
Under review as a conference paper at ICLR 2020

SYMPLECTIC ODE-NET: LEARNING HAMILTONIAN
DYNAMICS WITH CONTROL

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we introduce Symplectic ODE-Net (SymODEN), a deep learning
framework which can infer the dynamics of a physical system from observed
state trajectories. To achieve better generalization with fewer training samples,
SymODEN incorporates appropriate inductive bias by designing the associated
computation graph in a physics-informed manner. In particular, we enforce
Hamiltonian dynamics with control to learn the underlying dynamics in a trans-
parent way which can then be leveraged to draw insight about relevant physical
aspects of the system, such as mass and potential energy. In addition, we propose
a parametrization which can enforce this Hamiltonian formalism even when the
generalized coordinate data is embedded in a high-dimensional space or we can
only access velocity data instead of generalized momentum. This framework, by
offering interpretable, physically-consistent models for physical systems, opens
up new possibilities for synthesizing model-based control strategies.

1 INTRODUCTION

In the recent years, deep neural networks (Goodfellow et al., 2016) have become very accurate
and widely-used in many application domains, such as image recognition (He et al., 2016), lan-
guage comprehension (Devlin et al., 2019), and sequential decision making (Silver et al., 2017). To
learn underlying patterns from data and enable generalization beyond the training set, the learning
approach incorporates appropriate inductive bias (Haussler, 1988; Baxter, 2000) by promoting rep-
resentations which are simple in some sense. It typically manifests itself via a set of assumptions
which in turn can guide a learning algorithm to pick one hypothesis over another. The success in
predicting an outcome for previously unseen data then depends on how well the inductive bias cap-
tures the ground reality. Inductive bias can be introduced as the prior in a Bayesian model, or via
the choice of computation graphs in a neural network.

In a variety of settings, especially in physical systems, wherein laws of physics are primarily re-
sponsible for shaping the outcome, generalization in neural networks can be improved by leveraging
underlying physics for designing the computation graphs. Here, by leveraging a generalization of
the Hamiltonian dynamics, we develop a learning framework which captures the underlying physics
in the associated computation graph. Our results show that incorporation of such physics-based
inductive bias can provide knowledge about relevant physical properties (mass, potential energy)
and laws (conservation of energy) of the system. These insights, in turn, enable more accurate pre-
diction of future behavior and improvements in out-of-sample behavior. Furthermore, learning a
physically-consistent model of the underlying dynamics can subsequently enable usage of model-
based controllers which can provide performance guarantees for complex, nonlinear systems. In
particular, insight about kinetic and potential energy of a physical system can be leveraged to design
appropriate control strategies, such as the method of controlled Lagrangian (Bloch et al., 2001) and
interconnection & damping assignment (Ortega et al., 2002) , which can reshape the closed-loop
energy landscape to achieve a broad range of control objectives (regulation, tracking, etc.).

RELATED WORK

Physics-based Priors for Learning in Dynamical Systems: The last few years have witnessed a
significant interest in incorporating physics-based priors into deep learning frameworks. Such ap-

1

Under review as a conference paper at ICLR 2020

proaches, in contrast to more rigid parametric system identification techniques (Söderström & Sto-
ica, 1988), use neural networks to approximate the state-transition dynamics and therefore are more
expressive. Sanchez-Gonzalez et al. (2018), by representing the causal relationships in a physical
system as a directed graph, use a recurrent graph network to infer latent space dynamics of robotic
systems. Lutter et al. (2019) and Gupta et al. (2019) leverage Lagrangian mechanics to learn dy-
namics of kinematic structures from time-series data of position, velocity and acceleration. A more
recent (concurrent) work by Greydanus et al. (2019) uses Hamiltonian mechanics to learn dynamics
of autonomous, energy-conserved mechanical systems from time-series data of position, momentum
and their derivatives. A key difference between these approaches and the proposed one is that our
framework does not require any information about higher order derivatives (e.g. acceleration) and
can incorporate external control into the Hamiltonian formalism.

Neural Networks for Dynamics and Control Inferring underlying dynamics from time-series
data plays a critical role towards controlling closed-loop response of dynamical systems, such as
robotic manipulators (Lillicrap et al., 2015) and building HVAC systems (Wei et al., 2017). Although
use of neural networks towards identification and control of dynamical systems dates back to more
than three decades (Narendra & Parthasarathy, 1990), recent advances in deep neural networks have
led to renewed interest in this domain. Watter et al. (2015) learns dynamics with control from
high-dimensional observations (raw image sequences) using a variational approach and designs an
iterative LQR controller to control physical systems by imposing a locally linear constraint. Karl
et al. (2016) and Krishnan et al. (2017) adopt a variational approach and use recurrent architectures
to learn state-space models from noisy observation. SE3-Nets (Byravan & Fox, 2017) learn SE(3)
transformation of rigid bodies from point cloud data. Ayed et al. (2019) use partial information
about the system state to learn a nonlinear state-space model. However, this body of work, while
attempting to learn state-space models, does not take physics-based priors into consideration.

