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ABSTRACT

The ability to forecast a set of likely yet diverse possible future behaviors of an
agent (e.g., future trajectories of a pedestrian) is essential for safety-critical per-
ception systems (e.g., autonomous vehicles). In particular, a set of possible future
behaviors generated by the system must be diverse to account for all possible out-
comes in order to take necessary safety precautions. It is not sufficient to maintain
a set of the most likely future outcomes because the set may only contain pertur-
bations of a dominating single outcome (major mode). While generative models
such as variational autoencoders (VAEs) have been shown to be a powerful tool
for learning a distribution over future trajectories, randomly drawn samples from
the learned implicit likelihood model may not be diverse – the likelihood model is
derived from the training data distribution and the samples will concentrate around
the major mode of the data. In this work, we propose to learn a diversity sampling
function (DSF) that generates a diverse yet likely set of future trajectories. The
DSF maps forecasting context features to a set of latent codes which can be de-
coded by a generative model (e.g., VAE) into a set of diverse trajectory samples.
Concretely, the process of identifying the diverse set of samples is posed as DSF
parameter estimation. To learn the parameters of the DSF, the diversity of the
trajectory samples is evaluated by a diversity loss based on a determinantal point
process (DPP). Gradient descent is performed over the DSF parameters, which
in turn moves the latent codes of the sample set to find an optimal set of diverse
yet likely trajectories. Our method is a novel application of DPPs to optimize a
set of items (forecasted trajectories) in continuous space. We demonstrate the di-
versity of the trajectories produced by our approach on both low-dimensional 2D
trajectory data and high-dimensional human motion data. (Video)

1 INTRODUCTION

Forecasting future trajectories of vehicles and human has many useful applications in autonomous
driving, virtual reality and assistive living. What makes trajectory forecasting challenging is that the
future is uncertain and multi-modal – vehicles can choose different routes and people can perform
different future actions. In many safety-critical applications, it is important to consider a diverse set
of possible future trajectories, even those that are less likely, so that necessary preemptive actions can
be taken. For example, an autonomous vehicle should understand that a neighboring car can merge
into its lane even though the car is most likely to keep driving straight. To address this requirement,
we need to take a generative approach to trajectory forecasting that can fully characterize the multi-
modal distribution of future trajectories. To capture all modes of a data distribution, variational
autoencoders (VAEs) are well-suited generative models. However, random samples from a learned
VAE model with Gaussian latent codes are not guaranteed to be diverse for two reasons. First, the
sampling procedure is stochastic and the VAE samples can fail to cover some minor modes even
with a large number of samples. Second, since VAE sampling is based on the implicit likelihood
function encoded in the training data, if most of the training data is centered around a specific mode
while other modes have less data (Fig. 1 (a)), the VAE samples will reflect this bias and concentrate
around the major mode (Fig. 1 (b)). To tackle this problem, we propose to learn a diversity sampling
function (DSF) that can reliably generate a diverse set of trajectory samples (Fig. 1 (c)).

The proposed DSF is a deterministic parameterized function that maps forecasting context features
(e.g., past trajectories) to a set of latent codes. The latent codes are decoded by the VAE docoder
into a set of future trajectory samples, denoted as the DSF samples. In order to optimize the DSF, we
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Figure 1: A toy trajectory forecasting example. (a) The three modes (pink, blue, purple) of the
future trajectory distribution are shown in both the trajectory space and the latent space of a learned
VAE model. The data distribution is unbalanced, where the blue mode has most data and covers
most of the latent space. (b) Random samples from the VAE only cover the major (blue) mode. (c)
Our proposed DSF generates a diverse set of future trajectories covering all three modes.

formulate a diversity loss based on a determinantal point process (DPP) (Macchi, 1975) to evaluate
the diversity of the DSF samples. The DPP defines the probability of choosing a random subset from
the set of trajectory samples. It models the negative correlations between samples: the inclusion of
a sample reduces the probability of including a similar sample. This makes the DPP an ideal tool
for modeling the diversity within a set. In particular, we use the expected cardinality of the DPP
as the diversity measure, which is defined as the expected size of a random subset drawn from
the set of trajectory samples according to the DPP. Intuitively, since the DPP inhibits selection of
similar samples, if the set of trajectory samples is more diverse, the random subset is more likely
to select more samples from the set. The expected cardinality of the DPP is easy to compute and
differentiable, which allows us to use it as the objective to optimize the DSF to enable diverse
trajectory sampling.

