar & Meeker Jr
(1992). Time is converted into months and groups compared are the age groups (above and
below median).

9. Veteran: This dataset has information from randomized trial of two treatment regimens
for lung cancer Kalbfleisch & Prentice (2011). Time is converted into months and groups
compared are the treatment arms.

A.2 EXTENDING TO COMPETING RISK (CUMULATIVE INCIDENCE)

For empirical evaluation in a competing risk scenario, we use two datasets that have more than one
type of event. First is from a clinical trial for primary biliary cirrhosis (PBC) of the liver (Therneau
& Grambsch, 2013). With the event variable being receipt of a liver transplant, censor, or death; our
event of interest is the transplant, and death here is a competing event. The second dataset has the
data on the subjects on a liver transplant waiting list from 1990-1999, and their disposition: received
a transplant (event of interest), died while waiting (competing risk), or censored (Kim et al., 2006).

Figure 2 shows the results (cumulative incidence is the opposite of survival function, so the plots
go upward). We observe that our differentially private extension does an excellent job of differen-
tially private estimation of the competing risk cumulative incidence function while providing strong
privacy guarantees.

A.3 PROOFS

Theorem 6. Algorithm 1 is ε-differentially private.

Proof. Let M ∈ Rd and M∗ ∈ Rd, such that the L1 sensitivity, S, is ||M − M∗||1 ≤ 1, and
let f(.) denote some function, f : Rd → Rk. Let pM denote the probability density function of
Z(M,f, ε), and let pM∗ denote the probability density function of Z(M∗, f, ε), we compare both
at some arbitrary point q ∈ Rk.
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Figure 2: Extending differentially private estimation to competing risk cumulative incidence (cumu-
lative incidence is the opposite of survival function, so the plots go upward). Black is the original,
unperturbed estimate. Green is with ε = 2 and orange is with ε = 1. We can see that our method
does a good job of estimating competing risk cumulative incidence while providing strong privacy
guarantees.

pM (q)

pM∗(q)
=

k∏
i=1

(
exp(− ε|f(M)i−qi|

∆f )

exp(− ε|f(M∗)i−qi|
∆f )

)

=

k∏
i=1

exp

(
ε(|f(M∗)i − qi| − |f(M)i − qi|)

∆f

)

≤
k∏
i=1

exp

(
ε|f(M)i − f(M∗)i|

∆f

)
= exp

(
ε||f(M)− f(M∗)||1

∆f

)
≤ exp(ε)

(14)

last inequality follows from the definition of sensitivity S
As our function estimation uses everything from M ′ (our differentially private version of M ) and
nothing else from the sensitive data, our survival function estimation is differentially private by the
post-processing Theorem (Dwork & Roth, 2014).
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