CONTRIBUTION

The main contribution of this work is two-fold. First, we introduce a learning framework called
Symplectic ODE-Net (SymODEN) which encodes a generalization of the Hamiltonian dynamics.
This generalization, by adding an external control term to the standard Hamiltonian dynamics, al-
lows us to learn the system dynamics which conforms to Hamiltonian dynamics with control. With
the learnt structured dynamics, we are able to design controllers to control the system to track a
reference point. Moreover, by encoding the structure, we can achieve better predictions with smaller
network sizes. Second, we take one step forward in combining the physics-based prior and the data-
driven approach. Previous approaches (Lutter et al., 2019; Greydanus et al., 2019) require data in
the form of generalized coordinates and their derivatives up to the second order. However, a large
number of physical systems accomodates generalized coordinates which are non-Euclidean (e.g. an-
gles), and such angle data is often obtained in the embedded form, i.e., (cos q, sin q) instead of the
coordinate (q) itself. The underlying reason is that an angular coordinate lies on S1 instead of R1. In
contrast to previous approaches which do not address this aspect, SymODEN has been designed to
work with angle data in the embedded form. Additionally, we leverage differentiable ODE solvers
to avoid the need for estimating second-order derivatives of generalized coordinates.

2 PRELIMINARY CONCEPTS

2.1 HAMILTONIAN DYNAMICS

Lagrangian dynamics and Hamiltonian dynamics are both reformulation of Newtonian dynamics
and they provide new insights into the laws of mechanics. In these formulations, the configuration
of a system is described by generalized coordinates q = (q1, q2, ..., qn). With time, the configuration
point of the system moves in the configuration space, tracing out a trajectory. Lagrangian dynamics
describe the evolution of this trajectory, i.e. the equations of motion, in the configuration space.
Hamiltonian dynamics, however, track the change of system states in the phase space – consisting
of generalized coordinates q = (q1, q2, ..., qn) and generalized momenta p = (p1, p2, ..., pn). In
other words, Hamiltonian dynamics treats q and p on a equal footing and this leads to not only
symmetric equations of motion but a whole new approach to classical mechanics as well (Goldstein

2

Under review as a conference paper at ICLR 2020

et al., 2002). Beyond classical mechanics, the Hamiltonian dynamics is also widely used in statistical
and quantum mechanics.

In Hamiltonian dynamics, the time-evolution of a system is described by the Hamiltonian H(q,p),
a scalar function of generalized coordinates and momenta. Moreover, in almost all physical systems,
the Hamiltonian is same as the total energy and hence can be expressed as

H(q,p) =
1

2
pTM−1(q)p+ V (q), (1)

where the mass matrix M(q) is positive definite and V (q) represents potential energy of the system.
Correspondingly, the time-evolution of the system is governed by

q̇ =
∂H

∂p
ṗ = −∂H

∂q
, (2)

where we have dropped explicit dependence on q and p for brevity of notation. Moreover, since

Ḣ =
(∂H
∂q

)T
q̇+

(∂H
∂p

)T
ṗ = 0, (3)

the total energy is conserved along a trajectory of the system. The RHS of Equation (2) is called
the symplectic gradient (Rowe et al., 1980) of H . Equation (3) shows moving along the symplectic
gradient keeps the Hamiltonian constant.

In this work, we consider a generalization of the Hamiltonian dynamics which provides a means to
incorporate external control (u), such as force and torque. As external control is usually affine and
influences the change of generalized momenta, we consider the following dynamics[

q̇
ṗ

]
=

[
∂H
∂p

−∂H∂q

]
+

[
0

g(q)

]
u. (4)

When u = 0, the generalized dynamics reduce to the classical Hamiltonian dynamics (2) and the
total energy is conserved; however, when u 6= 0, the system has a dissipation-free energy exchange
with the environment.

2.2 CONTROL VIA ENERGY SHAPING

Once the dynamics of a system have been learned, it can be used to synthesize a controller to
maneuver the system to a reference configuration q?. As the proposed approach offers insight about
the energy associated with a system, it is a natural choice to exploit this information for designing
controllers via energy shaping (Ortega et al., 2001). As energy is a fundamental aspect of physical
systems, reshaping the associated energy landscape enables us to specify a broad range of control
objectives and design nonlinear controllers with provable performance guarantees.

If rank(g(q)) = rank(q), the system is fully-actuated and we have control over any dimension of
“acceleration” in ṗ. For such class of systems, a controller u(q,p) = βββ(q)+v(p) can be designed
via potential energy shaping βββ(q) and damping injection v(p). We restate the procedure from
Ortega et al. (2001) using our notation for completeness. As the name suggests, the goal of potential
energy shaping is to design βββ(q) such that the closed-loop system behaves as if its time-evolution is
governed by a desired Hamiltonian Hd, i.e.[

q̇
ṗ

]
=

[
∂H
∂p

−∂H∂q

]
+

[
0

g(q)

]
βββ(q) =

[
∂Hd
∂p

−∂Hd∂q

]
(5)

where the desired Hamiltonian differs from the original Hamiltonian by the potential energy

Hd(q,p) =
1

2
pTM−1(q)p+ Vd(q). (6)

In other words, βββ(q) shape the potential energy such that the desired Hamiltonian Hd(q,p) has a
minimum at (q?,0). Then, by substituting (1) and (6) into (5), we get

βββ(q) = gT (ggT)−1
(∂V
∂q
− ∂Vd

∂q

)
. (7)

3

Under review as a conference paper at ICLR 2020

With potential energy shaping, we ensure that the system has the lowest energy at the desired refer-
ence point and in general the system would oscillate around this point. To ensure that the trajectory
actually converge to this point, we add some damping 1

v(p) = gT (ggT)−1(−Kdp) (8)

Remark If the desired potential energy is chosen to be a quadratic of the form

Vd(q) =
1

2
(q− q?)TKp(q− q?), (9)

the external forcing term can be expressed as

g(q)u =
∂V

∂q
−Kp(q− q?)−Kdp. (10)

This is the familiar PD controller with an additional energy compensation term.