Our contributions are as follows: (1) We propose a new forecasting approach that learns a diversity
sampling function to produce a diverse set of future trajectories; (2) We propose a novel application
of DPPs to optimize a set of items (trajectories) in continuous space with a DPP-based diversity
measure; (3) Experiments on synthetic data and human motion validate that our method can reliably
generate a more diverse set of future trajectories compared to state-of-the-art generative models.

2 RELATED WORK

Trajectory Forecasting has recently received significant attention from the vision community. A
large portion of previous work focuses on forecasting 2D future trajectories for pedestrians (Ki-
tani et al., 2012; Ma et al., 2017; Ballan et al., 2016; Xie et al., 2013) or vehicles (Jain et al.,
2016a). Some approaches use deterministic trajectory modeling and only forecast one future tra-
jectory (Alahi et al., 2016; Yagi et al., 2018; Robicquet et al., 2016). As there are often multiple
plausible future trajectories, several approaches have tried to forecast distributions over trajecto-
ries (Lee et al., 2017; Galceran et al., 2015; Gupta et al., 2018). Recently, Rhinehart et al. (2018;
2019) propose a generative model that can accurately forecast multi-modal trajectories for vehicles.
Soo Park et al. (2016) also use egocentric videos to predict the future trajectories of the camera
wearer. Some work has investigated forecasting higher dimensional trajectories such as the 3D full-
body pose sequence of human motions. Most existing work takes a deterministic approach and
forecasts only one possible future motion from past 3D poses (Fragkiadaki et al., 2015; Butepage
et al., 2017; Li et al., 2017; Jain et al., 2016b), static images (Chao et al., 2017; Kanazawa et al.,
2018) or egocentric videos (Yuan and Kitani, 2019). Differently, some probabilistic approaches
(Habibie et al., 2017; Yan et al., 2018) use conditional variational autoencoders (cVAEs) to generate
multiple future motions. In constrast to previous work, our approach can generate a diverse set of
future motions with a limited number of samples.

Diverse Solutions have been sought after in a number of problems in computer vision and ma-
chine learning. A branch of these methods aiming for diversity stems from the M-Best MAP prob-
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lem (Nilsson, 1998; Seroussi and Golmard, 1994), including diverse M-Best solutions (Batra et al.,
2012) and multiple choice learning (Guzman-Rivera et al., 2012; Lee et al., 2016). Alternatively,
previous work has used submodular function maximization to select a diverse subset of garments
from fashion images (Hsiao and Grauman, 2018). Determinantal point processes (DPPs) (Macchi,
1975; Kulesza et al., 2012) are efficient probabilistic models that can measure both the diversity and
quality of items in a subset, which makes it a natural choice for the diverse subset selection problem.
DPPs have been applied for document and video summarization (Kulesza and Taskar, 2011; Gong
et al., 2014), recommendation systems (Gillenwater et al., 2014), object detection (Azadi et al.,
2017), and grasp clustering (Huang et al., 2015). Most previous work using DPPs formulates the
problem as subset selection – selecting a diverse subset from a fixed ground set. In contrast, we use
DPPs as a diversity measure to optimize a set of items (trajectories) in continuous space.

3 BACKGROUND

3.1 VARIATIONAL AUTOENCODERS

The aim of multi-modal trajectory forecasting is to learn a generative model over future trajectories.
Variational autoencoders (VAEs) are a popular choice of generative models for trajectory forecast-
ing (Lee et al., 2017; Walker et al., 2016) because it can effectively capture all possible future
trajectories by explicitly mapping each data point to a latent code. VAEs model the joint distribution
pθ(x, z) = p(z)pθ(x|z) of each data sample x (e.g., a future trajectory) and its corresponding latent
code z, where p(z) denotes some prior distribution (e.g., Gaussians) and pθ(x|z) denotes the condi-
tional likelihood model. To calculate the marginal likelihood pθ(x) = pθ(x, z)/pθ(z|x), one needs
to compute the posterior distribution pθ(z|x) which is typically intractable. To tackle this, VAEs use
variational inference (Jordan et al., 1999) which introduces an approximate posterior qφ(z|x) and
decomposes the marginal log-likelihood as

log pθ(x) = KL (qφ(z|x)‖pθ(z|x)) + L(x; θ, φ) , (1)

where L(x; θ, φ) is the evidence lower bound (ELBO) defined as

L(x; θ, φ) = Eqφ(z|x) [log pθ(x|z)]−KL (qφ(z|x)‖p(z)) . (2)

During training, VAEs jointly optimize the recognition model (encoder) qφ(z|x) and the likelihood
model (decoder) pθ(x|z) to maximize the ELBO. In the context of multi-modal trajectory forecast-
ing, one can generate future trajectories from p(x) by drawing a latent code z from the prior p(z)
and decoding z with the decoder pθ(x|z) to produce a corresponding future trajectory x.

