Under review as a conference paper at ICLR 2020

AUTOENCODERS AND GENERATIVE ADVERSARIAL
NETWORKS FOR IMBALANCED SEQUENCE CLASSIFI-
CATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce a novel synthetic oversampling method for variable length, multi-
feature sequence datasets based on autoencoders and generative adversarial net-
works. We show that this method improves classification accuracy for highly
imbalanced sequence classification tasks. We show that this method outperforms
standard oversampling techniques that use techniques such as SMOTE and au-
toencoders. We also use generative adversarial networks on the majority class
as an outlier detection method for novelty detection, with limited classification
improvement. We show that the use of generative adversarial network based syn-
thetic data improves classification model performance on a variety of sequence
data sets.

Dealing with imbalanced datasets is the crux of many real world classification problems. These
problems deal with complex multivariate data such as variable length, multi-feature sequence data.
Canonical examples can be found in the finance world, for example, questions related to stock
market data of several securities or credit card fraud detection often deal with sequence data with
many features. Other imbalanced data problems include questions in the medical field such as tumor
detection and post surgery prognosis (Zigba et al., [2014). In each of these problems, false positives
are more desirable than false negatives, they require sequential data, and the classes are imbalanced.

Class imbalances in datasets oftentimes lead to increased difficulty in classification problems as
many machine learning algorithms assume that the dataset is balanced. There are two general ap-
proaches to improve classification accuracy for unbalanced datasets. One method is algorithmic, for
example, a modified loss function can be used so that misclassifications of minority labeled data are
penalized more heavily than misclassifications of majority labeled data (Geng & Luo, [2019). The
other is to decrease data imbalances in the training set either by ensembling the data or by generating
synthetic training data to augment the amount of data in the minority set.

This motivates the development of methods to improve classification accuracy on variable length,
multi-feature sequence data. Given a sequence of 7' feature vectors, we want to predict labels of
the sequence. Oftentimes it is not obvious how to apply methods for unbalanced data to sequence
data in a way that takes advantage of the fact that sequential events have the potential to be highly
correlated. SMOTE (Chawla et al., |2002) is widely used for oversampling, but does not capture
the sequential dimension. Enhanced Structure Preserved Oversampling (ESPO) (Cao et al.| [2013)
allows one to generate synthetic data that preserves the sequence structure, however it requires that
the feature vector has only a single feature at each of the 7T' time points and that the output label
is a scalar. As there is no obvious extension to the case where there are multiple features at each
time point and the output is also a sequence of labels, the situations where ESPO can be applied are
limited.

We develop a method based on deep learning models for sequences in order to decrease data imbal-
ances of sequence data with an arbitrary number of features. We call each feature vector, z; € R",
an event in the sequence. We consider the use of generative adversarial networks (GANs) to gen-
erate synthetic data. Here, we build a generative model that generates both the feature vectors
in a sequence as well as the corresponding labels. We benchmark this synthetic data generation
technique against a number of models. We demonstrate that the model trained on the GAN based
synthetic data outperforms the baseline model, other standard synthetic data generation techniques,
and a GAN based novelty detection method. For each of the synthetic data generation methods, we
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train a sequence-to-sequence model (Sutskever et al.l |2014) on the dataset that outputs a sequence
with the same length as the label sequence. In addition to benchmarking against existing synthetic
data generation techniques, we also train a model on the unaugmented dataset. All of the models are
embedded within the standard ensemble approach. On all of our datasets, we observe that the GAN
based synthetic data generation model significantly improves over the baseline models by 15% to
127% depending on the dataset, while the novelty detection based GAN performs similarly to the
baseline model.

The main contributions are as follows:

1. a novel synthetic data generation technique that uses a GAN to generate synthetic data
for variable length, multi-feature sequential data in a way that preserves the structure of
sequences for both feature vectors and labels;

2. anew novelty detection method for sequential data that uses a GAN as an outlier detection
function;

3. a computational study of existing imbalanced classification techniques on highly imbal-
anced sequential datasets.

In the next section, we discuss relevant literature. Section 3 discusses all of the models, while the
computational results are presented in Section 4.

1 LITERATURE REVIEW

Many methods exist for imbalanced data. The majority of these methods are developed for non-
sequential data and generally take one of two approaches. The first approach is algorithmic and
either involves altering the loss function or performance metric in a way that emphasizes the correct
classification of the minority set. The second approach is to decrease the data imbalance either by
resampling or by generating synthetic minority data such that the training data is more balanced.

The benefit of using algorithmic methods is that they have a straightforward application to sequence
data as we can calculate the loss and accuracy the same way for both a vector and a scalar. Methods
that are commonly used include a weighted loss function in which the loss of misclassifying minority
data is greater than the loss of misclassifying majority data (Sun et al.l [2007; |Geng & Luo, [2019).
We implement a weighted loss function in all our models.

