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ABSTRACT

Real-world question answering systems often retrieve potentially relevant doc-
uments to a given question through a keyword search, followed by a machine
reading comprehension (MRC) step to find the exact answer from them. In this
process, it is essential to properly determine whether an answer to the question
exists in a given document. This task often becomes complicated when the ques-
tion involves multiple different conditions or requirements which are to be met
in the answer. For example, in a question “What was the projection of sea level
increases in the fourth assessment report?”, the answer should properly satisfy
several conditions, such as “increases” (but not decreases) and “fourth” (but not
third). To address this, we propose a neural question requirement inspection model
called NeurQuRI that extracts a list of conditions from the question, each of which
should be satisfied by the candidate answer generated by an MRC model. To check
whether each condition is met, we propose a novel, attention-based loss func-
tion. We evaluate our approach on SQuAD 2.0 dataset by integrating the proposed
module with various MRC models, demonstrating the consistent performance im-
provements across a wide range of state-of-the-art methods.

1 INTRODUCTION

Machine reading comprehension (MRC), where a machine understands a given document and an-
swers a question, is a challenging task, but it has a significant impact in real-world applications such
as dialog systems. In practice, given a user-initiated question, potentially relevant paragraphs (often
called contexts) are first retrieved from a search engine, which may or may not contain an actual
answer. In this case, it is important for an MRC model (or in short, a reader) to be able to determine
whether the retrieved context contains the answer before actually predicting the answer.

In most previous MRC tasks and datasets, such an answerability issue was out of scope as the pro-
vided context was guaranteed to contain an answer for a given question. Recently, a new dataset
called SQuAD 2.0 (Rajpurkar et al., 2018) was released, containing instances with unanswerable
questions for a given context, so that models can be properly trained to classify this case. Addition-
ally, this dataset also contains information about plausible answers in the context when the question
is unanswerable, which can be used to prevent our model from wrongly predicting it as an answer.

Previously, Liu et al. (2018) addressed the problem of classifying unanswerable cases by adding an
auxiliary no-answer classifier to the last layer of the MRC model. Clark & Gardner (2018) tackled
answerability classification through a joint softmax layer of the answerability score as well as the
scores of all possible answer spans. Hu et al. (2019) attempted to verify the question against the
sentence(s) containing the candidate answer. The answerability score from the verifier and the score
from the reader were combined to generate the final score of having no answer.

However, these existing approaches do not pinpoint where the mismatch occurs between the question
and the candidate answer in the unanswerable case, thus being prone to choosing a plausible but
wrong answer. This task often becomes tricky when particular conditions from the question are
not met. For example, in a question “What was the projection of sea level increases in the fourth
assessment report?”, the answer should properly satisfy several conditions, such as “increases” (but
not decreases) and “fourth” (but not third).
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Figure 1: Overview of Neural Question Requirement Inspector (NeurQuRI). n indicates the order
of processes.

Motivated by this, we propose a novel neural inspector model that forms a list of conditions from
the question, each of which should be satisfied by the candidate answer generated by the reader. To
check whether each condition is met, we leverage and extend the idea proposed by Kiddon et al.
(2016), which introduced a recurrent unit that records the used ingredients of cooking recipes by
accumulating an attention mechanism during the generation of the recipe in a natural language text.
They encourage the model to use all the ingredients by the end of the recipe text generation.

Extending this idea, we present a novel condition-checking module that determines whether the
candidate answer satisfies all the conditions from the question. Furthermore, we propose a novel
regularization method that can properly train our condition-checking model, leading to a correct
candidate answer. Finally, we evaluate our proposed model on SQuAD 2.0 dataset. Our experimental
results show consistent improvements across a wide range of MRC models and also demonstrate the
explainability of our model regarding which conditions of a given question are not met, or a reason
why our model classified the question as unanswerable in a given context.

2 PROPOSED METHOD

This section discusses the details of our proposed method called Neural Question Requirement In-
spector (NeurQuRI). As shown in Fig. 1-(A), NeurQuRI calculates answerability by taking a can-
didate answer and the question as input. To create the candidate answer, the reader takes a context
(or paragraphs) and a question as input (Fig. 1- 1 ), chooses the most probable candidate answer
span (Fig. 1- 2 , 3 ) and gives its contextualized word-level representation as input to NeurQuRI
(Fig. 1- 4 ). NeurQuRI then determines answerability by checking whether all conditions from the
question are met by the candidate answer (Fig. 1- 5 , 6 ). Intuitively, a wrong candidate answer will
not satisfy at least one condition given by the question. To develop this idea, we propose a novel
architecture for the inspector encoder as well as a condition satisfaction loss to properly train it.