However, for under-actuated systems, potential energy shaping alone is not sufficient to maneuver
the system to a desired configuration. Kinetic energy shaping (Chang et al., 2002) is also needed to
design the controller.

3 SYMPLECTIC ODE-NET

In this section, we introduce the network architecture of Symplectic ODE-Net. In Subsection 3.1, we
show how to learn an ordinary differential equation with a constant control term. In Subsection 3.2,
we assume we have access to generalized coordinate and momentum data and derive the network
architecture. In Subsection 3.3, we take one step further to propose a data-driven approach to deal
with data of embedded angle coordinates. In Subsection 3.4, we put together the line of reasoning
introduced in the previous two subsections to propose SymODEN for learning dynamics on the
hybrid space Rn × Tm.

3.1 NEURAL ODE WITH CONSTANT FORCING

Now we focus on the problem of learning the ordinary differential equation (ODE) from time series
data. Consider an ODE: ẋ = f(x). Assume we don’t know the analytical expression of the right
hand side (RHS) and we approximate it with a neural network. If we have time series data X =
(xt0 ,xt1 , ...,xtn), how could we learn f(x) from the data?

Chen et al. (2018) introduced Neural ODE, differentiable ODE solvers with O(1)-memory back-
propagation. With Neural ODE, we make predictions by approximating the RHS function using a
neural network fθ and put it into a ODE solver

x̂t1 , x̂t2 , ..., x̂tn = ODESolve(xt0 , fθ, t1, t2, ..., tn)

We can then construct the loss function L = ‖X−X̂‖22 and update the weights θ by backpropagating
through the ODE solver.

In theory, we can learn fθ in this way. In practice, however, the neural net is hard to train if n is large.
If we have a bad initial estimate of the fθ, the prediction error would in general be large. Although
|xt1− x̂t1 |might be small, x̂tN would be far from xtN as error accumulates, which makes the neural
network hard to train. In fact, the prediction error of x̂tN is not as important as x̂t1 . In other words,
we should weight data points in a short time horizon more than the rest of the data points. In order
to address this and better utilize the data, we introduce the time horizon τ as a hyperparameter and
predict xti+1 ,xti+2 , ...,xti+τ from initial condition xti , where i = 0, ..., n− τ .

One challenge of leveraging Neural ODE to learn state-space models is how to learn the dynamics
with the control term. Equation 4 has the form ẋ = f(x,u) with x = (q,p). A function like this
cannot be put into Neural ODE directly. In general, if our data consists of trajectories of (x,u)t0,...,tn
and u remains the same in a trajectory. We can approximate the augmented dynamics[

ẋ
u̇

]
=

[
fθ(x,u)

0

]
= f̃θ(x,u) (11)

1if we have access to q̇ instead of p, we use q̇ instead in Equation (8)

4

Under review as a conference paper at ICLR 2020

Here, the input and output of f̃θ have the same dimension, which can be put into Neural ODE. The
problem is then how to design the network architecture of f̃θ, or equivalently fθ such that we can
learn the dynamics in an efficient way.

3.2 LEARNING FROM GENERALIZED COORDINATE AND MOMENTUM

Suppose we have trajectory data consisting of (q,p,u)t0,...,tn , where u remains constant in a tra-
jectory. If we have the prior knowledge that the unforced dynamics of q and p is governed by
Hamiltonian dynamics, we can use three neural nets – M−1

θ1
(q), Vθ2(q) and gθ3(q) – as function

approximators to represent the inverse of mass matrix, potential energy and the control coefficient.
Thus,

fθ(q,p,u) =

[
∂Hθ1,θ2
∂p

−∂Hθ1,θ2∂q

]
+

[
0

gθ3(q)

]
u (12)

where

Hθ1,θ2(q,p) =
1

2
pTM−1

θ1
(q)p+ Vθ2(q) (13)

The partial derivative in the expression can be taken care of by automatic differentiation. by putting
the designed fθ(q,p,u) into Neural ODE, we obtain a systematic way of adding the prior knowledge
of Hamiltonian dynamics into end-to-end learning.

3.3 LEARNING FROM EMBEDDED ANGLE DATA

In the previous subsection, we assume (q,p,u)t0,...,tn . In a lot of physical system models, the state
variables involve angles which reside in the interval [−π, π). In other words, each angle resides
on the manifold S1. From a data-driven perspective, the data that respects the geometry is a 2
dimensional embedding (cos q, sin q). Furthermore, the generalized momentum data is usually not
available. Instead, the velocity is often available. For example, in OpenAI Gym (Brockman et al.,
2016) Pendulum-v0 task, the observation is (cos q, sin q, q̇).

From a theoretic perspective, however, the angle itself instead of the 2D embedding is often used.
The reason is that both the Lagrangian and Hamiltonian formulation are derived using generalized
coordinates. Using a set of independent generalized coordinate makes the solution of the equations
of motion easier.