3.2 DETERMINANTAL POINT PROCESSES

Our core technical innovation is a method to learn a diversity sampling function (DSF) that can
generate a diverse set of future trajectories. To achieve this, we must equip ourselves with a tool
to evaluate the diversity of a set of trajectories. To this end, we make use of determinantal point
processes (DPPs) to model the diversity within a set. DPPs promote diversity within a set because
the inclusion of one item makes the inclusion of a similar item less likely if the set is sampled
according to a DPP.

Formally, given a set of items (e.g., data points) Y = {x1, . . . ,xN}, a point process P on the ground
set Y is a probability measure on 2Y , i.e., the set of all subsets of Y . P is called a determinantal
point process if a random subset Y drawn according to P has

PL(Y = Y ) =
det (LY )∑
Y⊆Y det (LY )

=
det (LY )

det(L + I)
, (3)

where Y ⊆ Y , I is the identity matrix, L ∈ RN×N is the DPP kernel, a symmetric positive semidef-
inite matrix, and LY ∈ R|Y |×|Y | is a submatrix of L indexed by elements of Y .

The DPP kernel L is typically constructed by a similarity matrix S, where Sij defines the similarity
between two items xi and xj . If we use the inner product as the similarity measure, L can be written
in the form of a Gram matrix L = S = XTX where X is the stacked feature matrix of Y . As a
property of the Gram matrix, det (LY ) equals the squared volume spanned by vectors xi ∈ Y . With
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this geometric interpretation in mind, one can observe that diverse sets are more probable because
their features are more orthogonal, thus spanning a larger volume.

In addition to set diversity encoded in the similarity matrix S, it is also convenient to introduce a
quality vector r = [r1, . . . , rN ] to weigh each item according to some unary metric. For example,
the quality weight might be derived from the likelihood of an item. To capture both diversity and
quality of a subset, the DPP kernel L is often decomposed in the more general form:

L = Diag(r) · S · Diag(r) . (4)

With this decomposition, we can see that both the quality vector r and similarity matrix S contribute
to the DPP probability of a subset Y :

PL(Y = Y ) ∝ det (LY ) =

( ∏
xi∈Y

r2i

)
det (SY ) . (5)

Due to its ability to capture the global diversity and quality of a set of items, we choose DPPs as the
probabilistic approach to evaluate and optimize the diversity of the future trajectories drawn by our
proposed diversity sampling function.

4 APPROACH

Safety-critical applications often require that the system can maintain a diverse set of outcomes
covering all modes of a predictive distribution and not just the most likely one. To address this re-
quirement, we propose to learn a diversity sampling function (DSF) to draw deterministic trajectory
samples by generating a set of latent codes in the latent space of a conditional variational autoen-
coder (cVAE) and decoding them into trajectories using the cVAE decoder. The DSF trajectory
samples are evaluated with a DPP-based diversity loss, which in turn optimizes the parameters of
the DSF for more diverse trajectory samples.

Formally, the future trajectory x ∈ RT×D is a random variable denoting a D dimensional feature
over a future time horizon T (e.g., a vehicle trajectory or a sequence of humanoid poses). The
context ψ = {h, f} provides the information to infer the future trajectory x, and it contains the
past trajectory h ∈ RH×D of last H time steps and optionally other side information f , such as an
obstacle map. In the following, we first describe how we learn the future trajectory model pθ(x|ψ)
with a cVAE. Then, we introduce the DSF and the DPP-based diversity loss used to optimize the
DSF.

4.1 LEARNING A CVAE FOR FUTURE TRAJECTORIES

In order to generate a diverse set of future trajectory samples, we need to learn a generative trajectory
forecasting model pθ(x|ψ) that can cover all modes of the data distribution. Here we use cVAEs
(other proper generative models can also be used), which explicitly map data x with the encoder
qφ(z|x,ψ) to its corresponding latent code z and reconstruct the data from the latent code using the
decoder pθ(x|z,ψ). By maintaining this one-on-one mapping between the data and the latent code,
cVAEs attempt to capture all modes of the data. As discussed in Sec. 3.1, cVAEs jointly optimize
the encoder and decoder to maximize the variational lower bound:

L(x,ψ; θ, φ) = Eqφ(z|x,ψ) [log pθ(x|z,ψ)]−KL (qφ(z|x,ψ)‖p(z)) . (6)