2.1 NEURAL QUESTION REQUIREMENT INSPECTOR (NEURQURI)

In NeurQuRI, inspired by the idea of using an ingredient word as a condition in the checklist (Kid-
don et al., 2016), each question word works as a condition to be satisfied by a candidate answer.
Additionally, we use the question itself as the pseudo-answer that trivially contains all the words in
the question and thus exemplifies an indication of full satisfaction during training. NeurQuRI cre-
ates and compares an inspection vector of the candidate answer with that of the question to check
whether all the word-level meanings in the question are covered in the candidate answer.

NeurQuRI is largely composed of two parts: an inspection encoder and an inspection comparator.
The inspection encoder encodes an input embedding sequence (seq), either a candidate answer or a
question, into an inspection vector hseq→q by using the question’s condition satisfaction with the in-
put embedding sequence (seq). Using candidate answer (x) and question (q) as input sequence (seq),
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Figure 2: Architecture of our inspection encoder. Frame box corresponds to our extended part
from the original gated recurrent unit (GRU).

we calculate two inspection vectors, hx→q and hq→q (Fig. 1- 5 ). Next, the inspection comparator
compares these two vectors and finally computes an answerability score (Fig. 1- 6 ).

Inspection Encoder. Let us denote a sequence of contextual embeddings of question words as Q =
{qi}mi=1 ∈ Rm×dq and that of candidate answer words as X = {xt}kt=1 ∈ Rk×dx , where dq and
dx are the input dimensions of question and candidate answer words, respectively, and m and k are
their respective sequence lengths. GivenQ andX , the inspection encoder generates (1) an inspection
vector h, which encodes information on the conditions given by Q that are satisfied by X , and (2)
the cumulative satisfaction score vector a ∈ Rm, each element of which indicates how much the
condition corresponding to the question word is satisfied, as a value between zero and one. In detail,
we extend a gated recurrent unit (GRU) (Cho et al., 2014), which sequentially takes a candidate
answer word xt at time t and generates an inspection vector ht and the cumulative satisfaction score
vector at, i.e.,

at,ht = InspectionEnc(xt,at−1,ht−1, Q),

where vectors a and h are initialized with zeros.

First, we linearly transform Q and X as Q̃ = {q̃i}mi=1 ∈ Rm×d and X̃ = {x̃t}kt=1 ∈ Rk×d to have
the target dimension d in common. We then calculate Q̃newt = {q̃newt,i }mi=1, which represents unmet
conditions by X from Q until time t, i.e.,

Q̃newt = ((1m − at−1)⊗ 1d) ◦ Q̃ ∈ Rm×d,

where ◦ indicates element-wise multiplication and ⊗1d stacks the source d times (Fig. 2- A ).

Second, we multiply the t-th word vector of a candidate answer, x̃t, with a gating vector gt so that
we can selectively ignore part of information contained in x̃t, yielding the vector x̃gt as

gt = σ(Wgx̃t + Ught−1) ∈ Rd

x̃gt = gt ◦ x̃t ∈ Rd,

where Wg ∈ Rd×d and Ug ∈ Rd×d are linear transformation matrices and σ represents a sigmoid
function (Fig. 2- B ). Ignoring such partial information prevents our model from considering the
redundant information in the previous candidate answer words.

Third, we compute the satisfaction score at time step t, αt, by using x̃gt as a query vector and each
question word (or condition) vector in Q̃newt , i.e.,

(αt)i = σ(fα([x̃
g
t ; q̃

new
t,i ; x̃gt − q̃newt,i ; x̃gt ◦ q̃newt,i ])),

where fα is a fully connected unit with two hidden layers of dimensions d/2 and 1, respectively
(Fig. 2- C ). We used independent sigmoid outputs here instead of integrated softmax outputs to
allow multiple high satisfaction scores for all met conditions. For example, word ‘Lincoln’ in the
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candidate answer can simultaneously satisfy the words ‘Who’ and ‘President’ in the question. We
obtain the vector et as the information of the satisfied condition (Fig. 2- D ) by max-pooling over
Q̃newt multiplied with the satisfaction score α, i.e.,

et = max-pooling({αiq̃newt,i }mi=1) ∈ Rd.