In this subsection, we take the data-driven standpoint. We assume all the generalized coordinates are
angles and the data comes in the form of (x1(q),x2(q),x3(q̇))t0,...,tn = (cosq, sinq, q̇)t0,...,tn .
We aim to put our theoretical prior – Hamiltonian dynamics – into the data-driven approach. The
goal is to learn the dynamics of x1, x2 and x3. Noticing p = M(x1,x2)q̇, we can write down the
derivative of x1, x2 and x3,

ẋ1 = − sinq ◦ q̇ = −x2 ◦ q̇
ẋ2 = cosq ◦ q̇ = x1 ◦ q̇ (14)

ẋ3 =
d

dt
(M−1(x1,x2)p) =

d

dt
(M−1(x1,x2))p+M−1(x1,x2)ṗ

where “◦” represents the elementwise product (Hadamard product). We assume q and p evolves
with the generalized Hamiltonian dynamics Equation 4. Here the Hamiltonian H(x1,x2,p) is a
function of x1, x2 and p instead of q and p.

q̇ =
∂H

∂p
(15)

ṗ = −∂H
∂q

+ g(q)u = −∂x1

∂q

∂H

∂x1
− ∂x2

∂q

∂H

∂x2
+ g(q)u

= sinq ◦ ∂H
∂x1
− cosq ◦ ∂H

∂x2
+ g(q)u = x2 ◦

∂H

∂x1
− x1 ◦

∂H

∂x2
+ g(q)u (16)

Then the right hand side of Equation (14) can be expressed as a function of state variables and control
(x1,x2,x3,u). Thus, it can be put into the Neural ODE. We use three neural nets – M−1

θ1
(x1,x2),

5

Under review as a conference paper at ICLR 2020

Vθ2(x1,x2) and gθ3(x1,x2) – as function approximators. Substitute Equation (15) and (16) into
(14), then the RHS serves as fθ(x1,x2,x3,u). 2

fθ(x1,x2,x3,u)=


−x2 ◦

∂Hθ1,θ2
∂p

x1 ◦
∂Hθ1,θ2
∂p

d
dt (M

−1
θ1

(x1,x2))p+M−1
θ1

(x1,x2)
(
x2◦

∂Hθ1,θ2
∂x1

−x1◦
∂Hθ1,θ2
∂x2

+gθ3(x1,x2)u
)


(17)
where

Hθ1,θ2(x1,x2,p) =
1

2
pTM−1

θ1
(x1,x2)p+ Vθ2(x1,x2) (18)

p = Mθ1(x1,x2)x3 (19)

3.4 LEARNING ON HYBRID SPACES Rn × Tm

In Subsection 3.2, we treated the generalized coordinates as translational coordinate. In Subsec-
tion 3.3, we developed a method to better deal with embedded angle data. In most of physical
systems, these two types of coordinates coexist. For example, robotics systems are usually mod-
elled as interconnected rigid bodies. The positions of joints or center of mass are translational
coordinates and the orientations of each rigid body are angular coordinates. In other words, the
generalized coordinates lie on Rn × Tm, where Tm denotes the m-torus, with T1 = S1 and
T2 = S1 × S1. In this subsection, we put together the architecture of the previous two subsec-
tions. We assume the generalized coordinates are q = (r,φφφ) ∈ Rn × Tm and the data comes in
the form of (x1,x2,x3,x4,x5)t0,...,tn = (r, cosφφφ, sinφφφ, ṙ, φ̇φφ)t0,...,tn . With similar line of reason-
ing, we use three neural nets – M−1

θ1
(x1,x2,x3), Vθ2(x1,x2,x3) and gθ3(x1,x2,x3) – as function

approximators. We have

p = Mθ1(x1,x2, ,x3)

[
x4

x5

]
(20)

Hθ1,θ2(x1,x2,x3,p) =
1

2
pTM−1

θ1
(x1,x2,x3)p+ Vθ2(x1,x2,x3) (21)

with Hamiltonian dynamics, we have

q̇ =

[
ṙ

φ̇φφ

]
=
∂Hθ1,θ2

∂p
(22)

ṗ =

[
∂Hθ1,θ2
∂x1

x3 ◦
∂Hθ1,θ2
∂x2

− x2 ◦
∂Hθ1,θ2
∂x3

]
+ gθ3(x1,x2,x3)u (23)

Then
ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

 =


ṙ

−x3φ̇φφ

x2φ̇φφ
d
dt (M

−1
θ1

(x1,x2,x3))p+M−1
θ1

(x1,x2,x3)ṗ

 = fθ(x1,x2,x3,x4,x5,u) (24)

where the ṙ and φ̇φφ come from Equation (22). Now we obtain a fθ which can be put into Neural ODE.
Figure 1 shows the flow of the computation graph based on Equation (20)-(24).

3.5 POSITIVE DEFINITENESS OF MASS MATRIX

In real physical systems, the mass matrix M is positive definite, which ensures a positive kinetic
energy with a non-zero velocity. The positive definiteness of M implies the positive definiteness of
M−1

θ1
. Thus, we impose this constraint in the network architecture by M−1

θ1
= Lθ1L

T
θ1

, where Lθ1
is a lower-triangular matrix. The positive definiteness is ensured if the diagonal elements of M−1

θ1
is

positive. In practice, this can be done by adding a small constant ε to the diagonal elements of Mθ1 .
It not only makes Mθ1 invertible, but also stabilize the training.

2In Equation (17), the derivative of M−1
θ1

(x1,x2) can be expanded using chain rule and expressed as a
function of the states.

