
Under review as a conference paper at ICLR 2020

EFFICIENT SALIENCY MAPS FOR EXPLAINABLE AI

Anonymous authors
Paper under double-blind review

ABSTRACT

We describe an explainable AI saliency map method for use with deep convolu-
tional neural networks (CNN) that is much more efficient than popular gradient
methods. It is also quantitatively similar or better in accuracy. Our technique
works by measuring information at the end of each network scale. This is then
combined into a single saliency map. We describe how saliency measures can be
made more efficient by exploiting Saliency Map Order Equivalence. Finally, we
visualize individual scale/layer contributions by using a Layer Ordered Visualiza-
tion of Information. This provides an interesting comparison of scale information
contributions within the network not provided by other saliency map methods.
Our method is generally straight forward and should be applicable to the most
commonly used CNNs 1.

1 INTRODUCTION

Deep neural networks (DNN) have provided a new burst of research in the machine learning com-
munity. However, their complexity obfuscates the underlying processes that drive their inferences.
This has lead to a new field of explainable AI (XAI). A variety of tools are being developed to enable
researchers to peer into the inner workings of DNNs. One such tool is the XAI saliency map. It is
generally used with image or video processing applications and is supposed to show what parts of
an image or video frame are most important to a network’s decisions. The seemingly most popular
methods derive a gradient saliency map by trying to back-propagate a signal from one end of the
network and project it onto the image plane (Simonyan et al., 2014; Zeiler & Fergus, 2014; Sprin-
genberg et al., 2015; Sundararajan et al., 2017; Selvaraju et al., 2017; Patro et al., 2019). Several
newer methods attempt to augment the image or a mask in ways that affect the precision of the re-
sults (Fong & Vedaldi, 2017; Chang et al., 2018). Additionally, one can train saliency map encoders
within the network itself (Dabkowski & Gal, 2017). Both of these methods have a distinct advantage
of being more self-evidently empirical when compared with gradient techniques.

Most saliency map methods require many passes through the network in order to generate results or
train. The gradient methods hypothetically would require just one pass, but often require as many
as 15 in order to give an accurate rendering (Hooker et al., 2018). This is not always a problem if
one is running a fishing expedition post hoc. However, what if one would like to see the workings
of the network at training time? An XAI tool which is too expensive will slow down training and
people will be understandably reluctant to use it in such a way. This is an issue since a saliency map
could provide real-time feedback on how training is progressing. Additionally, if one periodically
saved training saliency maps, one would have them post hoc if needed. This would save the time
and effort of going back and setting up a special job to extract such information that may turn out to
be not very helpful. An efficient saliency map is also more feasible for real time feedback in fields
such as robotics where computational resources are limited.

Here we show a method of computing an XAI saliency map which is highly efficient. The method
we are presenting is fast enough that we already use it automatically when training networks. We
notice very little degradation of performance speed. Further, we demonstrate empirically that our
method is either similar or more accurate than the most commonly used gradient methods.

1Full source code is available at http://www.anonymous.submission.com

1



Under review as a conference paper at ICLR 2020

2 METHODS

2.1 SALIENCY MAP DERIVATION

We were looking for a method to compute saliency maps based on certain conditions and assump-
tions.

1. The method used needs to be relatively efficient to support rapid analysis at both test time
and during DNN training

2. The method should have a reasonable information representation. As a DNN processes
data, the flow of information should become localized to areas which are truly important.

3. The method should capture the intuition that the informativeness of a location is propor-
tional to the overall activation level of all the filters as well as how spiky the activation
profile is, i.e., only a few filters output high activation values.

Our approach works by creating saliency maps for the output layer of each scale in a neural network
and then combines them. The most commonly used image processing DNNs work on images with
filter groups at the same scale which down-sample the image and pass it to the group of filters at the
next scale, and so on. It is at the end of these scale groups where we are interested in computing
saliency. In this way, our approach is efficient and only requires a single forward pass through the
network.

To achieve localization of information, we measure statistics of activation values arising at different
input locations. Given an output activation tensor T ∈ R+,p×q×r with spatial indices i, j ∈ p, q
and depth index k ∈ r from some layer T = l (X). In our case l (.) is a ReLU (Nair & Hinton,
2010). We apply a function to each column at i, j over all depths k. This yields a 2D saliency map
S ∈ R+,p×q where S = ϕ (T). We process the tensor after it has been batch-normalized (Ioffe
& Szegedy, 2015) and processed by the activation function. When we compute Truncated Normal
statistics as an alternative in later section, we take the tensor prior to the activation function.