In contrast to the algorithmic methods, we can instead consider data level methods that strive to
balance the two classes. There have been many different methods that are developed to balance
the dataset without generating synthetic minority data. Since these methods alter how the training
set is built, applying them to sequence data is straightforward. Both ensembling and data sampling
techniques fall under this category. Ensemble methods take the original training set and build subsets
of the training set such that the sizes of the minority and majority sets are more balanced (Galar et al.,
2012). On the other hand, other methods for dataset creation involve over- or under-sampling (Kubat
& Matwinl, [1997). Ensemble methods generally outperform over- and under-sampling methods
alone so we use ensembles in all our experiments.

Another data level method that can mitigate the class imbalance problem is to generate synthetic
minority data. SMOTE (Chawla et al., 2002) is one of the most widely used methods for generat-
ing synthetic minority data. For this method, synthetic data is generated via interpolation between
nearest neighbors in the minority set. There are many extensions to SMOTE that aim to increase
classification performance by sharpening the boundary between the two classes. One such example
is ADASYN (He et al., |2008), which explores the composition of the nearest neighbors to deter-
mine how many synthetic data points to generate and how to generate them. Neither SMOTE nor
ADASYN cannot be used to oversample sequence data because these methods build a synthetic fea-
ture vector by independently interpolating between the real data points, so the framework cannot
capture correlation in time. However, methods have been developed that use an autoencoder and
apply SMOTE in the latent space in order to oversample sequence data (Lim et al., [2018]).

Structure Preserving Oversampling and ESPO are the only methods, to the best of our knowledge,
that exist for dealing with unbalanced sequence data (Cao et al.,|2011;2013)). To generate synthetic
sequence data, these methods use the covariance structure of the minority data in order to build
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synthetic minority data that captures the sequential structure. They are developed for single feature
sequences and there is not a straightforward extension to data that has multiple features for each
event. This is because we cannot calculate the covariance matrix for each feature independently
since features may interact with each other in different ways at different events.

Another method for synthetic data generation are GANs (Goodfellow et al., 2014). This model
pits a generator model, which generates synthetic data, and a discriminator model, which tries to
distinguish between real and synthetic data, against each other. By pitting the models against each
other, it trains both the generator and discriminator, and once the generator has been trained, we
can use it to generate synthetic minority data. While this approach has been applied to both image
data (Zenati et al., 2018)) and sequence data (Yu et al| 2017), they have not yet been developed
to oversample sequence data. GAN based models designed for sequence data have been used for
synthetic text generation, but as this architecture is not designed for classification, the sequence class
is not considered. These models cannot generate both a sequence and the associated labels.

Both SMOTE and GAN based synthetic data generation techniques have been shown to improve
classification performance for certain types of highly imbalanced datasets such as image data or
single feature sequences. These models have not yet been developed to sequence data with an
arbitrary number of features as even methods developed for generating sequential synthetic data
cannot deal with sequence data with more than one feature. GAN based models cannot be directly
applied to synthetic minority data generation as the output from the generator is an embedding of
the input sequence. So while these methods improve a classifier’s performance, unlike the other
data-level methods and the algorithmic methods, they have not yet been developed and applied to
generic sequence data.

Historically, anomaly detection methods generally use a model such as PCA or SVM to determine
which data points are outliers and thus are more likely to be in the minority class (Scholkopf et al.,
2000; |Hoffmann, [2007; Ma & Perkins,2003;Shyu et al.,[2003). However, novelty detection methods
can be improved by the use of more complex outlier detection methods. In deep learning, various
LSTM based autoencoder models have been used in novelty detection methods for sequence data
so that the outlier detection model can exploit the structure of the data (Marchi et al., 2015; 2017}
Principi et al.| [2017; |Schreyer et al 2017). For the same reason, GANs have also been used for
novelty detection methods for both image and sequence data (Wang et al., 2018} |Chang et al.,|[2019aj
Rajendran et al.,|2018};|Chang et al.,|2019b).