Finally, we use et as an additional feature to compute the update vector in GRU, h̃t (Fig. 2- E ) and
obtain the inspection vector ht as

zt = σ(Wzx̃t + Uzht−1) ∈ Rd

rt = σ(Wrx̃t + Urht−1) ∈ Rd

h̃t = tanh(Whx̃t + Uh(rt ◦ ht−1) + Vhet) ∈ Rd

ht = (1− zt) ◦ ht−1 + zt ◦ h̃t ∈ Rd,
where zt and rt are an update and a reset gate, respectively, and Wz , Uz , Wr, Ur, Wh, Uh, Vh
∈ Rd×d. We also update the cumulative satisfaction score vector at (Fig. 2- F ), with the current
satisfaction score vector α as

at = min(at−1 + α,1m) ∈ Rm,
where 1m is an m dimensional ones vector so that each element of at is clipped between 0 and 1.
at represents how much its corresponding question word as a condition is satisfied by the candidate
answer.

Inspection Comparator. The inspection comparator compares the inspection vector of the candi-
date answer with the inspection vector of the question itself to check whether all the word-level
meanings in the question are involved in the candidate answer. We use the question itself as the
pseudo-answer that trivially contains all the words in the question. To be specific, we compare the
‘candidate-answer-to-question’ inspection vector hx→q with the ‘question-to-question’ inspection
vector hq→q , where the latter can be considered as a fully satisfied reference to the question. We
compare these vectors using a fully-connected layer to generate an answerability score.

First, we calculate the inspection vector ht and the question’s satisfaction score at with respect to
the question representation Q, i.e.,

ax→qt ,hx→qt = InspectionEnc(xt,a
x→q
t−1 ,h

x→q
t−1 , Q)

aq→qt ,hq→qt = InspectionEnc(qt,a
q→q
t−1 ,h

q→q
t−1 , Q).

Afterwards, we compute the answerability score zi by combining them, i.e.,
zi = fβ([h

x→q
Tx

;hq→qTq
;hx→qTx

− hq→qTq
;hx→qTx

◦ hq→qTq
),

where Tx
and Tq

indicate the last time steps of the two sequences, respectively, and fβ is a fully
connected unit with two hidden layers that have have dimensions as d/2 and 1, respectively.

2.2 LOSS FUNCTION FOR TRAINING NEURQURI

MRC datasets such as SQuAD 2.0 generally contains the answerability label, which we call φ,
for a pair of a given question and a context (e.g., φ = 1 means unanswerable). However, NeurQuRI
predicts the answerability given as input an arbitrary, candidate answer span, which is contextualized
by the given context, as well as the question. In this new setting, the label φd for such input should
be ideally set as answerable (φd = 0), only if (1) the given question is answerable from the context
(φ = 0) and (2) the candidate answer span exactly matches the ground-truth answer span.

However, we found it an overly strict condition detrimental in the overall accuracy. For example,
given a ground-truth answer span “The American president, Abraham Lincoln”, the candidate an-
swer span “president, Abraham Lincoln” should perhaps be treated as properly answering the given
question. Thus, by relaxing the above strategy, we consider the candidate answer span being an-
swerable as long as the candidate answer span contains at least a particular fraction of ground truth
answer words, where such a fraction can be viewed as a recall measure, i.e.,

φd =


1, if φ = 1

1, if φ = 0 and Recall(xspan, aspan) ≤ η
0, if φ = 0 and Recall(xspan, aspan) > η,
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where η is a threshold of the minimum recall score to be answerable. We set η as 0.5 in our experi-
ments.

Answerability Classification Loss. To calculate the answerability classification loss Li, we use a
cross-entropy loss between NeurQuRI’s answerability score zi and dynamically modified ground
truth φd, i.e.,

Li = −φdlog(σ(zi))− (1− φd)log(1− σ(zi)).