Finally, to capture our intuition about the informativeness of an output activation tensor, we de-
rived ϕ (.) by creating a special simplification of the maximum likelihood estimation Gamma Scale
parameter (Choi & Wette, 1969). One way we can express it is:

ϕ (.) =
1

r
·

r∑
k=1

xk ·

[
log2

(
1

r
·

r∑
k=1

xk

)
− 1

r
·

r∑
k=1

log2 (xk)

]
(1)

To avoid log zero, we add 1e − 06 to each xk. How mean and variance relate seems readily appar-
ent with the square bracketed part being the computational formula for the standard deviation with
values taken to log2 (.) rather than squared. This is proceeded by a typical mean estimate. This
meets the third requirement we mentioned. This simplification is Saliency Map Order Equivalent
(SMOE) to the full iterative (and expensive) scale parameter estimation. We define SMOE as fol-
lows. Given saliency map Sa ∈ R+,p×q and Sb ∈ R+,p×q where we may have Sa 6= Sb, if we
sort the pixels by value, then Sa will be sorted in exactly the same order as Sb. That means that the
most salient location i, j is exactly the same in both Sa and Sb. This also means that if we create
a binary mask of the n% most salient pixels, the mask for both Sa and Sb will also be exactly the
same. SMOE is preserved if for instance, we apply independent monotonic functions to a saliency
map. As such, we may as well strip these away to save on computation. Tie values may create
an imperfect equivalence, but we assert that these should be very rare and not affect results by a
measurable amount.

Using µ as the mean of each column r in T, we can see the information relation more clearly if we
simplify Eq 1 further which gives us our SMOE Scale method:

ϕ (.) =
1

r
·

r∑
k=1

µ · log2
(
µ

xk

)
(2)

The resemblance to conditional entropy should be apparent. However, since the values in Eq 2 are
not probabilities, this does not fit the precise definition of it. On the other hand, the interpretation is
fairly similar. It is the mean activation multiplied by the information we would gain if we knew the

2



Under review as a conference paper at ICLR 2020

Figure 1: The left most image is the input to the network. Five saliency maps are shown for each
spatial scale in the network. They are combined per Eq 3. The right most image is the combined
saliency map created from these. To aid in visualizing context, it has been alpha blended with a gray
scale version of the original image here at 25%. Many more combined saliency map examples can
be seen Appendix Figures 8 and 9

.

individual values which formed the mean. Put in traditional terms, we might say it is the information
in the mean conditioned on the individual values. Numerical examples of this method at work can
be seen in Appendix Table 3 along with more information on the derivation. To create a 2D saliency
map S ∈ R+,p×q , we simple apply Eq 2 at each spatial location i, j ∈ p, q with column elements
k ∈ r in the 3D activation tensor T for a given input image.

2.2 COMBINED SALIENCY MAP GENERATION

For each input image, we derive five saliency maps. For different networks, this number may vary.
Given a network such as a ResNet (He et al., 2015), AlexNet (Krizhevsky et al., 2013), VGG Net
(Simonyan & Zisserman, 2015) or DenseNet (Huang et al., 2017) we compute saliency on the final
tensor computed at each spatial scale. Recall that most image classification networks process images
in a pipeline that processes an image in consecutive groups of convolution layers where each group
downsamples the image by 1/2x before passing it onto the next. It is just prior to the downsampling
that we compute each saliency map. Computing saliency across image scales is a classical technique
(Itti et al., 1998). This is also similar to the method used in the XAI saliency technique described in
(Dabkowski & Gal, 2017).

To make our maps easier to visualize or combine together, we normalize them from 0 to 1 by
squashing them with the normal cumulative distribution function γ (s;µ, σ). Here mean and stan-
dard deviation are computed independently over each saliency map. We then create a combined
saliency map by taking the weighted average of the maps. Since they are at different scales, they are
upsampled via bilinear interpolation to match the dimensions of the input image. Given r saliency
maps that have been bilinear interpolated (upsampled) to the original input image size p, q, they are
then combined as:

ci,j =

∑r
k=1 γ (si,j,k;µk, σk) · wk∑r

k=1 wk
(3)

Note that technically, we compute γ (s;µ, σ) before we upsample. Weighting is very useful since
we expect that saliency maps computed later in the network should be more accurate than saliency
maps computed earlier as the network has reduced more irrelevant information in deeper layers,
distilling relevant pixels from noise (Tishby et al., 2000). Network activity should be more focused
on relevant locations as information becomes more related to the message. We observe this behavior
which can be seen later in Figure 4. A saliency map generation example can be seen in Figure 1
with many more examples in Appendix Figures 8 and 9.

The advantages of creating saliency maps this way when compared with most gradient methods are:

• Pro: This is relatively efficient, requiring only a single forward pass through the network.

• Pro: We can easily visualize the network at different stages (layers).

• Con: We do not have an explicate means of creating a class specific activation map (CAM)
(Selvaraju et al., 2017), but we discuss how this might be done later.

• Con: This method should work with most of the popular convolutional DNNs, but it is not
guaranteed to work with all architectures.

3



Under review as a conference paper at ICLR 2020

Figure 2: Images are shown with their combined saliency map using our LOVI scheme. The hue
in each saliency map corresponds to layer activation. Earlier layers start at violet and trend red in
the last layers following the order of the rainbow. Areas which are blue or violet are only activated
early in network processing. They tend to activate early filters, but are later disregarded by the
network. Yellow and red areas are only activated later in the network. They appear to be places
where the objects components are combined together. White areas are activated throughout all
network layers. They possibly correspond to the most important features in the image. To aid in
context, the images have been alpha blended with a gray scale version of the original image at 25%.
Many more examples can be seen in Appendix Figures 10 and 11

.