2 APPROACHES

We assume that we have sequences © = (z1,...27) € X and associated labels y = (y1,...,y5) €
Y where each x; has n features and L labels to predict. Sequence length 7' can vary by sequence.
We also assume there is a dominant label sequence called majority and all other label sequences
are minority. Since we focus on minority sequences, all our synthetic oversampling methods also
work with no modification in the presence of multiple majority classes. For the baseline model,
we consider a sequence-to-sequence (seq2seq) architecture. This is an encoder-decoder architecture
where the entire sequence is represented by an s dimensional hidden vector 19, the encoder hidden
state at the final event. We then use this vector, h%, as the input to the decoder model at each event.
The model can be written as

h? = ng(hgflvxt)a te [17T]
hi = fa,(hi_1,hT), L € [1, L]

0¢ = softmax(hy})

where fgm , f91D are cell functions such as LSTM or GRU and oy is the ¢! predicted label (Sutskever
et al., 2014). In our experiments, we use a seq2seq model with attention (Bahdanau et al.| [2014)
and a weighted loss function where the weights are proportional to class balance as the classification
method. The output of this seq2seq model is of the same length as the label sequence. We ensemble
the data into K ensembles where each ensemble contains a subset of the majority data and all of the
minority training data and in inference, we average the predictions from each ensemble. In order to
evaluate the synthetic data generation techniques, we train seq2seq models both with and without
synthetic minority data and compare the results.
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2.1 ADASYN ON AUTOENCODERS

In a straightforward application of SMOTE to sequences, we reshape x to a vector and then apply the
SMOTE algorithm directly to z. In addition, by reshaping the label y, we can interpolate between
the label vectors associated with the samples used to generate the synthetic sample. This creates
a fractional valued label that has to be converted to a binary one if the underlying model requires
it. However, this method can only be applied to sequences of the same length since it does not
make sense to interpolate between variable length inputs. As we consider variable length sequences,
we cannot directly apply SMOTE to these imbalanced datasets. In order to provide a baseline to
compare the GAN based synthetic minority technique against, we consider how SMOTE can be
applied to variable length sequences. We discuss the how ADASYN can be applied to variable
length sequences and its advantages over SMOTE in Appendix [A.T]

2.2 GENERATIVE ADVERSARIAL NETWORK BASED TECHNIQUES
2.2.1 GAN BASED SYNTHETIC DATA

We develop a GAN that is capable of generating both sequences, z, and associated label vectors y.
As in any GAN model, we must build both a generator and a discriminator and train the models by
pitting them against each other. The model that we discuss is based on the improved Wasserstein
GAN (Gulrajani et al., 2017} /Arjovsky et al.L|2017). Recall that in the standard baseline classification
model, we use a seq2seq model to get sequences h, and h,, of hidden states from sequences x and
labels y, respectively. For the generator model, Gy, ¢y, (2,7, y) We use a seq2seq model with
LSTM cells to get hidden state sequences h, and h,. We include an additional argument z to
initialize the cell state for the generator. For the true data, we set z to 0 and for the fake data we
use z ~ N(0,I). The model is able to distinguish between x and y since z is the input for the
generator encoder and y is the input for the generator decoder. The parameters ¢y, and ¢pn,
correspond to x and y, respectively. The discriminator model, Dy, ., (ha,hy) uses a seq2seq
model trained on the hidden sequences h,, and h,, to get a real valued output, c. As in the generator,
¢p, are parameters corresponding to x and ¢p, to y. The loss function compares the outputs from
the discriminator model for the real and fake data.

Decoder !

,,,,,,,,,

Encoder |

Fake |
z |

Generator

Figure 1: Overview of GAN model. Sequences and labels are used as input to GAN and both the
discriminator and decoder use the outputs from the generator model.

We also need a component of the model to decode h, and h, in a meaningful way. Therefore, we
have a seq2seq based autoencoder, Ay, x érn, 605, .60, (T,Y), that takes as input z and y, creates
hidden sequences h, and h,, and then reconstructs £ and . The autoencoder shares the encoding
part with the generator.



Under review as a conference paper at ICLR 2020

In Figure [T the GAN with autoencoder structure is sketched out. For model training, we use the
loss function

L= E[D¢D1 ,éDy (G¢EN1 JPEN, (2,7, y))] - E[D¢D1 Dy (G¢EN1 PEN, (0,2, y))]
2
( -1)
2
2
] (1)
2

where )\ and p are tunable hyperparameters. All expectations are with respect to the minority
sequences (z, y).

+ A\E
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During training, we want to prevent the discriminator from learning too quickly so that the generator
can learn. We use Adam (Kingma & Adaml [2015), and set the discriminator learning rate lower than
the generator learning rate to prevent the discriminator from learning too quickly. To further slow
down discriminator training, we add noise to generator outputs and decrease the noise as model
training progresses (Chintala et al.,[2016).