6

Under review as a conference paper at ICLR 2020

Figure 1: The computation graph of SymODEN. Blue arrows indicate neural network parametriza-
tion. Red arrows indicate automatic differentiation. For a given (x,u), the computation graph
outputs a fθ(x,u) which follows Hamiltonian dynamics with control. The function itself is an input
to the Neural ODE to generate estimation of states at each time step. Since all the operations are
differentiable, weights of the neural networks can be updated by backpropagation.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We evaluate our model on four tasks: Task 1: a pendulum with generalized coordinate and momen-
tum data (learning on R1); Task 2: a pendulum with embedded angle data (learning on S1); Task 3:
a cart-pole system (learning on R1 × S1) and Task 4: an acrobot (learning on T2).

Model Variants. Besides the Symplectic ODE-Net model derived above, we consider a variant by
approximating the Hamiltonian using a fully connected neural net Hθ1,θ2 . We call it Unstructured
Symplectic ODE-Net (Unstructured SymODEN) since here we are not exploiting the structure of the
Hamiltonian.

Baseline Models. In order to show that we can learn the dynamics better with less parameters by
leveraging prior knowledge, we set up baseline models for all four experiments. For the pendulum
with generalized coordinate and momentum data, the naive baseline model approximate Equation
(12) – fθ(x,u) – by a fully connected neural net. For all the other experiments, which involves
embedded angle data, we set up two different baseline models: naive baseline approximate fθ(x,u)
by a fully connected neural net. It doesn’t respect the fact that the coordinate pair, cosφφφ and sinφφφ,
lie on Tm. Thus, we set up the geometric baseline model which approximate q̇ and ṗ with a fully
connected neural net. This ensures that the angle data evolves on Tm. 3

Data Generation. For all tasks, we randomly generated initial conditions of states and combine
them with 5 values of constant control, i.e., u = −2.0,−1.0, 0.0, 1.0, 2.0 to construct the initial
conditions of simulation. The initial conditions are then put into simulators to integrate for 20 time
steps to generate trajectory data. These trajectory data serve as training set. The simulators for
different tasks are different. For Task 1, we integrate the true generalized Hamiltonian dynamics
with a time interval of 0.05 seconds to generate trajectories . All the other tasks deal with embedded
angle data and velocity directly so we leverage Open AI Gym (Brockman et al., 2016) simulators
to generate trajectory data. One caveat of using Open AI Gym is that not all environments use the
Runge-Kutta method (RK4) for simulation. Gym favors other numerical schemes over RK4 because
of speed, but it is harder to learn the dynamics with inaccurate data. For example, if we plot the total
energy as a function of time from data generated by Pendulum-v0 environment with zero action,
we see that the total energy oscillates around a constant by a significant amount, even though the
total energy should be conserved. Thus, for Task 1 and Task 2, we leverage Pendulum-v0 and
CartPole-v1 and replace the numerical integrator of the environments to RK4. For Task 3, we
leverage the Acrobot-v1 environment which is already using RK4. We also change the action

3For more information on model details, please refer to Appendix A.

7

Under review as a conference paper at ICLR 2020

space of Pendulum-v0, CartPole-v1 and Acrobot-v1 to a continuous space with a large
enough bound.

Model training. In all the tasks, we train our model using Adam optimizer (Kingma & Ba (2014))
with 1000 epochs. We set a time horizon τ = 3, and choose “RK4” as the numerical integration
scheme in Neural ODE. We vary the size of training set by doubling from 16 state initial conditions to
1024 state initial conditions. Each state initial condition is combined with five constant control u =
−2.0,−1.0, 0.0, 1.0, 2.0 to construct initial condition for simulation. Each trajectory is generated
by putting the initial condition into the simulator and integrate 20 time steps forward. We set the
size of mini-batches to be the number of state initial conditions. We logged the training error per
trajectory and the prediction error per trajectory in each case for all the tasks. The training loss per
trajectory is the mean squared error (MSE) between the estimation and the ground truth of 20 time
steps. To evaluate the performance of each model in terms of long time prediction, we construct the
metric of prediction error per trajectory by using the same state initial condition in the training set
with a constant control of u = 0.0, integrating 40 time steps forward, and calculating the MSE of 40
time steps The reason of using only the unforced trajectories is that a constant nonzero control might
cause the velocity to keep increasing or decreasing over time and large absolute values of velocity
are of little interest in designing controller.

4.2 RESULTS

Figure 2: Training error per trajectory and prediction error per trajectory for all 4 tasks with different
number of training trajectories. Horizontal axis shows number of state initial condition of 16, 32,
64, 128, 256, 512, 1024 in the training set. Both the horizontal axis and vertical axis are in log scale.

Figure 3: Mean square error and total energy of test trajectories. SymODEN works the best in terms
of both MSE and total energy. SymODEN predicts trajectories that match the ground truth since it
has learnt the Hamiltonian and discovered the conservation from data. The ground truth of energy
in all four tasks stay constant.

Figure 2 shows the variation in training error and prediction error with changes in the number of state
initial conditions in the training set. We can see that SymODEN yields better generalization in all

8

Under review as a conference paper at ICLR 2020

the tasks. In Task 3, although the Geometric Baseline Model beats the other ones in terms of training
error, SymODEN generates more accurate predictions, indicating overfitting in the Geometric Base-
line Model. By incorporating the physics-based prior of Hamiltonian dynamics, SymODEN learns
dynamics that obey physical law and thus performs better in prediction. In most cases, SymODEN
trained with less training data beats other models with more training data in terms of training er-
ror and prediction error, indicating that better generalization can be achieved with fewer training
samples.