Satisfaction Score Loss. We intend NeurQuRI to work as a checklist over conditions given in the
question. This loss is designed to make a candidate answer fail to satisfy at least one condition of
a question in unanswerable cases, i.e., to have at least one small value in the ‘candidate-answer-to-
question’ satisfaction score vector ax→qT , but otherwise to have all high values. Also, all scores in the
‘question-to-question’ satisfaction score vector aq→qT are enforced to have all high values because
the question itself should satisfy all conditions of the question, by adding this to the loss with the
weight γ. Afterwards, we calculate the final satisfaction score loss La as

La=−γlog(min(aq→qT ))−φdlog(1−min(ax→qT ))− (1− φd)log(min(ax→qT )),

where we set γ as 0.5 in our experiments.

Inspector-Reader Joint Normalization. Similar to Clark & Gardner (2018), we jointly normalize
the answerability score, Lj , of NeurQuRI and the span prediction score from the reader as

Lj = −log

(
φde

zi + (1− φd)esa+ga
ezi +

∑n
i=1

∑n
j=1 e

si+gj

)
,

where si + gj indicates the summation of the prediction score of the answer span from the start and
the end token indices, i and j, respectively, in the context with length n, and sa and ga indicate scores
for the position of the ground truth start and end indices, respectively. In this manner, NeurQuRI’s
answerability score can overcome a wrongly predicted candidate answer from the reader while pe-
nalizing the reader. Finally, the total loss Ltotal is obtained as

Ltotal = λiLi + λaLa + λjLj , (1)
where λi, λa and λj are hyperparameters.

3 EXPERIMENTAL SETUP

Reader. The reader can be any MRC model. We use three popular publicly available reader models:
BERT1 (Devlin et al., 2019), DocQA2 (Clark & Gardner, 2018), and QANet3 (Yu et al., 2018). As
depicted in Fig. 1- n , for each training iteration, the reader first extracts a candidate answer and then
NeurQuRI calculates its loss based on the extracted candidate answer followed by simultaneously
updating NeurQuRI and the reader.

Additionally, we apply two auxiliary loss functions for the reader from previous work to improve
candidate answer prediction. We utilize the loss for normalizing span distribution by an empty
word (Liu et al., 2018) and the independent span loss for plausible answer (Hu et al., 2019) to
boost the reader’s candidate answer selection in unanswerable cases. Details on the auxiliary losses
can be found in our supplemental material.

Benchmark Dataset. We evaluate our model on SQuAD 2.0,4 which contains unanswerable ques-
tions generated by crowd workers for the same paragraphs in SQuAD 1.1 (Rajpurkar et al., 2016).
The training dataset contains 87,599 answerable and 43,498 unanswerable questions. The unanswer-
able questions are created such that a particular span in a context exists as a plausible but incorrect
answer. We evaluate the performance on this dataset using standard metrics, EM and F1.

Implementation Details. We use TensorFlow5 to build the model. We use the pre-trained Large
BERT model using all the official hyperparameters and all hidden dimensions d set as 1024. In par-
ticular, we evaluate our approach combined with BERT on SQuAD 2.0 leaderboard with the batch

1https://github.com/google-research/bert
2https://github.com/allenai/document-qa
3https://github.com/NLPLearn/QANet
4https://rajpurkar.github.io/SQuAD-explorer
5http://www.tensorflow.org
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Table 1: Results reported on SQuAD 2.0 leaderboard.1 All the results are from their own publica-
tions, except for those with a dagger(†), which are reproduced by ourselves. The symbols on the left
indicate the corresponding comparison groups.

Model Dev Set Test Set
EM F1 EM F1

BERT (Large) + NeurQuRI (Batch size 24, ensemble) 81.0 83.9 82.8 85.7
♦ BERT (Large) + NeurQuRI (Batch size 24) 80.0 83.1 81.3 84.3
♣ BERT (Large) + NeurQuRI (Batch size 6) 80.0 82.9 80.6 83.4
♦ BERT (Large) (Devlin et al., 2019) (Batch size 24) 78.7† 81.8† 80.0 83.1
♣ BERT (Large) (Devlin et al., 2019) (Batch size 6) 78.0† 80.9† - -

SLQA+ (Wang et al., 2018) - - 71.5 74.4
RMR + Answer Verifier (Hu et al., 2019) 72.3 74.8 71.7 74.2
Unet (Sun et al., 2018) 70.3 74.0 69.2 72.6

