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ABSTRACT

A sparse representation is known to be an effective means to encode precise lexical
cues in information retrieval tasks by associating each dimension with a unique n-
gram-based feature. However, it has often relied on term frequency (such as tf-idf
and BM25) or hand-engineered features that are coarse-grained (document-level)
and often task-specific, hence not easily generalizable and not appropriate for fine-
grained (word or phrase-level) retrieval. In this work, we propose an effective
method for learning a highly contextualized, word-level sparse representation by
utilizing rectified self-attention weights on the neighboring n-grams. We kernelize
the inner product space during training for memory efficiency without the explicit
mapping of the large sparse vectors. We particularly focus on the application of
our model to phrase retrieval problem, which has recently shown to be a promis-
ing direction for open-domain question answering (QA) and requires lexically
sensitive phrase encoding. We demonstrate the effectiveness of the learned sparse
representations by not only drastically improving the phrase retrieval accuracy (by
more than 4%), but also outperforming all other (pipeline-based) open-domain QA
methods with up to x97 faster inference in SQUADOPEN and CURATEDTREC.1

1 INTRODUCTION

Retrieving text from a large collection of documents is an important problem in several natural lan-
guage tasks such as question answering (QA) and information retrieval. In the literature, sparse
representations have been successfully used in encoding text at sentence or document level, captur-
ing precise lexical information that can be sparsely activated by n-gram based features. For instance,
frequency-based sparse representations such as tf-idf map each text segment to a vocabulary space
where the weight of each dimension is determined by the associated word’s term and inverse docu-
ment frequency. However, these sparse representations are mainly coarse-grained, task-specific, and
not suitable for word-level representations since they statically assign the identical weight to each
n-gram and do not change dynamically depending on the context.

In this paper, we introduce an effective method for learning a word-level sparse representation that
encodes precise lexical information. Our model, COSPR, learns a contextualized sparse phrase
representation leveraging rectified self-attention weights on the neighboring n-grams and dynami-
cally encoding important lexical information of each phrase (such as named entities) given its con-
text. Consequently, in contrast to previous sparse regularization techniques on dense embedding of
at most few thousand dimensions (Faruqui et al., 2015; Subramanian et al., 2018), our method is able
to produce more interpretable representations with billion-scale cardinality. Such large sparse vector
space is prohibitive for explicit mapping; we leverage the fact that our sparse representations only
interact through inner product and kernelize the inner-product space for memory-efficient training,
inspired by the kernel method in SVMs (Cortes & Vapnik, 1995). This allows us to handle extremely
large sparse vectors without worrying about computational bottlenecks. The overview of our model
is illustrated in Figure 1.

We demonstrate the effectiveness of our model in open-domain question answering (QA), the task
of retrieving answer phrases given a web-scale collection of documents. Following Seo et al. (2019),

1Our code will be publicly available upon acceptance.
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Figure 1: Overview of our model. Using the billions of precomputed phrase representations, we
perform a maximum inner product search between the phrase vectors and an input question vector.
We propose to learn contextualized sparse phrase representations which are also very interpretable.

we concatenate both sparse and dense vectors to encode every phrase in Wikipedia and use maximum
similarity search to find the closest candidate phrase to answer each question. We only substitute
(or augment) the baseline sparse encoding which is entirely based on frequency-based embedding
(tf-idf) with our contextualized sparse representation (COSPR). Our empirical results demonstrate
its state-of-the-art performance in open-domain QA datasets, SQUADOPEN and CURATEDTREC.
Notably, our method significantly outperforms DENSPI (Seo et al., 2019), the previous end-to-
end QA model, by more than 4% with negligible drop in inference speed. Moreover, our method
achieves up to 2% better accuracy and x97 speedup in inference compared to pipeline (retrieval-
based) approaches. Our analysis particularly shows that fine-grained sparse representation is crucial
for doing well in phrase retrieval task. In summary, the contributions of our paper are:

1. we show that learning sparse representations for embedding lexically important context
words of a phrase can be achieved by contextualized sparse representations,

2. we introduce an efficient training strategy that leverages the kernelization of the sparse
inner-product space, and

3. we achieve the state-of-the-art performance in two open-domain QA datasets with at least
x97 faster inference time.