2.3 VISUALIZING MULTIPLE SALIENCY MAPS

One advantage to computing multiple saliency maps at each scale is that we can get an idea of what
is happening in the middle of the network. However, with so many saliency maps, we are starting
to be overloaded with information. This could get even worse if we decided to insert saliency maps
after each layer rather than just at the end of each scale. One way to deal with this is to come up with
a method of combining saliency maps into a single image that preserves useful information about
each map. Such a composite saliency map should communicate where the network is most active as
well as which layers specifically are active. We call our method Layer Ordered Visualization of
Information (LOVI). We do this by combining saliency maps using an HSV color scheme (Joblove
& Greenberg, 1978) where hue corresponds to which layer is most active at a given location and
saturation tells us the uniqueness of the activation. Value (intensity) corresponds to the maximal
activation at that location. For example, if only one layer is active at a location, the color will be
very saturated (vivid colors). On the other hand, if all layers are equally active at a given location,
the pixel value will be unsaturated (white or gray). Examples can be seen in Figure 2. Given k ∈ r
saliency maps S (in this instance, we have r = 5 maps), we stack them into a tensor S ∈ R+,p×q×r.
Note that all s ∈ [0, 1] because of Eq 3 and they have been upsampled via bilinear interpolation to
match the original input image size. Given φ (k) = k−1

r , ν = 1
r . Hue ∈ [0, 360] is basically the

center of mass of activation for column vector s at each location i, j ∈ p, q in S:

Hue =

[
1−

∑r
k=1 sk · φ (k)∑r

k=1 sk

]
· 360 (4)

Saturation ∈ [0, 1] is the inverse of the ratio of the values in s compared to if they are all equal to the
maximum value. So for instance, if one value is large and all the other values are small, saturation
is high. On the other hand, if all values are about the same (equal to the maximum value), saturation
is very small:

Sat = 1−
∑r

k=1 (sk)− ν
r ·max (s) · (1− ν)

(5)

Value ∈ [0, 1] is basically just the maximum value in vector s :

V al = max (s) (6)

Once we have the HSV values for each location, we then convert the image to RGB color space in
the usual manner.

4



Under review as a conference paper at ICLR 2020

Figure 3: These are the KAR (kept) and ROAR (removed) mask images created by masking out the
original images with the combined saliency map. The percentage is how much of the image has been
kept or removed based on the combined saliency map. Thus, the 10% kept example shows the top
10% most salient pixels in the image. It is these example images that are fed into the network when
we compute the KAR and ROAR scores. Many more examples can be seen in Appendix Figure 7

.

2.4 QUANTIFICATION VIA ROAR AND KAR

(Hooker et al., 2018) proposed a standardized method for comparing XAI saliency maps. This
extends on ideas proposed by (Dabkowski & Gal, 2017; Samek et al., 2017) and in general hearkens
back to methods used to compare computational saliency maps to psychophysical observations (Itti
& Koch, 2001). The general idea is that if a saliency map is an accurate representation of what is
important in an image, then if we block out salient regions, network performance should degrade.
Conversely, if we block out non-salient regions, we should see little degradation in performance. The
ROAR/KAR metrics measure these degradations explicitly. The KAR metric (Keep And Retrain)
works by blanking out the least salient information/pixels in an input image, and the ROAR (Remove
And Retrain) metric uses the contrary strategy and removes the most salient pixels. Figure 3 shows
an example of ROAR and KAR masked image. A key component to the ROAR/KAR method is that
the network needs to be retrained with saliency masking in place. This is because when we mask
out regions in an input image, we unavoidably create artifacts. By retraining the network on masked
images, the network learns to ignore the new artifacts and focus on image information.

We will give a few examples to show why we need both metrics. If a saliency map is good at deciding
which parts of an image are least informative but gets the ranking of the most salient objects wrong,
ROAR scores will suggest the method is very good. This is because it masks out the most salient
locations in one large grouping. However, ROAR will be unable to diagnose that the saliency map
has erroneously ranked the most informative locations until we have removed 50% or more of the
salient pixels. As such, we get no differentiation between the top 1% and the top 10% most salient
pixels. On the other hand, KAR directly measures how well the saliency map has ranked the most
informative locations. By using both metrics, we can quantify the goodness of both the most and
least salient locations in a map.

3 QUANTITATIVE EXPERIMENTS

3.1 COMPARING DIFFERENT EFFICIENT STATISTICS

We tested our SMOE Scale saliency map method against several other statistical measures using
three different datasets that have fairly different tasks and can be effectively trained from scratch.
The sets used are ImageNet (Deng et al., 2009), CSAIL Places (Zhou et al., 2014) and COWC
(Mundhenk et al., 2016). ImageNet as a task focuses on foreground identification of objects in
standard photographic images. Places has more emphasis on background objects, so we would
expect more spatial distribution of useful information. COWC, Cars Overhead With Context is
an overhead dataset for counting as many as 64 cars per image. We might expect information
to be spatially and discretely localized, but distributed over many locations. In summary, these
three datasets are expected to have fairly different distributions of important information within
each image. This should give us more insight into performance than if we used several task-similar
datasets (e.g. Three photographic foreground object sets such as; ImageNet + CUB (birds) (Welinder
et al., 2010) + CompCars (Yang et al., 2015)).