Figure 3 shows how the MSE and the total energy evolves along a trajectory with a previously unseen
initial condition. For all the tasks, the MSE of the baseline models diverge faster than SymODEN.
The Unstructured SymODEN works well in Task 1, Task 2 and Task 4 but not so well in Task 3. As
for the total energy, in the two pendulum tasks, SymODEN and Unstructured SymODEN conserve
total energy by oscillating around a constant value. In these models, the Hamiltonian itself is learnt
and the prediction of the future states stay around a level set of the Hamiltonian. Baseline models,
however, fail to find the conservation and the estimation of future states drift away from the initial
Hamiltonian level set.

4.3 TASK 1: PENDULUM WITH GENERALIZED COORDINATE AND MOMENTUM DATA

In this task, the dynamics has the following form

q̇ = 3p, ṗ = −5 sin q + u (25)

with Hamiltonian H(q, p) = 1.5p2 + 5(1− cos q). In other words M(q) = 3, V (q) = 5(1− cos q)
and g(q) = 1.

Figure 4: Sample trajectories and learnt functions of Task 1.

In Figure 4, The ground truth is an
unforced trajectory which is energy-
conserved. The prediction trajec-
tory of the baseline model does
not conserve energy while both the
SymODEN and its unstructured vari-
ant predict energy-conserved trajec-
tories. For SymODEN, the learnt
gθ3(q) and M−1

θ1
(q) matches the

ground truth well. Vθ2(q) differs
from the ground truth with a constant.
This is acceptable since the potential
energy is a relative notion. Only the
derivative of Vθ2(q) plays a role in the
dynamics.

In this task, we are treating q as a variable in R1 and our training set contains initial condition of
q ∈ [−π, 3π]. The learnt functions do not extrapolate well outside this range, as we can see from
the left part in the figures of M−1

θ1
(q) and Vθ2(q). We address this issue by working directly with

embedded angle data, which lead to the next subsection.

4.4 TASK 2: PENDULUM WITH EMBEDDED DATA

Figure 5: Without true generalized momentum data, the
learnt functions match the ground truth with a scaling. Here
β = 0.357

The dynamics of this task are the
same as Equation (25) but the train-
ing data are generated by the Ope-
nAI Gym simulator. Here we do not
have access to the true generalized
momentum data, and the learnt func-
tion matches the ground truth with a
scaling β, as shown in Figure 5. To
explain the scaling, let us look at the
following dynamics

q̇ = p/α, ṗ = −15α sin q + 3αu (26)

9

Under review as a conference paper at ICLR 2020

with Hamiltonian H = p2/(2α) + 15α(1 − cos q). If we only look at the dynamics of q, we have
q̈ = −15 sin q+3u, which is independent ofα. If we don’t have access to the generalized momentum
p, our trained neural network may converge to a Hamiltonian with a αe which is different from the
true value, αt = 1/3, in this task. By a scaling β = αt/αe = 0.357, the learnt functions match the
ground truth. Even we are not learning the true αt, we can still perform prediction and control since
we are learning the dynamics of q correctly. We let Vd = −Vθ2(q), then the desired Hamiltonian
has minimum energy when the pendulum rests at the upward position. For the damping injection,
we let Kd = 3. Then from Equation (7) and (8), the controller we design is

u(cos q, sin q, q̇) = g−1
θ3

(cos q, sin q)
(
2
∂Vθ2(cos q, sin q)

∂q
− 3q̇

)
= g−1

θ3
(cos q, sin q)

(
2
(
− ∂Vθ2
∂ cos q

sin q +
∂Vθ2
∂ sin q

cos q
)
− 3q̇

)
(27)

Figure 6: Time-evolution of the state variables
(cos q, sin q, q̇) when the closed-loop control input
u(cos q, sin q, q̇) is governed by Equation (27).

Only SymODEN out of all models
we consider provides the learnt po-
tential energy which is required to
construct the controller. Figure 6
shows how the states evolve when
the controller is fed into the Ope-
nAI Gym simulator. We can success-
fully control the pendulum into the
inverted position using the controller based on learnt model even though the absolute maximum
control u, 7.5, is more than three times larger than the absolute maximum u in the training set,
which is 2.0. This shows SymODEN extrapolates well.

4.5 TASK 3: CARTPOLE SYSTEM

The CartPole system is an underactuated system and to design a controller to balance the pole
from arbitrary initial condition requires trajectory optimization or kinetic energy shaping. Here we
following the setup in the OpenAI Gym CartPole-v1 environment: “In CartPole-v1, the
pendulum starts upright and the goal is to prevent it from falling over. The episode ends when the
pole is more than 15 degrees from vertical or the cart moves more than 2.4 units from the center”
(Car). Since the initial condition is close to the goal, after learning the dynamics, we are able to
design a PD controller based on the learnt dynamics and feed the controller back to the OpenAI
Gym simulator.

u = Kp sin q +Kdq̇ (28)
Figure 7 shows the results of control with Kp = 70 and Kd = 0.9. In 8 seconds, the pole remains
within 15 degrees from vertical and cart remains within 0.3 units from the center.

Figure 7: Time-evolution of the state variables when the closed-loop control input is governed by
Equation (28).