2 RELATED WORK

Open-domain question answering Most open-domain QA models for unstructured texts use a
retriever to find documents to read, and then apply a reading comprehension (RC) model to find
answers (Chen et al., 2017; Wang et al., 2018a; Lin et al., 2018; Das et al., 2019; Lee et al., 2019;
Yang et al., 2019; Wang et al., 2019). To improve the performance of the open-domain question an-
swering, various modifications have been studied to the pipelined models which include improving
the retriever-reader interaction (Wang et al., 2018a; Das et al., 2019), re-ranking paragraphs and/or
answers (Wang et al., 2018b; Lin et al., 2018; Lee et al., 2018; Kratzwald et al., 2019), learning
end-to-end models with weak supervision (Lee et al., 2019), or simply making a better retriever and
a reader model (Yang et al., 2019; Wang et al., 2019). Due to the pipeline nature, however, these
models inevitably suffer error propagation from the retrievers.

To mitigate this problem, Seo et al. (2019) propose to learn query-agnostic representations of phrases
in Wikipedia and retrieve phrases that best answers a question. While Seo et al. (2019) have shown
that encoding both dense and sparse representations for each phrase could keep the lexically impor-
tant words of a phrase to some extent, their sparse representations are based on static tf-idf vectors
which have globally the same weight for each n-gram.
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Phrase representations In NLP, phrase representations can be either obtained in a similar man-
ner as word representations (Mikolov et al., 2013), or by learning a parametric function of word
representations (Cho et al., 2014). In extractive question answering, phrases are often referred to as
spans, but most models do not consider explicitly learning phrase representations as these answer
spans can be obtained by predicting only start and end positions in a paragraph (Wang & Jiang, 2017;
Seo et al., 2017). Nevertheless, few studies have focused on directly learning and classifying phrase
representations (Lee et al., 2017) which achieve strong performance when combined with attention
mechanism. In this work, we are interested in learning query-agnostic sparse phrase representations
which enables the precomputation of re-usable phrase representations (Seo et al., 2018).

Sparse representations One of the most basic sparse representations is the bag-of-words mod-
eling, and recent works often emphasize the use of bag-of-words models as strong baselines for
sentence classification and question answering (Joulin et al., 2017; Weissenborn et al., 2017). tf-idf
is another good example of sparse representations that is used for document retrieval, and is still
widely adopted both in IR and QA community. Our work could be seen as an attempt to build a
trainable tf-idf model for phrase (n-gram) representations, which should be more fine-grained than
paragraphs or documents. There have been some attempts in IR that learn sparse representations of
documents for duplicate detection (Hajishirzi et al., 2010), inverted indexing (Zamani et al., 2018),
and more. Unlike previous works, however, our method does not require hand-engineered features
for sparse n-grams while keeping the original vocabulary space. In NLP, there are some works on
training sparse representations specifically designed for improving interpretability of word repre-
sentations (Faruqui et al., 2015; Subramanian et al., 2018), but they lose an important role of sparse
represenations, which is keeping the exact lexical information, as they are trained by sparsifying
dense representations of a higher (but much lower than V ) dimension.

3 BACKGROUND: OPEN-DOMAIN QA THROUGH PHRASE RETRIEVAL

Open-Domain QA We primarily focus on open-domain QA on unstructured data where the an-
swer is a text span in the corpus. Formally, given a set of K documents x1, . . . ,xK and a question
q, the task is to design a model that obtains the answer â by

â = argmax
xk

i:j

F (xk
i:j , q),

where F is the score model to learn and xk
i:j is a phrase consisting of words from the i-th to the

j-th word in the k-th document. Typically, the number of documents (K) is in the order of millions
for open-domain QA (e.g. 5 million for English Wikipedia), which makes the task computationally
challenging. Pipeline-based methods typically leverage a document retriever to reduce the number
of documents to read, but they suffer from error propagation when wrong documents are retrieved
and can be slow if the reader model is computationally cumbersome.