♠ DocQA (ELMo) + NeurQuRI 70.5 73.8 68.8 71.7
SAN (Liu et al., 2018) 69.3 72.2 68.7 71.4

♥ QANet + NeurQuRI 65.3 68.9 - -
♠ DocQA (ELMo) + Joint No-answer (Rajpurkar et al., 2018) 65.1 67.6 63.4 66.3
♥ QANet + Joint No-answer 63.6† 66.7† - -

DocQA + Joint No-answer (Rajpurkar et al., 2018) 61.9 64.8 59.3 62.3
BiDAF + No Answer (Rajpurkar et al., 2018) 59.8 62.6 59.2 62.1
Human Performance 86.3 89.0 86.9 89.5

size of 24, but our ablation studies in Table 2 are performed with the batch size of 6 due to the limited
GPU memory. In DocQA and QANet, we utilize ‘Joint No-answer’ for an answerability classifica-
tion baseline as is used in SQuAD 2.0 (Rajpurkar et al., 2018). For these readers, we use GloVe
300d (Pennington et al., 2014) for word embeddings, along with the batch size of 24 and all hidden
vector dimensions d set as 200. In DocQA, we use ELMo (Peters et al., 2018) for contextualized
embeddings.

For training our model, the hyperparameters (λi, λa, λj) in Eq. equation 1 are set as (1.0, 1.0,
1.0), respectively. We choose these hyperparameters based on the performance of ‘BERT (Large)
+ NeurQuRI’ for the dev set. During inference, we compute the final score of the answerability
by jointly normalizing zi with the span prediction scores. We then follow the SQuAD 2.0 official
evaluation procedure.

After applying NeurQuRI to BERT (Large), the number of parameters increased by 9% (340M to
373M), the computation cost increased by 13% (706B to 803B), and the training speed decreased
by 24% (1.6iter/sec to 1.2iter/sec).

4 QUANTITATIVE ANALYSIS

Main Result. As shown in Table 1, when using BERT (Large), DocQA (with ELMo), and QANet
(without ELMo) as three different readers representing a high-, a medium- and a low-performance
readers, respectively, our NeurQuRI consistently improves the performance on all the cases. For
QANet (Table 1-♥), our approach achieves the F1 score of 68.9 (vs. 66.7) and the EM score of 65.3
(vs. 63.6) on the dev set. For DocQA (Table 1-♠), our approach outperforms the baseline, achieving
the F1 score of 73.8 (vs. 67.6) and the EM score of 70.5 (vs. 65.1) on the dev set, and it achieves
the F1 score of 71.7 (vs. 66.3) and the EM score of 68.8 (vs. 63.4) on the test set. For a recently
proposed reader model called BERT (Table 1-♣), our approach with the batch size of 6 achieves the
F1 score of 82.9 (vs. 80.9) and the EM score of 80.0 (vs. 78.0) on the dev set. The same model with
the batch size set as 24 (Table 1-♦) achieves the F1 score of 83.1 (vs. 81.8) and the EM score of
80.0 (vs. 78.7) on the dev set, and it obtains the F1 score of 84.3 (vs. 83.1) and the EM score of 81.3
(vs. 80.0) on the test set.

Ablation Study on Different Loss Terms. As shown in the ‘Dev Set’ column of Table 2-(a), we
perform an ablation study with different combinations of the loss terms of NeurQuRI on the dev set.
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Table 2: Ablation studies on NeurQuRI. The results are obtained from the dev set in SQuAD 2.0
using BERT (Large), DocQA (ELMo), and QANet as readers.

(a) Ablation study on the proposed losses.

Reader Ltotal += Dev Set
Li La Lj EM F1

Baseline 78.0 80.9
X 79.7 82.7

BERT X X 79.9 82.8
X X X 80.0 82.9

Baseline 65.1 67.6
X 69.5 72.4

DocQA X X 69.6 72.3
X X X 70.5 73.8

Baseline 63.6 66.7
X 64.1 68.3

QANet X X 64.2 68.7
X X X 65.3 68.9

(b) Performance comparison between the cases
with and without stop words in the question before
passing it as an input to NeurQuRI. ACC indicates
answerable classification accuracy.