We use multivariate Gaussians for the prior, encoder and decoder: p(z) = N (z;0, I), qφ(z|x,ψ) =
N (z;µ,σ2I), and pθ(x|z,ψ) = N (x; x̃, αI). Both the encoder and decoder are implemented
as neural networks. The encoder network fφ outputs the parameters of the posterior distribu-
tion: (µ,σ) = fφ(x,ψ). The decoder network gθ outputs the reconstructed future trajectory x̃:
x̃ = gθ(z,ψ). Detailed network architectures are given in appendix B.1. Based on the Gaussian
parameterization of the cVAE, the objective in Eq. 6 can be rewritten as

Lcvae(x,ψ; θ, φ) = − 1

V

V∑
v=1

‖x̃v − x‖2 + β · 1

Dz

Dz∑
j=1

(
1 + 2 log σj − µ2

j − σ2
j

)
, (7)
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where we take V samples from the posterior qφ(z|x,ψ), Dz is the number of latent dimensions,
and β = 1/α is a weighting factor. The training procedure for the cVAE is detailed in Alg. 1
(Appendix A). Once the cVAE model is trained, sampling from the learned future trajectory model
pθ(x|ψ) is efficient: we can sample a latent code z according to the prior p(z) and use the decoder
pθ(x|z,ψ) to decode it into a future trajectory x.

4.2 DIVERSITY SAMPLING FUNCTION (DSF)

As mentioned before, randomly sampling from the learned cVAE model according to the implicit
likelihood function pθ(x|ψ), i.e., sampling latent codes from the prior p(z), does not guarantee that
the trajectory samples are diverse: major modes (those having more data) with higher likelihood will
produce most of the samples while minor modes with lower likelihood will have almost no sample.
This prompts us to devise a new sampling strategy that can reliably generate a diverse set of samples
covering both major and minor modes. We propose to learn a diversity sampling function (DSF)
Sγ(ψ) that maps context ψ to a set of latent codes Z = {z1, . . . , zN}. The DSF is implemented
as a γ-parameterized neural network which takes ψ as input and outputs a vector of length N ·Dz

(see appendix B.1 for network details). The latent codes Z are decoded into a diverse set of future
trajectories Y = {x1, . . . ,xN}, which are denoted as the DSF trajectory samples. We note that N
is the sampling budget. To solve for the parameters of the DSF, we propose a diversity loss based
on a DPP defined over Y . In this section, we first describe how the DPP kernel L is defined, which
involves the construction of the similarity matrix S and quality vector r. We then discuss how we
use the DPP kernel L to formulate a diversity loss to optimize the parameters of the DSF.

Recall that the DPP kernel is defined as L = Diag(r) · S · Diag(r), where r defines the quality of
each trajectory and S measures the similarity between two trajectories. The DPP kernel L(γ) is a
function of γ as it is defined over the ground set Y output by the DSF Sγ(ψ).

Similarity. We measure the similarity Sij between two trajectories xi and xj as

Sij = exp (−k · dx(xi,xj)) , (8)

where dx is the Euclidean distance and k is a scaling factor. This similarity design ensures that
0 ≤ Sij ≤ 1 and Sii = 1. It also makes S positive definite since the Gaussian kernel we use is a
positive definite kernel.

Quality. It may be tempting to use p(x|ψ) to define the quality of each trajectory sample. However,
this likelihood-based measure will clearly favor major modes that have higher probabilities, making
it less likely to generate samples from minor modes. This motivates us to design a quality metric that
treats all modes equally. To this end, unlike the similarity metric which is defined in the trajectory
space, the quality of each sample is measured in the latent space and is defined as

ri =

{
ω, if ‖zi‖ ≤ R
ω exp

(
−zTi zi +R2

)
, otherwise

(9)

Geometrically, let R be the radius of a sphere Φ containing most samples from the Gaussian prior
p(z). We treat samples inside Φ equally and only penalize samples outside Φ. In this way, samples
from major modes are not preferred over those from minor modes as long as they are inside Φ, while
samples far away from the data manifold are heavily penalized as they are outside Φ. The radius
R is determined by where ρ percent of the Gaussian samples lie within, and we set ρ = 90. To
compute R, we use the percentage point function of the chi-squared distribution which models the
distribution over the sum of squares of independent standard normal variables. The base quality ω is
a hyperparameter and a larger ω encourages the DPP to select more items from the ground set. We
set ω = 10 in our experiments.