Open-domain QA with Phrase Encoding and Retrieval As an alternative, phrase-retrieval ap-
proaches (Seo et al., 2018; 2019) mitigate this problem by directly accessing all phrases in K docu-
ments by decomposing F into two functions,

â = argmax
xk

i:j

F (xk
i:j , q) = argmax

xk
i:j

Hx(x
k
i:j) ·Hq(q)

where · denotes inner product operation. Unlike running a complex reading comprehension model in
pipeline-based approaches, Hx query-agnostically encode (all possible phrases of) each document
just once, so that we just need to compute Hq (which is very fast) and perform similarity search on
the phrase encoding (which is also fast). Seo et al. (2019) have shown that encoding each phrase with
a concatenation of dense and sparse representations is effective, where the dense part is computed
from BERT (Devlin et al., 2019) and the sparse part is obtained from the tf-idf vector of the document
and the paragraph of the phrase. We briefly describe how the dense part is obtained below.

Dense Representation Assuming that the document x has N words as x1, . . . , xN , Seo et al.
(2019) use BERT (Devlin et al., 2019) to compute contextualized representation of each word as
h1, . . . ,hN = BERT(x1, . . . , xN ). Based on the contextualized embeddings, we obtain dense
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phrase representations as follows: We split each hi ∈ Rd into four parts [h1
i ,h

2
i ,h

3
i ,h

4
i ] where

h1
i ,h

2
i ∈ Rdse and h3

i ,h
4
i ∈ Rdc (hence d = 2dse + 2dc). Then each phrase xi:j is densely

represented as follows:
hi:j = [h1

i ,h
2
j ,h

3
i · h4

j ] ∈ R2dse+1 (1)

where · denotes inner product operation. h1
i and h2

j are start/end representations of a phrase, and
the inner product of h3

i and h4
j is used for computing coherency of the phrase. Refer to Seo et al.

(2019) for details; we mostly reuse its architecture.

4 SPARSE ENCODING OF PHRASES

Sparse representations are often suitable for keeping the precise lexical information present in the
text, complementing dense representations that are often good for encoding semantic and syn-
tactic information. While the sparsification of dense word embeddings has been explored previ-
ously (Faruqui et al., 2015), its main limitations are that (1) it starts from the dense embedding
which might have already lost rich lexical information, and (2) its cardinality is in the order of thou-
sands at max, which we hypothesize is too small to encode sufficient information. Our work hence
focuses on creating the sparse representation of each phrase which is not bottlenecked by dense
embedding and is capable of increasing the cardinality to billion-scale without much computational
cost.

4.1 WHY DO WE NEED TO LEARN SPARSE REPRESENTATIONS?

Suppose we are given a question “How many square kilometres of the Amazon forest was lost by
1991?” and the target answer is in the following sentence,

Between 1991 and 2000, the total area of forest lost in the Amazon rose from
415,000 to 587,000 square kilometres (160,000 to 227,000 sq mi).

To answer the question, the model should know that the target answer (415,000) corresponds to the
year 1991 while the (confusing) phrase 587,000 corresponds to the year 2000, which requires syn-
tactic understanding of English parallelism. The dense phrase encoding is likely to have a difficulty
in precisely differentiating between 1991 and 2000 since it needs to also encode several different
kinds of information. Window-based tf-idf would not help either because the year 2000 is closer
(in word distance) to 415,000. This example illustrates the strong need to create an n-gram-based
sparse encoding that is highly syntax- and context-aware.

4.2 CONTEXTUALIZED SPARSE REPRESENTATIONS

Our sparse model, unlike pre-computed sparse embeddings such as tf-idf, dynamically computes the
weight of each n-gram that depends on the context. Intuitively, for each phrase, we want to compute
a positive weight for each n-gram near the phrase depending on how important the n-gram is to the
phrase.

Sparse Representation Sparse representation of each phrase is also obtained as the concatenation
of its start word’s and end word’s sparse embedding, i.e. si:j = [sstart

i , send
j ]. This way, similarly to

how the dense phrase embedding is obtained, we can efficiently compute them without explicitly
enumerating all possible phrases.