For compatibility with (Hooker et al., 2018), we used a ResNet-50 network (He et al., 2015). We
also show performance on a per layer basis in order to understand the accuracy at different levels

5



Under review as a conference paper at ICLR 2020

Figure 4: SMOE Scale is compared with several other efficient statistical methods. The Y-axis is
the combined score per scale layer over all three image sets. The X-axis is the network layer with
L1 being the earliest layer in the network and L5 near the end. SMOE Scale differentiates itself the
most early on in the network. About mid way through, the difference between methods becomes
relatively small. This may be because information contains more message and less noise by this
point in processing. Finer grain details can be seen in Appendix Table 4

.

of the network. For comparison with our SMOE Scale method, we included any statistical measure
which had at least a modicum of justification and was within the realm of the efficiency we were
aiming for. These included parameter and entropy estimations from Normal, Truncated-normal,
Log-normal and Gamma Distribution models. We also tested Shanon Entropy and Renyi Entropy.
To save compute time, we did a preliminary test on each method and did not continue using it if
the results appeared terrible. Normal entropy was excluded because it is SMOE with the Normal
standard deviation. This left us with nine possible statistical models which we will discuss in further
detail.

Saliency maps for each method are computed over each tensor column in the same way as we did
with our SMOE Scale metric. The only difference is with the truncated-normal statistic which
computes parameters prior to the ReLU layer. We should note that (Jeong & Shin, 2019) uses a
truncated normal distribution to measure network information for network design. Recall that we
have five saliency map layers. They are at the end of each of the five network spatial scales. We
test each one at a time. This is done by setting the network with pre-trained weights for the specific
dataset. Then, all weights in the network which come after the saliency mask to be tested are
allowed to fine-tune over 25 epochs. Otherwise, we used the same methodology as (He et al., 2015)
for data augmentation etc. This is necessary in order to adapt the network to mask related artifacts
as specified in the ROAR/KAR protocol. At the level where the saliency map is generated, we
mask out pixels in the activation tensor by setting them to zero. For this experiment, we computed
the ROAR statistic for the 10% least salient pixels. For KAR, we computed a map to only let
through the top 2.5% most salient pixels. This creates a more similar magnitude between ROAR
and KAR measures. Layer scores for the top five methods can be seen in Figure 4. We combine
layer scores two different ways since ROAR and KAR scores are not quite proportional. These
methods both yield very similar results. The first method takes the improvement difference between
tested method’s score and a randomized mask score. We have five κ ∈ [0, 1] KAR scores for a
method. We have five ρ ∈ [0, 1] ROAR scores for a method and five z ∈ [0, 1] scores from a
random mask condition. This corresponds to each saliency map spatial scale which we tested. We
compute a simple difference score as:

D (ρ, κ) =

5∑
p=1

(zp − ρp) +
5∑

q=1

(κq − zq) (7)

The second method is in information gain score given by:

I (ρ, κ) = −
5∑

p=1

ρp · log2
(
ρp
zp

)
−

5∑
q=1

zq · log2
(
zq
κq

)
(8)

Table 1 shows the results.

6



Under review as a conference paper at ICLR 2020

Table 1: KAR and ROAR results per dataset. The Difference Score shows the results using Eq
7. The Information Score uses Eq 8. They are sorted by the average difference score (AVG). The
SMOE Scale from Eq 2 performs best overall using both scoring methods. The vanilla standard
deviation is second best. Recall it is SMOE with normal entropy. Truncated normal entropy is
best on the COWC set and ranks third overall. It is interesting to note that the difference in scores
over COWC are not as large as the other two datasets. The top four methods all are information
related and mean activation style methods are towards the bottom. Finer grain details can be seen in
Appendix Table 4
.

Difference Score Information Score
Method ImNet Places COWC AVG ImNet Places COWC AVG

SMOE Scale 1.70 0.90 1.61 1.40 1.13 0.68 1.31 1.04
Standard Dev 1.64 0.83 1.61 1.36 1.07 0.61 1.30 0.99
Trunc Normal Ent 1.56 0.77 1.64 1.32 1.00 0.56 1.32 0.96
Shanon Ent 1.61 0.80 1.51 1.31 0.98 0.59 1.23 0.93
Trunc Normal Std 1.51 0.71 1.64 1.28 1.00 0.52 1.32 0.94
Trunc Normal Mean 1.38 0.67 1.64 1.23 0.96 0.49 1.32 0.92
Normal Mean 1.29 0.63 1.42 1.11 0.75 0.44 1.18 0.79
Log Normal Ent 1.16 0.66 1.44 1.09 0.82 0.47 1.20 0.83
Log Normal Mean 1.46 0.55 1.09 1.03 0.54 0.35 0.88 0.59

3.2 COMPARISON WITH POPULAR METHODS

We compare our method with three popular saliency map methods using the standard ROAR/KAR
methodology. These are Gradient Heatmaps (Simonyan et al., 2014), Guided Backpropagation
(Springenberg et al., 2015) and Integrated Gradients (Sundararajan et al., 2017). All methods use
SmoothGrad-Squared (Smilkov et al., 2017) which gives generally the best results. We should note
that without SmoothGrad or another augmentation, all three do not yield very good ROAR/KAR
scores.