5 CONCLUSION

Here we have introduced Symplectic ODE-Net which provides a systematic way to incorporate
the prior knowledge of Hamiltonian dynamics with control into a deep learning framework. We
show that SymODEN achieves better extrapolation with fewer training samples by learning an inter-
pretable, physically-consistent state-space model. In future works, a broader class of physics-based
prior such as port-Hamiltonian system can be introduced to model a larger class of physical systems.
SymODEN can work with embedded angle data or when we only have access to velocity instead of
generalized momentum. Future works would explore, other types of embedding, such as embedded
3D orientations.

10

Under review as a conference paper at ICLR 2020

REFERENCES

Cartpole-v1. https://gym.openai.com/envs/CartPole-v1/. Accessed: 2019-09-24.

Ibrahim Ayed, Emmanuel de Bézenac, Arthur Pajot, Julien Brajard, and Patrick Gallinari. Learning
dynamical systems from partial observations. arXiv:1902.11136, 2019.

Jonathan Baxter. A model of inductive bias learning. Journal of Artificial Intelligence Research, 12:
149–198, 2000.

Anthony M Bloch, Naomi Ehrich Leonard, and Jerrold E Marsden. Controlled lagrangians and the
stabilization of euler–poincaré mechanical systems. International Journal of Robust and Nonlin-
ear Control, 11(3):191–214, 2001.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. OpenAI Gym. arXiv:1606.01540, 2016.

Arunkumar Byravan and Dieter Fox. Se3-nets: Learning rigid body motion using deep neural
networks. In 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 173–
180. IEEE, 2017.

Dong Eui Chang, Anthony M Bloch, Naomi E Leonard, Jerrold E Marsden, and Craig A Woolsey.
The equivalence of controlled lagrangian and controlled hamiltonian systems. ESAIM: Control,
Optimisation and Calculus of Variations, 8:393–422, 2002.

Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary dif-
ferential equations. In Advances in Neural Information Processing Systems 31, pp. 6571–6583.
2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, 2019.

Herbert Goldstein, Charles Poole, and John Safko. Classical mechanics, 2002.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.
MIT Press, 2016.

Sam Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian Neural Networks.
arXiv:1906.01563, 2019.

Jayesh K Gupta, Kunal Menda, Zachary Manchester, and Mykel J Kochenderfer. A general frame-
work for structured learning of mechanical systems. arXiv:1902.08705, 2019.

David Haussler. Quantifying inductive bias: AI learning algorithms and Valiant’s learning frame-
work. Artificial Intelligence, 36(2):177–221, 1988.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 770–778, 2016.

Maximilian Karl, Maximilian Soelch, Justin Bayer, and Patrick van der Smagt. Deep variational
bayes filters: Unsupervised learning of state space models from raw data. arXiv:1605.06432,
2016.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
arXiv:1412.6980, 2014.

Rahul G Krishnan, Uri Shalit, and David Sontag. Structured inference networks for nonlinear state
space models. In Thirty-First AAAI Conference on Artificial Intelligence, 2017.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning.
arXiv:1509.02971, 2015.

11

https://gym.openai.com/envs/CartPole-v1/

Under review as a conference paper at ICLR 2020

M. Lutter, C. Ritter, and J. Peters. Deep lagrangian networks: Using physics as model prior for deep
learning. In 7th International Conference on Learning Representations (ICLR), 2019.

K. S. Narendra and K. Parthasarathy. Identification and control of dynamical systems using neural
networks. IEEE Transactions on Neural Networks, 1(1):4–27, 1990.

Romeo Ortega, Arjan J Van Der Schaft, Iven Mareels, and Bernhard Maschke. Putting energy back
in control. IEEE Control Systems Magazine, 21(2):18–33, 2001.

Romeo Ortega, Arjan Van Der Schaft, Bernhard Maschke, and Gerardo Escobar. Interconnection
and damping assignment passivity-based control of port-controlled hamiltonian systems. Auto-
matica, 38(4):585–596, 2002.

DJ Rowe, A Ryman, and G Rosensteel. Many-body quantum mechanics as a symplectic dynamical
system. Physical Review A, 22(6):2362, 1980.

Alvaro Sanchez-Gonzalez, Nicolas Heess, Jost Tobias Springenberg, Josh Merel, Martin Riedmiller,
Raia Hadsell, and Peter Battaglia. Graph networks as learnable physics engines for inference and
control. In International Conference on Machine Learning (ICML), pp. 4467–4476, 2018.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. Nature, 550(7676):354, 2017.

Torsten Söderström and Petre Stoica. System identification. Prentice-Hall, Inc., 1988.

Manuel Watter, Jost Springenberg, Joschka Boedecker, and Martin Riedmiller. Embed to control:
A locally linear latent dynamics model for control from raw images. In Advances in Neural
Information Processing 29, pp. 2746–2754, 2015.

Tianshu Wei, Yanzhi Wang, and Qi Zhu. Deep Reinforcement Learning for Building HVAC Control.
In Proceedings of the 54th Annual Design Automation Conference (DAC), pp. 22:1–22:6, 2017.