We obtain each (start and end) sparse embedding in the same way (with unshared parameters), so we
just describe how we obtain the start sparse embedding here and omit the superscript ‘start’. Given
the contextualized encoding of each document H = [h1, . . . ,hN ] ∈ RN×d, we obtain its (start or
end) sparse encoding S = [s1, . . . , sN ] ∈ RN×F by

S = ReLU
(QK>√

d

)
F ∈ RN×F (2)

where Q,K ∈ RN×d are query, key matrices obtained by applying a (different) linear transforma-
tion on H (i.e., using WQ,WK : RN×d → RN×d), and F ∈ RN×F is an one-hot n-gram feature
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representation of the input document x. That is, for instance, if we want to encode unigram (1-gram)
features, Fi will be simply a one-hot representation of the word xi, and F will be equivalent to the
vocabulary size. Note that F will be very large, so it should always exists as an efficient sparse
matrix format (e.g. csc) and one should not explicitly create its dense form. We also discuss how
we can leverage it during training in an efficient manner in Section 4.3.

Note that Equation 2 is similar to the scaled dot-product self-attention (Vaswani et al., 2017), with
two key differences that (1) ReLU instead of softmax is used, and (2) a sparse matrix F instead
of (dense) value matrix is used. In fact, our sparse embedding is related to attention mechanism
in that we want to compute how important each n-gram is for each phrase’s start and end word.
Intuitively, si contains a weighted bag-of-ngram representation where each n-gram is weighted by
its relative importance on each start or end word of a phrase. Unlike attention mechanism whose
role is to summarize the target vectors via weighted summation (thus softmax is used, which sums
up to 1), we do not perform the summation and directly output the unnormalized attention weights
to a large sparse embedding space. In fact, we experimentally observe that ReLU is more effective
than softmax for this objective.

Since we want to handle several different sizes of n-grams, we create the sparse encoding S for
each n-gram and concatenate the resulting sparse encodings. That is, let Sn be the sparse encoding
for n-gram, then the final sparse encoding is the concatenation of different n-grams we consider.
In practice, we experimentally find that unigram and bigram are sufficient for most use cases; in
this case, the sparse vector for the (start) word xi will be si = [s1i , s

2
i ]. We do not share linear

transformation parameters for across different n-grams. Note that this is also analogous to multiple
attention heads in Vaswani et al. (2017).

Question Encoding For a question q = [CLS], . . . , qM where [CLS] denotes a special to-
ken for BERT inputs, contextualized question representations are computed in a similar way
(h′[CLS], . . .h

′
M = BERT([CLS], . . . , qM )). We share the same BERT used for the phrase en-

coding. We compute sparse encodings on the question side (s′ ∈ RF ) in a similar way to the
document side, with the only difference that we use the [CLS] token instead of start and end words
to represent the entire question. Linear transformation weights are not shared.

4.3 TRAINING

Kernel function As training phrase encoders on the whole Wikipedia is computationally pro-
hibitive, we use training examples from an extractive question answering dataset (SQuAD) to train
our encoders. Given a pair of question q and a golden document x (a paragraph in the case of
SQuAD), we first compute the dense logit of each phrase xi:j by li,j = hi:j · h′.
Unlike Seo et al. (2019), each phrase’s sparse embedding is also trained, so it needs to be con-
sidered in the loss function. We define the sparse logit for phrase xi:j as lsparse

i,j = si:j · s′[CLS] =

sstart
i ·s′

start
[CLS]+send

j ·s′
end
[CLS]. For brevity, we describe how we compute the first term sstart

i ·s′
start
[CLS] cor-

responding to the start word (and dropping the superscript ‘start’); the second term can be computed
in the same way.

sstart
i · s′start

[CLS] = ReLU
(QK>√

d

)
i
F

(
ReLU

(Q′K′>√
d

)
[CLS]

F′
)>

where Q′,K′ ∈ RM×d,F′ ∈ RM×F denote the question side query, key, and n-gram feature
matrices, respectively. We can efficiently compute it if we precompute FF′

> ∈ RN×M . Note that
FF′

> can be considered as applying a kernel function, i.e. K(F,F′) = FF′
> where its (i, j)-th

entry is 1 if and only if n-gram at i-th position of the context is equivalent to j-th n-gram of the
question, which can be efficiently computed as well. One can also think of this as kernel trick (in
the literature of SVM (Cortes & Vapnik, 1995)) that allows us to compute the loss function without
explicit mapping.