We compare three different weighting strategies when combining the saliency maps from all five
scales. In the first strategy, we weight all five maps equal [1,1,1,1,1]. In the second, we use a rule-
of-thumb like approach where we weight the first layer the least since it should be less accurate.
Then each successive layer is weighted more. For this we choose the weights to be [1,2,3,4,5]. The
third method weights the maps based on the expected accuracy given our results when we computed
Table 1. These prior weights are [0.18, 0.15, 0.37, 0.4, 0.72]. The reason for showing the rule-of-
thumb results is to give one an idea of performance given imperfect weights since one may not want
to spend time computing optimal prior weights.

To fairly compare the three popular saliency map methods with our own, we adopt a methodology
as close as possible to (Hooker et al., 2018). We train a ResNet-50 from scratch on ImageNet with
either ROAR or KAR masking (computed by each of the different saliency mapping approaches in
turn) at the start of the network. Otherwise, our training method is the same as (He et al., 2015). The
comparison results are shown in Figure 5. We can try and refine these results into fewer scores by
subtracting the sum of the ROAR scores from the sum of the KAR scores. The results can be seen
in Table 2. The KAR score for our method is superior to all three comparison methods. The ROAR
score is better than Guided Backpropagation and Integrated Gradients. This suggests our method is
superior at determining which locations are most salient correctly, but is not as good as Gradients
for determining which parts of the image are least informative.

4 DISCUSSION

The method as proposed is much faster than the three baseline comparison methods. Given a
ResNet-50 network, we only process five layers. The other networks require a special back propa-
gation step over all layers. This makes our method approximately 10 times faster. If SmoothGrad
is used to get reasonable ROAR/KAR results using the method in (Hooker et al., 2018), our method
is 150 times faster. Another method given in (Dabkowski & Gal, 2017) would also get a similar

7



Under review as a conference paper at ICLR 2020

Figure 5: SMOE Scale with prior layer weights is compared with three popular baseline methods
that all use Squared SmoothGrad. Scores for these three are taken from (Hooker et al., 2018). The Y-
axis is the model accuracy on ImageNet only. The X-axis is how much of the input image salient
pixels are kept or removed. KAR keeps the most salient locations. Higher accuracy values are
better results for it. ROAR removes the most salient regions. Lower values are better. Our method
does not seem to suffer as much when the 10% least salient parts are removed in KAR and in general
maintains a better score. Our ROAR scores are very similar to Guided Backprop. Finer grain details
can be seen in Appendix Table 5. Note that these results are not per layer. For a closer numerical
comparison with the mask layer method, see Appendix Table 4.

Table 2: Combined KAR and ROAR scores for several methods on ImageNet Only. The top
three rows show several popular methods with Squared SmoothGrad (Smilkov et al., 2017). These
scores are created by simply summing the individual scores together. ROAR is negative since we
want it to be as small as possible. Prior Layer Weights means we applied layer weights based on
the prior determined accuracy of the layer saliency map. We include our top three scoring methods.
The SMOE Scale method outperforms the three baseline methods on KAR. It outperforms Guided
Backprop and Integrated Gradients on ROAR as well as overall. The Gradient method is best overall,
but as we discuss later, it is approximately 150 times more expensive to compute. Truncated normal
entropy scores about the same as SMOE Scale. Since SMOE Scale gains its largest performance
boost in the earlier layers, when we apply prior weighting, we reduce that advantage. Finer grain
details can be seen in Appendix Table 5.

Method KAR ROAR SUM

Gradient (Simonyan et al., 2014) -w- SmoothGrad Sq. 3.52 -2.12 1.41
Guided Backprop (Springenberg et al., 2015) -w- SmoothGrad Sq. 3.49 -2.33 1.16
Integrated Grad (Sundararajan et al., 2017) -w- SmoothGrad Sq. 3.56 -2.68 0.88

SMOE Scale + Prior Layer Weights 3.61 -2.31 1.30
SMOE Scale + Layer Weights [1,2,3,4,5] 3.62 -2.34 1.28
SMOE Scale + Layer Weights [1,1,1,1,1] 3.62 -2.46 1.15
Normal Std + Prior Layer Weights 3.61 -2.32 1.29
Trunc Normal Ent + Prior Layer Weights 3.61 -2.31 1.30

speed up, but it must be trained first. Our method does not have a class activation map in the current
implementation. However, one could be added. For instance, one could use our method to com-
pute a baseline saliency map and then use a gradient method to color in the saliency map with the
corresponding class. This would give an accurate saliency map without the need to use Smooth-
Grad. Thus, it might allow a gradient method to have the precision of SmoothGrad without the high
computational cost.

5 CONCLUSION

We have created a method of XAI saliency which is efficent and is quantitatively comparable or bet-
ter than several popular methods. It can also be used to create a saliency map with interpretability of
individual scale layers. Future work includes creating a class specific activation map and expanding
this method to non-DNN architectures.

8



Under review as a conference paper at ICLR 2020

REFERENCES

Chun-Hao Chang, Elliot Creager, Anna Goldenberg, and David Duvenaud. Explaining image clas-
sifiers by adaptive dropout and generative in-filling. In ICLR, 2018.