Diversity Loss. To optimize the DSF Sγ(ψ), we need to define a diversity loss that measures the
diversity of the trajectory ground set Y generated by Sγ(ψ). An obvious choice for the diversity loss
would be the negative log likelihood− logPL(γ)(Y = Y) = − log det(L(γ)) + log det(L(γ) + I).
However, there is a problem with directly using the DPP log likelihood. The log likelihood heavily
penalizes repeated items: if two trajectories inside Y are very similar, their corresponding rows in L
will be almost identical, making det(L(γ)) = λ1λ2 . . . λN ≈ 0 (λn is the n-th eigenvalue). In prac-
tice, if the number of modes in the trajectory distribution p(x|ψ) is smaller than |Y|, Y will always
have similar trajectories, thus making det(L(γ)) always close to zero. In such cases, optimizing the
negative log likelihood causes numerical issues, which is observed in our early experiments.
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Instead, the expected cardinality of the DPP is a better measure for the diversity of Y , which is
defined as EY ∼PL(γ)

[|Y |]. Intuitively, since the DPP discourages selection of similar items, if Y is
more diverse, a random subset Y drawn according to the DPP is more likely to select more items
from Y , thus having larger cardinality. The expected cardinality can be computed as:

E[|Y |] =

N∑
n=1

λn
λn + 1

= tr
(
I− (L(γ) + I)−1

)
. (10)

The main advantage of the expected cardinality is that it is well defined even when the ground set
Y has duplicated items, since it does not require all eigenvalues of L to be non-zero as the log
likelihood does. Thus, our diversity loss is defined as Ldiverse(γ) = −tr

(
I− (L(γ) + I)−1

)
. The

training procedure for Sγ(ψ) is outlined in Alg. 2.

Inference. At test time, given current context ψ,we use the learned DSF Sγ(ψ) to generate the fu-
ture trajectory ground set Y . In some cases, Y may still contain some trajectories that are similar to
others. In order to obtain a diverse set of trajectories without repetition, we aim to perform MAP in-
ference for the DPP to find the most diverse subset Y ∗ = arg maxY ∈Y PL(γ)(Y ). A useful property
of DPPs is that the log-probability function is submodular (Gillenwater et al., 2012). Even though
submodular maximization is NP-hard, we use a greedy algorithm (Nemhauser et al., 1978) which is
a popular optimization procedure that works well in practice. As outlined in Alg. 3, the output set
Yf is initialized as ∅, and at each iteration, the trajectory which maximizes the log probability

x∗ = arg max
x∈Y\Yf

log det
(
LYf∪{x}

)
(11)

is added to Yf , until the marginal gain becomes negative or Yf = Y .

5 EXPERIMENTS

The primary focus of our experiments is to answer the following questions: (1) Are trajectory sam-
ples generated with our diversity sampling function more diverse than samples from the cVAE and
other baselines? (2) How does our method perform on both balanced and unbalanced data? (3) Is
our method general enough to perform well on both low-dimensional and high-dimensional tasks?

Context Future

Figure 2: In real data, contexts
(past trajectories) are seldom the
same due to noise.

Metrics. A problem with trajectory forecasting evaluation is
that in real data each context ψ(i) usually only has one future
trajectory x(i), which means we only have one sample from a
multi-modal distribution. Let us consider a scenario of three
data examples {x(i),ψ(i)}3i=1 as shown in Fig. 2 (red, purple,
blue). The contexts (past trajectories) of the three examples are
instances of the same trajectory but they are slightly different
due to noise. As these three contexts have the same seman-
tic meaning, they should share the future trajectories, e.g., the
purple and blue future trajectories are also valid for the red
context. If we evaluate each example (x(i),ψ(i)) only with its
own future trajectory x(i), a method can achieve high scores by only forecasting the mode corre-
sponding to x(i) and dropping other modes. This is undesirable because we want a good method to
capture all modes of the future trajectory distribution, not just a single mode. To allow for multi-
modal evaluation, we propose collecting multiple future trajectories for each example by clustering
examples with similar contexts. Specifically, we augment each data example (x(i),ψ(i)) with a
future trajectory set X (i) = {x(j)|‖ψ(j) − ψ(i)‖ ≤ ε, j = 1, . . . ,M} and metrics are calculated
based on X (i) instead of x(i), i.e., we compute metrics for each x ∈ X (i) and average the results.