The loss to minimize is computed from the negative log likelihood over the sum of the dense and
sparse logits:

L = −(li∗,j∗ + lsparse
i∗,j∗ ) + log

∑
i,j

exp(li,j + lsparse
i,j ) (3)
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where i∗, j∗ denote the true start and end positions of the answer phrase. While the loss above is
an unbiased estimator, in practice, we adopt early loss summation as suggested by Seo et al. (2019)
for larger gradient signals in early training. Additionally, we also add dense-only loss that omits the
sparse logits (i.e. original loss in Seo et al. (2019)) to the final loss, in which case we find that we
obtain higher-quality dense phrase representations.

Negative sampling We train our model on SQuAD v1.1 which always has a positive paragraph
that contains the answer. To learn robust phrase representations, we concatenate negative paragraphs
to the original SQuAD paragraphs. To each paragraph x, we concatenate the paragraph xneg which
was paired with the question whose dense representation h′neg is most similar to the original dense
question representation h′, following Seo et al. (2019). Note the difference, however, that we
concatenate the negative example instead of considering it as an independent example with no-
answer option Levy et al. (2017). During training, we find that adding tf-idf matching scores on the
word-level logits of the negative paragraphs further improves the quality of sparse representations as
our sparse models have to give stronger attentions to positively related words in this biased setting.

5 EXPERIMENTS

5.1 DATASETS

We use two popular open-domain QA datasets to evaluate our model: SQUADOPEN and CURAT-
EDTREC. SQUADOPEN is the open-domain version of SQUAD (Rajpurkar et al., 2016). We use
87,599 examples with the golden evidence paragraph to train our encoders, and use 10,570 QA pairs
from development set to test our model, as suggested by Chen et al. (2017). CURATEDTREC con-
sists of question-answer pairs from TREC QA (Voorhees et al., 1999) constructed based on real user
queries. We use 694 test set QA pairs for testing our model. Note that we only train on SQuAD
and test on both SQuAD and CuratedTREC, relying on the generalization ability of our model for
zero-shot inference on CuratedTREC. This is in a clear contrast to previous work that utilize dis-
tant supervision (Chen et al., 2017) or weak supervision (Lee et al., 2018; Min et al., 2019) on
CuratedTREC.

5.2 IMPLEMENTATION DETAILS

We use and finetune BERTLARGE for our encoders. We use BERT vocabulary which has 30522
unique tokens based on byte pair encodings. As a result, we have F = 30522 when using unigram
feature for F, and F ≈ 1B when using both uni/bigram features. We do not finetune the word
embedding during training. We pre-compute and store all encoded phrase representations of all
documents in Wikipedia (more than 5 million documents). It takes 600 GPU hours to index all
phrases in Wikipedia. Each phrase representation has 2dse + 2F + 1 dimensions. We use the same
storage reduction and search techniques by Seo et al. (2019). For storage, the total size of the index
is 1.3 TB including unigram and bigram sparse representations. For search, we either perform dense
search first and then rerank with sparse scores (DFS) or perform sparse search first and rerank with
dense scores (SFS), and also consider a combination of both (Hybrid).

Constraining sparse encoding We find that injecting some prior domain knowledge to avoid
spurious matchings allows us to learn better sparse representations. For example, in machine reading
comprehension, answer phrases do not occur as an exact phrase in questions (e.g., the phrase “August
4, 1961” would not appear in the question “When was Barack Obama born?”). Therefore, we can
zero the elements in the diagonal axis of QK> ∈ RN×N in Equation 2 which correspond to the
attention values of target phrase itself. Additionally, we mask special tokens in BERT such as
[SEP] or [CLS] to have zero weights as matching of these tokens means nothing.