S. C. Choi and R. Wette. Maximum likelihood estimation of the parameters of the gamma distribu-
tion and their bias. Technometrics, 11:683690, 1969.

Piotr Dabkowski and Yarin Gal. Real time image saliency for black box classifiers. In NIPS, 2017.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In CVPR, 2009.

Ruth Fong and Andrea Vedaldi. Interpretable explanation of black boxes by meaningful perturba-
tion. In ICCV, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In arXiv:1512.03385, 2015.

Sara Hooker, Dumitru Erhan, Pieter-Jan Kindermans, and Been Kim. Evaluating feature importance
estimates. In ICML workshop on Human Interpretability in Machine Learning, 2018.

Gao Huang, Zhuang Liu, Kilian Q. Weinberger, and Laurens van der Maaten. Densely connected
convolutional networks. In CVPR, 2017.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In ICML, 2015.

Laurent Itti and Christof Koch. Computational modelling of visual attention. Nature Neuroscience,
2:194203, 2001.

Laurent Itti, Ernst Niebur, and Christof Koch. A model of saliency-based visual attention for rapid
scene analysis. IEEE Transactions on Pattern Analysis & Machine Intelligence, 20:1254–1259,
1998.

Jongheon Jeong and Jinwoo Shin. Training cnns with selective allocation of channels. In ICML,
2019.

George H. Joblove and Donald Greenberg. Color spaces for computer graphics. Computer Graphics,
12:20–25, 1978.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet classification with deep convo-
lutional neural networks. In NIPS, 2013.

T Nathan Mundhenk, Goran Konjevod, Wesam A Sakla, and Kofi Boakye. A large contextual dataset
for classification, detection and counting of cars with deep learning. In ECCV, 2016.

Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann machines.
In ICML, 2010.

Badri N Patro, Mayank Lunayach, Shivansh Patel, and Vinay P. Namboodiri. U-cam: Visual expla-
nation using uncertanty based class activation maps. In ICCV, 2019.

Wojciech Samek, Alexander Binder, Grégoire Montavon, Sebastian Lapuschkin, and Klaus-Robert
Müller. Evaluating the visualization of what a deep neural network has learned. IEEE Transac-
tions on Neural Networks and Learning Systems, 28:2660–2673, 2017.

Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
ization. In ICCV, 2017.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In ICLR, 2015.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks:
Visualising image classification models and saliency maps. In arXiv:1312.6034, 2014.

9



Under review as a conference paper at ICLR 2020

Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Vigas, and Martin Wattenberg. Smoothgrad:
removing noise by adding noise. In arXiv:1706.03825, 2017.

Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmille. Striving for
simplicity: The all convolutional net. In ICLR Workshop, 2015.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
ICML, 2017.

Naftali Tishby, Fernando C. Pereira, and William Bialek. The information bottleneck method, 2000.

Peter Welinder, Steve Branson, Takeshi Mita, Catherine Wah, Florian Schroff, Serge Belongie, and
Pietro Perona. Caltech-UCSD Birds 200. Technical Report CNS-TR-2010-001, California Insti-
tute of Technology, 2010.

Linjie Yang, Ping Luo, Chen Change Loy, and Xiaoou Tang. A large-scale car dataset for fine-
grained categorization and verification. In CVPR, 2015.

Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
ECCV, 2014.

Bolei Zhou, Agata Lapedriza Garcia, Jianxiong Xiao, Antonio Torralba, and Aude Oliva. Learning
deep features for scene recognition using places database. In NIPS, 2014.

10



Under review as a conference paper at ICLR 2020

A APPENDIX

A.1 DERIVATION OF SMOE SCALE

The maximum likelihood estimator of scale in the Gamma probability distribution is given as:

θ̂ =
1

kn

n∑
i=1

xi (9)

This requires the additional iterative estimation of the shape parameter k starting with an estimate s:

s = ln

(
1

n

n∑
i=1

xi

)
− 1

n

n∑
i=1

ln(xi) (10)

Then we get to within 1.5% of the correct answer via:

k ≈
3− s+

√
(s− 3)2 + 24s

12s
(11)

Then we use the Newton-Ralphson update to finish:

k ← k − ln(k)− ψ(k)− s
1
k − ψ′(k)

(12)

But we can see application of Eqs 11 and 12 is monotonic. This is also apparent from the example
which we can see in Figure 6.

Figure 6: A plot of the resulting k values from input s values in the gamma probability distribution
maximum likelihood estimation. It is monotonic and reciprocal.

k is SMOE to 1
s , so we rewrite Eq 9 with the reciprocal of k and optionally use the more efficient

log2 as:

θ̂SMOE =
1

n
·

n∑
i=1

xi ·

[
log2

(
1

n
·

n∑
i=1

xi

)
− 1

n
·

n∑
i=1

log2 (xi)

]
(13)

This then simplifies to:

θ̂SMOE =
1

n
·

n∑
i=1

µ · log2
(
µ

xn

)
(14)

We can see the results this gives with different kinds of data in Table 3

11



Under review as a conference paper at ICLR 2020

Table 3: Examples of SMOE Scale results given different data. This shows in particular when
log variance and standard deviation give similar or diverging results. It is easier to see how SMOE
Scale as a measure or variance is proportional to the mean. So, if we have lots of large values in an
output, we also need them to exhibit more variance relative to the mean activation.