BERT Dev Set
+ NeurQuRI EM F1 ACC

80.0 82.9 85.6
- Stop words 79.1 82.0 84.7

Table 3: Comparison on the EM, F1 and the answerable classification accuracy between bi-LSTM
and NeurQuRI based on the BERT (Large) reader. The results are obtained from the dev set in
SQuAD 2.0. The size of parameters are kept same on both answerable classification module (33M).

Metric BERT + bi-LSTM BERT + NeurQuRI BERT + bi-LSTM BERT + NeurQuRI
Batchsize 6 6 24 24

EM 79.5 80.0 79.6 80.0
F1 82.3 82.9 82.5 83.1

ACC 82.9 85.6 83.3 86.5

The answerability classification loss Li, the condition satisfaction score loss La, and the inspector-
reader joint normalization Lj all increase the performance consistently for all three reader models.
Although not shown in the table, the performance using only Lj with BERT reader achieves an F1
score of 82.0, and the performance using La + Lj with BERT reader obtains an F1 score of 82.1,
which are low compared to other results including Li.

Ablation Study on Excluding Stop Words. We explore whether we should include stop words,
which are often semantically less meaningful, as part of our conditions to consider in a given ques-
tion. As shown in Table 2-(b), we evaluate ‘BERT (Large) + NeurQuRI’ model by excluding stop
words from the question. In detail, we masked out stop word embedding vectors from the question
embedding matrix before passing it to NeurQuRI. Excluding stop words actually decreases the per-
formance of the EM/F1 score and the answerability classification accuracy. We conjecture the reason
is because the stop words actually contain nontrivial information to determine the answerability of
a given question. For example, Word ‘is’ indicates the present tense while ‘was’ does the past one.
Word ‘above’ specifies clearly different relations from ‘below’. In this respect, we included all the
words of a given question as condition words for NeurQuRI to consider.

Comparison with bi-LSTMs We compare NeurQuRI against other basic DNN layers for answer-
ability classification. We replace NeurQuRI with the simple LSTM (Hochreiter & Schmidhuber,
1997) layer for showing effectiveness of checklist mechanism. As same as applying NeurQuRI to
the reader, we use BERT (Large) as the reader and give the question and candidate answer’s con-
textualized word-level representations as input to the bi-LSTM layer. The final hidden-state vector
and the cell-state vector of the LSTM module are concatenated and passed through a feed-forward
layer to get the answerability score. The number of hidden units of the LSTM module are chosen so
as to keep the same number of extra parameters as that of NeurQuRI’s (33M). All hyperparameters
for the reader are unchanged. As shown in Table 3, NeurQuRI outperforms bi-LSTM on all metrics,
illustrating that the proposed method is superior to traditional approaches given the same amount of
increases in parameters.
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James Hutton is often viewed as the first modern geologist. In 1785 he presented a paper entitled Theory of the Earth to the 

Royal Society of Edinburgh. In his paper, he explained his theory that the Earth must be much older ... (omit) ... which in 

turn were raised up to become dry land. Hutton published a two volume version of his ideas in 1795 (Vol. 1, Vol. 2).

1.00.0 1.00.0

At the begin of the Holocene (~11,700 years ago), the Rhine occupied its Late Glacial valley. As a meandering river, it 

reworked its iceage braidplain. As sea level continued to rise in the Nethelands, the formation of the Holocene Rhine Meuse 

delta began (~8,000 years ago). ... (omit) ... the coastal marine dynamics, such as barrier and tidal inlet formations.

1.00.0 1.00.0

However, already in quantum mechanics there is one "caveat", namely the particles acting onto each other do not only 

possess the spatial, ... (omit) ... Thus in the case of two fermions there is a strictly negative correlation between spatial and 

spin variables, whereas for two bosons (e.g. quanta of electromagnetic waves, photons) the correlation is strictly positive.

1.00.0 1.00.0

Figure 3: Prediction examples of our method, BERT (Large) + NeurQuRI, and its satisfaction score
vector ax→qT over question words by the candidate answer. A yellow-colored text indicates the
candidate answer predicted by the reader.