5.3 RESULTS

We evaluate the effectiveness of COSPR by augmenting DENSPI (Seo et al., 2019) with contex-
tualized sparse representations (DENSPI+COSPR). We extensively compare the model with the
original DENSPI and previous pipeline-based QA models.
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Model SQUADOPEN CURATEDTREC

EM F1 Exact Match s/Q
DrQA (Chen et al., 2017) 29.8** - 25.4* 35
R3 (Wang et al., 2018a) 29.1 37.5 28.4* -
Paragraph Ranker (Lee et al., 2018) 30.2 - 35.4* -
Multi-Step-Reasoner (Das et al., 2019) 31.9 39.2 - -
BERTserini (Yang et al., 2019) 38.6 46.1 - 115
ORQA (Lee et al., 2019) 20.2 - 30.1 -
Multi-passage BERT†† (Wang et al., 2019) 53.0 60.9 - -
DENSPI (Seo et al., 2019) 36.2 44.4 31.6† 0.81
DENSPI+COSPR(Ours) 40.7 49.0 35.7† 1.19
* Trained on distantly supervised training data.
** Trained on multiple datasets
† No supervision using target training data.
†† Concurrent work.

Table 1: Results on open-domain question answering datasets.

Model SQUAD1/100 SQUAD1/10

Ours (DFS) 60.0 51.6
− COSPR 55.9 (−4.1) 48.4 (−3.2)
− doc./para. tf-idf 58.1 (−1.9) 50.9 (−0.7)
− tf-idf bias training 58.1 (−1.9) 49.1 (−2.5)
+ trigram sparse 58.0 (−2.0) 49.8 (−1.8)

Model SQUADOPEN CURATEDTREC

DENSPI + COSPR DENSPI + COSPR
SFS 33.3 36.9 (+3.6) 28.8 30.0 (+1.2)
DFS 28.5 34.4 (+5.9) 29.5 34.3 (+4.8)
HYBRID 36.2 40.7 (+4.5) 31.6 35.7 (+4.1)

Table 2: Ablations of our model. On the left, we show how each sparse representation contribute
to the performance, and on the right, we show how much gain we obtain from COSPR in different
search strategies. Exact match scores are reported.

Open-domain QA experiments Table 1 shows experimental results on two open-domain question
answering datasets. For DENSPI and ours, we use HYBRID search strategy. On both datasets, our
model with contextualized sparse representations (DENSPI + COSPR) significantly improves the
performance of the phrase-indexing baseline model (DENSPI). Moreover, our model outperforms
BERT-based pipeline approaches such as BERTserini (Yang et al., 2019) while being almost two
orders of magnitude faster. We expect much bigger speed gaps between ours and other pipeline
methods as most of them put additional complex components to the original pipelined methods.

On CURATEDTREC, which is constructed from real user queries, our model also achieves the state-
of-the-art performance. Even though our model is only trained on SQUAD (i.e. zero-shot), it
outperforms all other models which are either distant- or semi-supervised with at least 29x faster
inference. Note that our method is orthogonal to end-to-end training (Lee et al., 2019) or weak
supervision (Min et al., 2019) methods and future work can potentially benefit from these.

Ablation study Table 2 (left) shows the effect of contextualized sparse representations by com-
paring different variants of our method on SQUADOPEN. For these evaluations, we use a subset of
Wikipedia dump (1/100, 1/10 scale, approximately 50K, 500K documents, respectively). We eval-
uate the effect of removing (1) COSPR, (2) tf-idf sparse representations, (3) tf-idf bias on negative
sample training (section 4.3), and (4) and adding trigram features to our sparse representation (i.e.,
si = [s1i , s

2
i , s

3
i ]). One interesting observation is that adding trigram features in our sparse represen-

tations is worse than using uni-/bigram representations only. We suspect that the model becomes too
dependent on trigram features, which means we might need a stronger regularization for high-order
n-gram features.