We use the following metrics for evaluation: (1) Average Displacement Error (ADE): average
mean square error (MSE) over all time steps between the ground truth future trajectory x and the
closest sample x̃ in the forecasted set of trajectories Yf . (2) Final Displacement Error (FDE): MSE
between the final ground truth position xT and the closest sample’s final position x̃T . (3) Average
Self Distance (ASD): average L2 distance over all time steps between a forecasted sample x̃i and
its closest neighbor x̃j in Yf . (4) Final Self Distance (FSD): L2 distance between the final position
of a sample x̃Ti and its closest neighbor’s final position x̃Tj . The ADE and FDE are common metrics

6



Under review as a conference paper at ICLR 2020

DSF (Ours) cVAE MCL R2P2 cGAN

Balanced
Data

Unbalanced
Data

Figure 3: Qualitative results on synthetic data for both balanced and unbalanced data distribution
when N = 10. Blue represents the past trajectory and red represents forecasted future trajectories.

Balanced Data Unbalanced Data

Method ADE ↓ FDE ↓ ASD ↑ FSD ↑ ADE ↓ FDE ↓ ASD ↑ FSD ↑
DSF (Ours) 0.182 0.344 0.147 0.340 0.198 0.371 0.207 0.470
cVAE 0.262 0.518 0.022 0.050 0.332 0.662 0.021 0.050
MCL 0.276 0.548 0.012 0.030 0.457 0.938 0.005 0.010
R2P2 0.211 0.361 0.047 0.080 0.393 0.776 0.019 0.030
cGAN 0.808 1.619 0.018 0.010 1.784 3.744 0.006 0.001

Table 1: Quantitative results on synthetic data (numbers scaled by 10) when N = 10.

used in prior work on trajectory forecasting (Alahi et al., 2016; Lee et al., 2017; Rhinehart et al.,
2018; Gupta et al., 2018). However, these two metrics do not penalize repeated samples. To address
this, we introduce two new metrics ASD and FSD to evaluate the similarity between samples in
the set of forecasted trajectories. Larger ASD and FSD means the forecasted trajectories are more
non-repetitive and diverse.

Baselines. We compare our Diversity Sampler Function (DSF) with the following baselines:
(1) cVAE: a method that follows the original sampling scheme of cVAE by sampling latent codes
from a Gaussian prior p(z). (2) MCL: an approach that uses multiple choice learning (Lee et al.,
2016) to optimize the sampler Sγ(ψ) with the following loss: Lmcl = minx̃∈Y ‖x̃−x‖2, where x is
the ground truth future trajectory. (3) R2P2: a method proposed in (Rhinehart et al., 2018) that uses
a reparametrized pushforward policy to improve modeling of multi-modal distributions for vehicle
trajectories. (4) cGAN: generative adversarial networks (Goodfellow et al., 2014) conditioned on
the forecasting context. We implement all baselines using similar networks and perform hyperpa-
rameter search for each method for fair comparisons. For methods whose samples are stochastic,
we use 10 random seeds and report the average results for all metrics.

5.1 SYNTHETIC 2D TRAJECTORY DATA

We first use synthetic data to evaluate our method’s performance for low-dimensional tasks. We
design a virtual 2D traffic scene where a vehicle comes to a crossroad and can choose three different
future routes: forward, left, and right. We consider two types of synthetic data: (1) Balanced data,
which means the probabilities of the vehicle choosing one of the three routes are the same; (2)
Unbalanced data, where the probabilities of the vehicle going forward, left and right are 0.8, 0.1,
0.1, respectively. We synthesize trajectory data by simulating the vehicle’s behavior and adding
Gaussian noise to vehicle velocities. Each data example (x(i),ψ(i)) contains future trajectories of 3
steps and past trajectories of 2 steps. We also add an obstacle map around the current position to the
context ψ(i). In total, we have around 1100 training examples and 1000 test examples. Please refer
to Appendix B for more implementation details.

Table 1 summarizes the quantitative results for both balanced and unbalanced data when the sam-
pling budget N is 10. We can see that our method DSF outperforms the baselines in all metrics in
both test settings. As shown in Fig. 3, our method generates more diverse trajectories and is less
affected by the unbalanced data distribution. The trajectory samples of our method are also less
repetitive, a feature afforded by our DPP formulation. Fig. 4 shows how ADE changes as a function
of the sampling budget N .
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Figure 4: ADE vs. N for synthetic data and human motion forecasting. cGAN is not shown in this
plot as it is much worse than other methods due to mode collapse.

DSF (Ours) cVAE

MCL cGAN

Start
Pose

Figure 5: Qualitative results for human motion forecasting whenN = 10. The left shows the starting
pose, and the right shows for each method the final pose of all 10 forecasted motion samples.

5.2 DIVERSE HUMAN MOTION FORECASTING

Method ADE ↓ FDE ↓ ASD ↑ FSD ↑
DSF (Ours) 0.259 0.421 0.115 0.282
cVAE 0.332 0.642 0.034 0.098
MCL 0.344 0.674 0.036 0.122
cGAN 0.652 1.296 0.001 0.003

Table 2: Quantitative results on for human motion
forecasting when N = 10.