Input Values Mean STD SMOE Scale
0.5 1 ... 0.5 1 0.5 1 0.5 1 0.75 0.25 0.064
1 2 ... 1 2 1 2 1 2 1.5 0.5 0.127
2 4 ... 2 4 2 4 2 4 3 1 0.255

1 2 ... 1 2 1 2 1 2 1.5 0.5 0.127
2 3 ... 2 3 2 3 2 3 2.5 0.5 0.074

2 4 ... 2 4 2 4 2 4 3 1 0.255
0.6125 1.8375 ... 0.6125 1.8375 0.6125 1.8375 0.6125 1.8375 1.225 0.6125 0.254

12



Under review as a conference paper at ICLR 2020

A.2 MORE EXAMPLES OF KAR SALIENCY MASKS

Figure 7: These are the last mini-batch images in our GPU:0 buffer when running the ImageNet
validation set. The top images are the original input images and the ones on the bottom are 10%
KAR images of the most salient pixels. These are images used when computing KAR scores.

13



Under review as a conference paper at ICLR 2020

A.3 MORE EXAMPLES OF COMBINED SALIENCY MAPS

Figure 8: These are more examples of combined saliency maps using the same images that appear
in Figure 7. These images are not alpha blending with the original. Above each image is the ground
truth label, while the label the network gave it is below. This was auto-generated by our training
scripts.

14



Under review as a conference paper at ICLR 2020

Figure 9: These are the same as Figure 8 except with the original image gray scaled and alpha
blended at 25%.

15



Under review as a conference paper at ICLR 2020

A.4 MORE EXAMPLES OF LOVI SALIENCY MAPS

Figure 10: These are more examples of visualizing multiple saliency maps using the same images
that are in Figure 7. These images are not alpha blending with the original.

16



Under review as a conference paper at ICLR 2020

Figure 11: These are the same as Figure 10 with the original image gray scaled and alpha blended
at 25%.

17



Under review as a conference paper at ICLR 2020

A.5 COMPARING DIFFERENT EFFICIENT STATISTICS IN MORE DETAIL

This subsection shows the raw scores for each statistic over each dataset.

Table 4: KAR and ROAR results per dataset. This is a more detailed version of Table 1 and
Figure 4. The differing effects of the distribution of data in the three sets seems to manifest itself in
the L5 scores whereby the more concentrated the information is spatially, the better the ROAR/L5
score seems to be.

KAR Kept Percent ROAR Removed Percent
Method L1 L2 L3 L4 L5 L1 L2 L3 L4 L5

ImageNet
Random 66.42 61.28 50.67 40.81 42.98 73.48 72.41 68.90 64.63 66.04
SMOE Scale 56.61 50.69 51.25 46.40 63.00 44.48 44.81 36.35 33.88 21.15
STD 51.84 50.73 50.72 46.16 62.82 45.78 42.74 36.17 34.41 22.88
Mean 53.21 40.34 50.88 46.85 62.56 52.66 64.10 37.85 34.15 19.19
Shannon Ent 55.43 45.69 50.89 47.17 61.18 44.74 51.38 38.73 35.78 18.07
Log Normal Mean 55.98 32.28 51.08 47.21 62.02 57.20 68.22 44.42 34.98 18.50
Log Normal ENT 53.01 42.52 51.13 46.85 62.26 47.92 62.64 38.73 34.50 18.91
Trunc Normal Mean 50.67 49.69 50.69 43.52 62.87 46.88 49.76 35.44 37.58 20.92
Trunc Normal Std 50.66 51.02 50.60 42.54 62.97 46.78 43.70 35.68 38.18 21.57
Trunc Normal Ent 50.84 50.62 50.57 43.63 62.97 46.92 45.48 35.56 37.64 21.25
Best 56.61 51.02 51.25 47.21 63.00 44.48 42.74 35.44 33.88 18.07
Worst 50.66 32.28 50.57 42.54 61.18 57.20 68.22 44.42 38.18 22.88

Places
Random 57.20 53.59 47.83 41.26 39.45 60.77 60.25 58.14 56.41 55.26
SMOE Scale 49.76 45.67 46.39 40.57 53.50 44.35 44.61 39.80 40.26 27.94
STD 47.15 44.75 46.28 39.41 53.53 46.41 43.69 39.28 41.38 29.12
Mean 47.93 40.38 45.94 41.10 52.33 50.66 56.58 41.26 39.90 27.38
Shannon Ent 48.80 43.20 45.92 41.31 50.62 41.97 49.28 42.93 39.98 27.06
Log Normal Mean 50.05 35.87 46.23 41.45 51.67 52.21 57.91 45.17 39.73 26.88
Log Normal ENT 47.77 41.41 46.02 41.39 52.25 48.96 56.34 41.91 39.68 27.00
Trunc Normal Mean 46.25 44.76 46.12 38.08 53.18 46.92 46.92 48.83 42.09 28.06
Trunc Normal Std 45.96 45.35 46.38 37.61 53.38 46.41 46.76 44.86 42.43 28.68
Trunc Normal Ent 46.06 45.01 46.38 37.57 53.15 46.67 46.67 38.85 42.09 28.11
Best 50.05 45.67 46.39 41.45 53.53 41.97 43.69 38.85 39.68 26.88
Worst 45.96 35.87 45.92 37.57 50.62 52.21 57.91 48.83 42.43 29.12