In Table 2 (right), we show how we consistently improve over DENSPI when COSPR is added
in different search strategies. Note that on SQUADOPEN, SFS is better than DFS as questions in
SQUAD are created by turkers given particular paragraphs, whereas on CURATEDTREC where the
questions more resemble real user queries, DFS outperforms SFS showing the effectiveness of
dense search when not knowing which documents to read. Similar observation was pointed by Lee
et al. (2019) who showed different performance tendencies between two datasets, but as we are using
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Context (phrase), Question Sparse rep. Top n-gram (weight)

Context: Between 1991 and 2000, the total area of forest lost in
the Amazon rose from 415,000 to 587,000 square kilometres.

tf-idf amazon rose (9.65), . . . , 1991 (2.26), 2000 (1.85)
COSPR 1991 (1.65), amazon (0.82), . . . , 2000 (0.28)

Context: Amongst these include 5 University of California
campuses (. . . ); 12 California State University campuses (. . . );

tf-idf 12 california (8.80), 5 university (8.04)
COSPR california state (1.94), state university (1.77)

Question: Who did Newton get a pass to in the Panther starting
plays of Super Bowl 50?

tf-idf starting plays (9.31), panther starting (9.14)
COSPR 50 (2.20), newton (1.62), super bowl (1.52)

Table 3: Analysis of COSPR compared to static tf-idf vectors. Given a context or a question (left),
we list top n-grams weighted by tf-idf or COSPR (right).

Q: When is Independence Day?

DrQA [Independence Day (1996 film)] Independence Day is a 1996 American science fiction ...
[Independence Day: Resurgence] It is the sequel to the 1996 film “Independence Day”.

DENSPI+COSPR [Independence Day (India)] ... is annually observed on 15 August as a national holiday in India.
[Independence Day (Pakistan)] (...), observed annually on 14 August, is a national holiday ...

Q: What was the GDP of South Korea in 1950?

DRQA [Economy of South Korea] In 1980, the South Korean GDP per capita was $2,300.
DENSPI [Economy of South Korea] In 1980, the South Korean GDP per capita was $2,300.
DENSPI + COSPR [Developmental State] South Korea’s GDP grew from $876 in 1950 to $22,151 in 2010.

Table 4: Prediction samples from DrQA, DENSPI, and DENSPI+COSPR. Each sample shows
[document title], context, and predicted answer.

both dense and sparse representations, our model can achieve state-of-the-art performances on both
datasets.

5.4 ANALYSIS

Interpretability of sparse representations Sparse representations often have better interpretabil-
ity than dense representations as each dimension of a sparse vector corresponds to a specific word.
We compare tf-idf vectors and COSPR (uni/bigram) by showing top weighted n-grams in each rep-
resentation. Note that the scale of weights in tf-idf vectors is normalized in open-domain setups
to match the scale between tf-idf vectors and dense vectors. We observe that tf-idf vectors usually
assign high weights on infrequent (often meaningless) n-grams, while COSPR focuses on contex-
tually important entities such as 1991 for 415,000 or californio state, state university for 12. Our
sparse question representation also learns meaningful n-gram weights compared to tf-idf vectors.

Prediction samples Table 4 shows the outputs of three OpenQA models: DrQA (Chen et al.,
2017), DENSPI (Seo et al., 2019), and our DENSPI+COSPR. DENSPI+COSPR is able to retrieve
various correct answers from different documents, and it often correctly answers questions with
specific dates or numbers compared to DENSPI showing the effectiveness of learned sparse repre-
sentations.

6 CONCLUSION

In this paper, we demonstrate the effectiveness of contextualized sparse vectors, COSPR, for encod-
ing phrase with rich lexical information in open-domain question answering. We efficiently train our
sparse representations by kernelizing the sparse inner product space. Experimental results show that
our fast open-domain QA model that augments the previous model (DENSPI) with learned sparse
representation (COSPR) outperforms previous open-domain QA models, including recent BERT-
based pipeline models, with two orders of magnitude faster inference time. Future work includes
extending the contextualized sparse representations to other challenging QA settings such as multi-
hop reasoning and building a full inverted index of the learned sparse representations (Zamani et al.,
2018) for more powerful Sparse-First Search (SFS).
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