5 QUALITATIVE ANALYSIS

Fig. 3 presents three unanswerable examples from the dev set, demonstrating the effectiveness of
NeurQuRI in explaining why a question is unanswerable. For these examples, we used the BERT
(Large) as the reader. In these examples, Those words (conditions) rendering the questions unan-
swerable exhibits a low question satisfaction score ax→qT . For each question, we also prepare for
an answerable question by making the smallest changes with the reader’s candidate answer as its
answer.

In the first example containing the question “When did Hutton die?”, the context has no information
about death, and the candidate answer “1795” is the date of “publishing”. Hence the ax→qT score
for “die” is shown to be low (implying an unmet condition). However, using the modified question,
with “die” replaced with “publish”, all scores are shown to be high, implying each condition from the
question is fully satisfied. Similarly, the candidate answers “11,700 years ago” and “for two bosons”
do not satisfy the question’s conditions “end” and “occasionally” in the second and the third exam-
ples, respectively, as properly shown in our model. Correspondingly, after replacing these words, all
condition satisfaction scores become high. These examples clearly demonstrate that NeurQuRI can
reason why our model classified a question as unanswerable in a given context. Additional examples
including failure cases can be found in our supplemental material.

6 RELATED WORK

Reader Model. Given a context guaranteed to have an answer to a question, the state-of-the-art
machine reading comprehension now matches or even surpasses human performance. Wang et al.
(2017) and Clark & Gardner (2018) achieved high performance by using a self-attention mechanism
combined with recurrent neural networks. Yu et al. (2018) improved the performance by leveraging
self-attention in each context-encoding block based on convolution neural networks. Back et al.
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(2018) proposed utilizing external memory based on a dense encoder block with self-attention to
properly encode lengthy documents. Hu et al. (2018) predicted an answer span with a memory-
based answer pointer using a semantic fusion unit across multiple hops, and Devlin et al. (2019)
recently boosted the performance significantly by stacking the self-attention blocks proposed in the
machine translation model (Vaswani et al., 2017). These models are widely utilized as the baseline
for numerous MRC models.

Answerability Prediction Model. Recently, Liu et al. (2018) attempted to solve predicting answer-
ability by appending an empty word token to the context and adding a simple classification layer to
the reader. Sun et al. (2018) used a common encoding vector between the question and the context to
use this vector to verify the candidate answer. However, these methods requires specific adaptation
to work with their own reader models while NeurQuRI shows consistent performance improvement
when simply combined with a wide range of readers.

Similar to our inspection approach, Hu et al. (2019) proposed a verifier network which uses a 12-
layer-stacked Transformer with 150M additional model parameters to check answerability of the
sentence(s) in which the candidate answer occurs. On the contrary, our method only requires 33M
additional model parameters to check answerability of the candidate answer. More importantly, our
method checks the question’s requirements by explicitly comparing question embeddings with the
candidate answer embeddings, allowing our model to explain why a question is classified as unan-
swerable by showing unmet conditions within the question. To this end, unlike Hu et al. (2019) we
also developed an attention-based satisfaction score that allows our model to reveal which words in
the question render it unanswerable.

Neural Checklist. Kiddon et al. (2016) introduced a recurrent unit that records the used ingredients
of cooking recipes by accumulating attention vectors during the generation of the recipe in a nat-
ural language text. They enforce the model to use all the ingredients by the end of the recipe text
generation. Although we borrowed the high-level idea from this model, we designed a new attention
accumulation recurrent module that calculates the attention score while being capable of checking
multiple conditions simultaneously. Additionally, we leverage the output of the recurrent unit to
explain answerability and to derive the satisfaction score, which is not addressed in Kiddon et al.
(2016).

7 CONCLUSIONS

We proposed a novel neural network architecture called Neural Question Requirement Inspector
(NeurQuRI), which determines whether the answer candidate generated by a machine reading com-
prehension model satisfies all the necessary conditions given in the question, in order to determine
the answerability of a given question and a context. We evaluated our model on the SQuAD 2.0
dataset, which shows consistent performance improvement when combining it with a wide range of
state-of-the-art methods. To demonstrate the effectiveness of NeurQuRI, we also presented an abla-
tion study with respect to different loss terms, as well as the satisfaction score examples computed
by NeurQuRI. As long as the question and the answers are encoded with contextual information, we
believe that NeurQuRI can be easily extended to other question answering tasks to verify the can-
didate answer. Future work includes the integration of our approach with an information retrieval
system in a way that NeurQuRI properly filters out the retrieved result, together with the end-to-end
performance validation of our approach.
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A READER AUXILIARY LOSS

This section explains the auxiliary loss functions that we use to train the reader.