Appendices
A EXPERIMENT IMPLEMENTATION DETAILS

The architectures used for our experiments are shown below. For all the tasks. SymODEN has
the lowest number of total parameters. To ensure that the learnt function is smooth, we use Tanh
activation function instead of ReLu. As we have differentiation in the computation graph, non-
smooth activation functions would lead to discontinuities in the derivatives. This, in turn, would
result in as ODE with a discontinuous RHS which is not desirable. All the architecture shown below
are fully-connected neural networks. The first number indicates dimension of input layer. The last
number indicates dimension of output layer. The dimension of hidden layers are shown in the middle
with activation function.

Task 1: Pendulum

• Input: 2 state dimensions, 1 action dimension
• Baseline Model (0.36M parameters): 2 - 600Tanh - 600Tanh - 2Linear
• Unstructured SymODEN (0.20M parameters):

– Hθ1,θ2 : 2 - 400Tanh - 400Tanh - 1Linear
– gθ3 : 1 - 200Tanh - 200Tanh - 1Linear

• SymODEN (0.13M parameters):
– M−1

θ1
: 1 - 300Tanh - 300Tanh - 1Linear

– Vθ2 : 1 - 50Tanh - 50Tanh - 1Linear

12

Under review as a conference paper at ICLR 2020

– gθ3 : 1 - 200Tanh - 200Tanh - 1Linear

Task 2: Pendulum with embedded data

• Input: 3 state dimensions, 1 action dimension
• Naive Baseline Model (0.65M parameters): 4 - 800Tanh - 800Tanh - 3Linear
• Geometric Baseline Model (0.46M parameters):

– M−1
θ1

= Lθ1L
T
θ1

, where Lθ1 : 1 - 300Tanh - 300Tanh - 300Tanh - 1Linear
– approximate (q̇, ṗ): 4 - 600Tanh - 600Tanh - 2Linear

• Unstructured SymODEN (0.39M parameters):
– M−1

θ1
= Lθ1L

T
θ1

, where Lθ1 : 1 - 300Tanh - 300Tanh - 300Tanh - 1Linear
– Hθ2 : 3 - 500Tanh - 500Tanh - 1Linear
– gθ3 : 2 - 200Tanh - 200Tanh - 1Linear

• SymODEN (0.14M parameters):
– M−1

θ1
= Lθ1L

T
θ1

, where Lθ1 : 1 - 300Tanh - 300Tanh - 300Tanh - 1Linear
– Vθ2 : 2 - 50Tanh - 50Tanh - 1Linear
– gθ3 : 2 - 200Tanh - 200Tanh - 1Linear

Task 3: CartPole

• Input: 5 state dimensions, 1 action dimension
• Naive Baseline Model (1.01M parameters): 6 - 1000Tanh - 1000Tanh - 5Linear
• Geometric Baseline Model (0.82M parameters):

– M−1
θ1

= Lθ1L
T
θ1

, where Lθ1 : 3 - 400Tanh - 400Tanh - 400Tanh - 3Linear
– approximate (q̇, ṗ): 6 - 700Tanh - 700Tanh - 4Linear

• Unstructured SymODEN (0.67M parameters):
– M−1

θ1
= Lθ1L

T
θ1

, where Lθ1 : 3 - 400Tanh - 400Tanh - 400Tanh - 3Linear
– Hθ2 : 5 - 500Tanh - 500Tanh - 1Linear
– gθ3 : 3 - 300Tanh - 300Tanh - 2Linear

• SymODEN (0.51M parameters):
– M−1

θ1
= Lθ1L

T
θ1

, where Lθ1 : 3 - 400Tanh - 400Tanh - 400Tanh - 3Linear
– Vθ2 : 3 - 300Tanh - 300Tanh - 1Linear
– gθ3 : 3 - 300Tanh - 300Tanh - 2Linear

Task 4:Acrobot

• Input: 6 state dimensions, 1 action dimension
• Naive Baseline Model (1.46M parameters): 7 - 1200Tanh - 1200Tanh - 6Linear
• Geometric Baseline Model (0.97M parameters):

– M−1
θ1

= Lθ1L
T
θ1

, where Lθ1 : 4 - 400Tanh - 400Tanh - 400Tanh - 3Linear
– approximate (q̇, ṗ): 7 - 800Tanh - 800Tanh - 4Linear

• Unstructured SymODEN (0.78M parameters):
– M−1

θ1
= Lθ1L

T
θ1

, where Lθ1 : 4 - 400Tanh - 400Tanh - 400Tanh - 3Linear
– Hθ2 : 6 - 600Tanh - 600Tanh - 1Linear
– gθ3 : 4 - 300Tanh - 300Tanh - 2Linear

• SymODEN (0.51M parameters):
– M−1

θ1
= Lθ1L

T
θ1

, where Lθ1 : 4 - 400Tanh - 400Tanh - 400Tanh - 3Linear
– Vθ2 : 4 - 300Tanh - 300Tanh - 1Linear
– gθ3 : 4 - 300Tanh - 300Tanh - 2Linear

13

	Introduction
	Preliminary Concepts
	Hamiltonian Dynamics
	Control via Energy Shaping

	Symplectic ODE-Net
	Neural ODE with Constant Forcing
	Learning from Generalized Coordinate and Momentum
	Learning from Embedded Angle Data
	Learning on Hybrid Spaces RnTm
	Positive Definiteness of Mass matrix

	Experiments
	Experimental Setup
	Results
	Task 1: Pendulum with Generalized Coordinate and Momentum Data
	Task 2: Pendulum with Embedded Data
	Task 3: CartPole System

	Conclusion
	Experiment Implementation Details