To further evaluate our method’s performance
for more complex and high-dimensional tasks,
we apply our method to forecast future hu-
man motions (pose sequences). We use motion
capture to obtain 10 motion sequences includ-
ing different types of motions such as walking,
turning, jogging, bending, and crouching. Each
sequence is about 1 minute long and each pose
consists of 59 joint angles. We use past 3 poses
(0.1s) to forecast next 30 poses (1s). There are around 9400 training examples and 2000 test exam-
ples where we use different sequences for training and testing. More implementation details can be
found in Appendix B.

We present quantitative results in Table 2 and we can see that our approach outperforms other meth-
ods in all metrics. As the dynamics model used in R2P2 (Rhinehart et al., 2018) does not generalize
well for high-dimensional human motion, we find the model fails to converge and we do not com-
pare with it in this experiment. Fig. 4 shows that our method achieves large improvement when the
sampling budget is big (N = 50). We also present qualitative results in Fig. 5, where we show the
starting pose and the final pose of all 10 forecasted motion samples for each method. We can clearly
see that our method generates more diverse future human motions than the baselines. Please refer to
Appendix C and our video for additional qualitative results.

6 CONCLUSION

We proposed a novel forecasting approach using a DSF to optimize over the sample space of a
generative model. Our method learns the DSF with a DPP-based diversity measure to generate a
diverse set of trajectories. The diversity measure is a novel application of DPPs to optimize a set of
items in continuous space. Experiments have shown that our approach can generate more diverse
vehicle trajectories and human motions compared to state-of-the-art baseline forecasting approaches.
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A ALGORITHMS

Algorithm 1 Training the cVAE

1: Input: Training data {x(i),ψ(i)}Mi=1
2: Output: cVAE encoder network fφ(x,ψ) and decoder network gθ(z,ψ)
3: Initialize φ and θ randomly
4: while not converged do
5: for each (x(i),ψ(i)) do
6: Compute parameters (µ,σ) of the posterior distribution qφ(z|x,ψ) using fφ(x,ψ)
7: Sample V Gaussian noises {ε1, . . . , εV } from N (0, I)
8: Transform noises to latent samples from qφ(z|x,ψ): zv = µ+ σ � εv
9: Decode latent samples into reconstructed trajectories {x̃1, . . . , x̃V } using gθ(z,ψ)

10: Calculate the cVAE loss Lcvae according to Eq. 6
11: Update φ and θ with∇φLcvae and∇θLcvae
12: end for
13: end while

Algorithm 2 Training the diversity sampling function (DSF) Sγ(ψ)

1: Input: Training data {x(i),ψ(i)}Mi=1, cVAE decoder network gθ(z,ψ)
2: Output: DSF Sγ(ψ)
3: Initialize γ randomly
4: while not converged do
5: for each ψ(i) do
6: Generate latent codes Z = {z1, . . . , zN} with the DSF Sγ(ψ)
7: Generate the trajectory ground set Y = {x1, . . . ,xN} with the decoder gθ(z,ψ)
8: Compute the similarity matrix S and quality vector r with Eq. 8 and 9
9: Compute the DPP kernel L(γ) = Diag(r) · S · Diag(r)

10: Calculate the diversity loss Ldiverse
11: Update γ with the gradient∇Ldiverse
12: end for
13: end while

Algorithm 3 Inference with the DSF Sγ(ψ)

1: Input: Context ψ, DSF Sγ(ψ), cVAE decoder network gθ(z,ψ)
2: Output: Forecasted trajectory set Yf
3: Generate latent codes Z = {z1, . . . , zN} with the DSF Sγ(ψ)
4: Generate the trajectory ground set Y = {x1, . . . ,xN} with the decoder gθ(z,ψ)
5: Compute the DPP kernel L = Diag(r) · S · Diag(r)
6: Yf ← ∅, U ← Y
7: while U is not empty do
8: x∗ ← arg maxx∈U log det

(
LYf∪{x}

)
9: if log det

(
LYf∪{x∗}

)
− log det

(
LYf

)
< 0 then

10: break
11: end if
12: Yf ← Yf ∪ {x∗}
13: U ← U \ {x∗}
14: end while
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B IMPLEMENTATION DETAILS

Encoder Decoder DSF

Networks for Synthetic Data

Networks for Human Motion

LSTM Cell

MLP Layer

CNN

... ...
...

...