Normalized Span Loss. Liu et al. (2018) normalized the span prediction score by adding an empty
word to the context input representation. We have a similar normalizing mechanism, but the answer-
ability score of the reader, zr, is computed by using a fully connected unit with two hidden layers
that have dimension equal to half the hidden dimension d and a single output dimension. The input
of this unit is a concatenation of two vectors, which are attention summations of the final represen-
tation over the start index distribution, the end index distribution. We share this answerability score
between the start and the end index distributions to make both distributions similarly normalized,
i.e.,

Lr1 = −log
(
φezr + (1− φ)esa
ezr +

∑n
i=1 e

si

)
− log

(
φezr + (1− φ)ega
ezr +

∑n
i=1 e

gi

)
,

where sa and ga represent the scores of the start and the end indices, respectively, of the ground
truth answer, φ indicates the ground truth answerability.

Independent Span Loss. Hu et al. (2019) used another span prediction layer separate from the
original answer span prediction layer to improve the prediction accuracy of the candidate answer
span. In order to allow the reader to extract the candidate answer in unanswerable cases also, they
used plausible answers as the ground truth values for this separate layer. We follow this approach
and the loss term for this separate layer Lr2 can be written as

Lr2 = −log

(
es̃b+g̃b∑n

i=1

∑n
j=1 e

s̃i+g̃j

)
,

where s̃b and g̃b indicate the score of the start and the end indices for the union of a ground truth and
a plausible answers. By adding these two losses, the reader auxiliary loss Laux is written as

Laux = Lr1 + Lr2

B QUALITATIVE ANALYSIS OF FAILED CASES

In this section, we present a few examples from the dev set in SQuAD 2.0 (Rajpurkar et al., 2018)
when NeurQuRI incorrectly classifies answerability, as shown in Fig. 4. Consider example 1, an
answerable question, in which the question is “Who was one French pro-reform Roman Catholic
of the “15th century?”. The model could not figure out “15th century” in the questions was refer-
ring to “(1455-1536)” in the context, as implied by the low satisfaction scores of “15th century”.
This possibly points towards a weakness of the contextual embedding supplied to NeurQuRI by the
reader.

Example 2 is also an answerable question, “Which direction does two thirds of the Rhine flow
outside of Germany?”. However, the context does not have any information about Germany, and
it does not know that the locations mentioned in the context are “outside” of “Germany”, as is
evident from their low satisfaction scores. This question comes across as particularly difficult even
for humans, requiring extensive real-world geographical knowledge.

In the last example, we show a no-answer question which our model incorrectly classified as an-
swerable with all conditions met. The question “Sir Galileo Galilei corrected the previous misun-
derstandings about what?”, the word “Sir” in the context only refers to “Isaac Newton”, and not to
“Galileo”. This example shows an inherent weakness of our contextualized-embedding based in-
spection of answerability - the contextualized embeddings also leak information from nearby words,
causing the inspection to sometimes pass based on neighbouring words.
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Other predecessors of the Reformed church included the pro-reform and Gallican Roman Catholics, such as Jacques Lefevre 

(c. 1455). The Gallicans briefly achieved independence for the French church, on the principle that the religion of France 

could not be controlled by the Bishop of Rome, a foreign power. During the ... (omit) ...

1.00.0

From here, the situation becomes more complicated, as the Dutch name Rijn no longer coincides with the main flow of 

water. Two thirds of the water flow volume of the Rhine flows farther west, through the Waal and then, via the Merwede and 

Nieuwe Merwede (De Biesbosch), merging with the Meuse, ... (omit) ...

1.00.0

A fundamental error was the belief that a force is required to maintain motion, even at a constant velocity. Most of the 

previous misunderstandings about motion and force were eventually corrected by Galileo Galilei and Sir Isaac Newton. With 

his mathematical insight, Sir Isaac Newton formulated ... (omit) ...

1.00.0

Figure 4: Negatively predicted examples of our method, BERT (Large) + NeurQuRI, and its satis-
faction score vector ax→qT over question words by the candidate answer. Colored Text indicates the
candidate answer predicted by the reader.
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