COWC
Random 65.05 57.43 52.30 64.31 65.55 77.38 75.44 71.11 78.25 77.32
SMOE Scale 64.19 63.02 71.05 62.87 80.65 45.16 44.09 43.97 62.78 59.49
STD 60.36 61.95 70.89 64.57 80.55 44.12 43.52 44.10 60.69 59.73
Mean 63.82 59.90 73.20 61.83 80.54 45.79 59.24 44.61 64.02 58.86
Shannon Ent 62.64 63.78 73.29 60.99 78.77 46.50 44.23 46.42 68.31 57.98
Log Normal Mean 66.37 46.05 72.89 60.21 80.38 48.98 71.02 46.69 67.19 58.16
Log Normal ENT 63.23 62.78 73.26 60.99 80.44 45.10 57.12 44.92 65.61 58.56
Trunc Normal Mean 60.00 63.35 72.08 65.62 80.54 42.98 44.44 44.15 61.60 59.45
Trunc Normal Std 59.52 63.74 71.58 65.58 80.54 42.76 43.45 43.98 62.07 59.81
Trunc Normal Ent 59.79 63.48 71.77 65.68 80.59 43.04 43.80 43.89 61.79 59.89
Best 66.37 63.78 73.29 65.68 80.65 42.76 43.45 43.89 60.69 57.98
Worst 59.52 46.05 70.89 60.21 78.77 48.98 71.02 46.69 68.31 59.89

18



Under review as a conference paper at ICLR 2020

A.6 COMBINED KAR AND ROAR SCORES WITH MORE DETAIL

This subsection shows the raw scores for each ROAR and KAR mask. We also added the non-
SmoothGrad methods so one can see how much of an improvement it makes.

Table 5: Combined KAR and ROAR scores for several methods. This is a more detailed version
of Table 2 and Figure 5. The top six rows show several popular methods with and without Squared
SmoothGrad applied to give optimal results. These are taken from (Hooker et al., 2018). Prior Layer
Weights means we applied layer weights based on the prior determined accuracy of the layer saliency
map. We include our top three scoring methods. The SMOE Scale method outperforms the three
baseline methods on KAR. It outperforms Guided Backprop and Integrated Gradients on ROAR as
well as overall. The Gradient method is best overall, but as we discussed, it is approximately 150
times more expensive to compute.

KAR Kept Percent ROAR Removed Percent
Method 10% 30% 50% 70% 90% 10% 30% 50% 70% 90%

Rand 63.53 67.06 69.13 71.02 72.65 72.65 71.02 69.13 67.06 63.53

Gradient 67.63 71.45 72.02 72.85 73.46 72.94 72.22 70.97 70.72 66.75
Guided Backprop 71.03 72.45 72.28 72.69 71.56 72.29 71.91 71.18 71.48 70.38
Integrated Grad. 70.38 72.51 72.66 72.88 73.32 73.17 72.72 72.03 71.68 68.20
Gradient -w- SmoothGrad Sq. 63.25 69.79 72.20 73.18 73.96 69.35 60.28 41.55 29.45 11.09
Guided Backprop -w- SmoothGrad Sq. 62.42 68.96 71.17 72.72 73.77 69.74 60.56 52.21 34.98 15.53
Integrated Grad. -w- SmoothGrad Sq. 67.55 68.96 72.24 73.09 73.80 70.76 65.71 58.34 43.71 29.41

SMOE Scale + Prior Layer Weights 65.44 72.14 74.28 74.51 75.01 70.40 60.33 48.48 34.23 17.72
SMOE Scale + Layer Weights [1,...,5] 65.76 72.60 73.97 74.53 74.94 70.28 60.93 48.73 35.66 18.01
SMOE Scale + Layer Weights [1,...,1] 66.13 72.28 73.72 74.52 74.97 71.28 63.58 52.85 38.74 19.72
Normal Std + Prior L. Weights 65.48 72.17 73.93 74.62 74.67 69.98 60.39 48.75 34.63 18.13
Trunc Normal Ent + Prior L. Weights 65.45 72.38 74.10 74.40 74.75 69.85 60.08 48.05 34.32 18.37

19


	Introduction
	Methods
	Saliency Map Derivation
	Combined Saliency Map Generation
	Visualizing Multiple Saliency Maps
	Quantification Via ROAR and KAR

	Quantitative Experiments
	Comparing Different Efficient Statistics
	Comparison With Popular Methods

	Discussion
	Conclusion
	Appendix
	Derivation of SMOE Scale
	More Examples of KAR Saliency Masks
	More Examples of Combined Saliency Maps
	More Examples of LOVI Saliency Maps
	Comparing Different Efficient Statistics in more Detail
	Combined Kar and ROAR Scores with more Detail