Encoder Decoder DSF

Figure 6: Network architectures for synthetic data and human motion. Top: for synthetic data, we
use a CNN to process the obstacle map f and directly flatten trajectories x and h into vectors. The
reconstructed trajectory x̃ is decoded with an MLP. Bottom: for human motion, we use Bi-LSTMs
to extract temporal features for x and h and decode the reconstructed trajectory x̃ with a forward
LSTM.

B.1 NETWORK ARCHITECTURES

Synthetic data. Figure 6 (Top) shows the network architecture for synthetic data. The number of
latent dimensions is 2. By default, we use ReLU activation for all networks. The future trajectory
x ∈ R3×2 consists of 3 future positions of the vehicle. The context ψ contains past trajectories
h ∈ R2×2 of 2 time steps and a obstacle map f ∈ {0, 1}28×28 spanning a 4 × 4 area around
the current position of the vehicle (the road width is 2). For the encoder, we use a convolutional
neural network (CNN) with three 32-channel convolutional layers to process f . The first two layers
have kernel size 4 and stride 2 while the last layer has kernel size 6 and stride 1. The obtained
CNN features are concatenated with flattened x and h into a unified feature, which is feed into a
multilayer perceptron (MLP). The MLP has one 128-dim hidden layer and two heads outputing the
mean µ and variance σ of the latent distribution. For the decoder, we concatenate the CNN feature
from f with the latent code z ∈ R2 and flattened h into a unified feature. The feature is passed
through an MLP with one 128-dim hidden layer which outputs the reconstructed future trajectory
x̃ ∈ R3×2. For the diversity sampler function (DSF), we concatenate the CNN feature from f with
the flattened h and pass it through an MLP with one 128-dim hidden layer to obtain a set of latent
codes {z1, . . . , zN} which are represented by a vector of length 2N .

Human motion. Figure 6 (Bottom) shows the network architecture for synthetic data. The number
of latent dimensions is 8. The future trajectory x ∈ R30×59 consists of future poses of 30 time steps
(1s). The context ψ contains past poses h ∈ R3×59 of 3 time steps (0.1s). Each pose consists of
59 joint angles. For the encoder, we use two 128-dim bidirectional LSTMs (Bi-LSTMs) and mean
pooling to obtain the temporal features for x and h. We then concatenate the temporal features into
a unified feature and feed it into an MLP with two hidden layers (300, 200) and two heads to obtain
the mean µ and variance σ of the latent distribution. For the decoder, we reuse the Bi-LSTM of
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the encoder for the context h and a 128-dim forward LSTM to decode the future trajectory x̃. At
each time step t, the forward LSTM takes as input the previous pose x̃t−1 (hH for t = 0), the latent
code z ∈ R8 and the temporal features from h, and outputs a 128-dim feature. The feature is then
passed through an MLP with two hidden layers (300, 200) to generate the reconstructed pose x̃t.
For the DSF, we use a different 128-dim Bi-LSTM to obtain the temporal feature for h, which is
feed into an MLP with a 128-dim hidden layer to produce a set of latent codes {z1, . . . , zN} which
are represented by a vector of length 8N .

B.2 TRAINING AND EVALUATION

When training the cVAE model using Eq. 7, we take V = 1 sample from the posterior qφ(z|x,ψ).
The weighting factor β for the KL term is set to 0.1 for synthetic data and 1e-4 for human motion.
We use Adam Kingma and Ba (2014) to jointly optimize the encoder and decoder. The learning rate
is set to 1e-4 and we use a mini batch size of 32 for synthetic data. We optimize the model for 500
epochs for synthetic data and 100 epochs for human motion.

When training the DSF, the scale factor k for the similarity matrix S is set to 1 for synthetic data and
1e-2 for human motions. For both synthetic data and human motions, we use Adam with learning
rate 1e-4 to optimize the DSF for 20 epochs.

Recall that in the metrics section (Sec. 5.1), we need the grouping threshold ε to build the ground
truth future trajectory set X (i) = {x(j)|‖ψ(j) −ψ(i)‖ ≤ ε, j = 1, . . . ,M}. For synthetic data, ε is
set to 0.1 and we only use past trajectories h to compute the distance between contexts. For human
motion, ε is set to 0.5.
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C ADDITIONAL VISUALIZATION

We also show additional qualitative results for human motion forecasting in Fig. 7. The quality and
diversity of the forecasted motions are best seen in our supplementary video1.

Figure 7: Additional visualization for human motion forecasting. The left shows the starting pose,
and on the right we show for each method the final pose of 10 forecasted motion samples.

1https://www.dropbox.com/s/setvvg6t3nqd5ee/dpp demo.mp4
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