During model training, we train the generator, discriminator and autoencoder weights on different
batches of data. We first update the weights associated with the generator, ¢y, and ¢ n,, by con-
sidering all terms in the loss function. Next, we update the weights associated with the discriminator,
¢p, and ¢ p,, by including the first three terms of the loss function as the autoencoder loss term does
not depend on the discriminator weights. Finally, we update the weights associated with the decoder
part of the autoencoder, ¢ pg, and ¢pg,, using the last term of the loss function. The weights of the
encoder part of the autoencoder are shared with the generator, so they are not updated along with
the rest of the autoencoder weights. For datasets with a single label prediction, we consider a GAN
with autoencoder model, where instead of a seq2seq architecture for each of the model components,
we use LSTM cells and the input to the generator is  and z. We then assign the minority label to
generated minority data.

Once we have trained the generator in conjunction with the discriminator and autoencoder, we can
use the generator and the decoder part of the autoencoder to generate synthetic minority data. As
this model is trained only on the minority dataset, we require a reasonably sized minority training
set. In our experiments, we consider minority training sets with at least 1000 samples. We generate
3 synthetic samples from each minority sample in the training dataset by feeding in vectors z ~
N (0, 1) into model and using the autoencoder output as synthetic minority data. We expect that with
random noise z will slightly perturb the minority data in order to generate novel synthetic minority
samples instead of simply oversampling existing minority data. This method should improve on the
ADASYN with autoencoder model as it allows for the simultaneous generation of both the sequences
and associated label vectors. We discuss how this model can be used to for novelty detection when
trained on the majority data in Appendix

3 COMPUTATIONAL STUDY

We consider three imbalanced datasetﬂ Each of these datasets consists of multi-feature sequence
data where the data imbalance is less than 5% (it can be as low as 0.1%). The first dataset is a
proprietary medical device dataset where the data comes from medical device outputs. The second
dataset we consider is a sentiment analysis dataset that classifies IMDB movie reviews as positive
or negative (Maas et al.,2011). Though the data is initially balanced, for this paper, we downsample
the positive class in order to use it for an anomaly detection task. Lastly, we consider a power con-
sumption dataselﬂ where the goal is to predict if voltage consumption changes significantly. A class
corresponds to whether the voltage change is considered significant. For the medical device dataset
and IMDB sentiment dataset, we make a single label prediction and thus we consider the seq2one
model for both these datasets. For the power consumption dataset, we consider both the seq2seq
and seq2one tasks to show that the GAN with autoencoder generated synthetic data improves model

'Code and data are available at 't o-be-added
Zhttps://archive.ics.uci.edu/ml/datasets/individual+household+electric+power-+consumption
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performance in both cases. For each dataset, we report the minority class F1 score on the test set. If
there are multiple minority classes, we report the average F1 score of the minority classes. Details
of model implementation are available in Appendix [B]

3.1 MEDICAL DEVICE DATA

In this dataset, the data is a sequence of readouts from medical devices and the labels indicate if a
user error occurs. The sequence length is on average 50 and there are around 50 features. We have
on order of 1 million samples and less than 1% of the samples are from the minority class. We make
5 runs, each one with a different seed, and thus each run has different ensemble models.

Table 1: Test F1-Scores for Each Seed

Run Baseline GAN-!Jased ADASYN GAN Discrimingtor GAN Autoenco.der
Synthetic Data | Autoencoder | Novelty Detection Novelty Detection

0 0.79% 2.02% 0.52% 0.50% 1.27%

1 1.77% 3.15% 0.30% 0.50% 1.14%

2 1.28% 2.06% 0.50% 0.32% 1.26%

3 1.29% 1.72% 0.49% 0.50% 1.00%

4 0.68% 1.79 % 0.52% 0.50% 1.17%

Average 1.16% 2.15% 0.47% 0.46% 1.17%
Standard Deviation 0.44% 0.58% 0.09% 0.08% 0.11%

Comparing the results of each of the proposed methods against the baseline in Table [l we observe
that the only method that significantly improves classification accuracy is the GAN-based synthetic
data model with p-value = 0.01 based on the t-test. Surprisingly, using the ADASYN Autoencoder
generated synthetic data leads to a substantial decrease in the F1-score, suggesting that this synthetic
data technique does not capture the structure of the minority data. This suggests that interpolation
in the autoencoder latent space is not sufficient, and the GAN component of the autoencoder is
necessary. We also note that the difference in the F1-score between the two novelty detection meth-
ods is significant with p-value=2.8e-6 according to the t-test. We observe that the choice of outlier

detection is important for novelty detection.

Confusion Matrix Comparison

majority 60

True label

minority

& B&‘\

Predicted label
Figure 2: Differences Between Predictions for GAN Minority and Baseline Models

To explore how the models trained on the synthetic data improve on the baseline models, we examine
the difference between the confusion matrix of predictions on the test set for a model trained with
and without the GAN-based synthetic data. In Figure[2] we note that a number of false negatives and
false positives in the baseline model are converted to true positives and true negatives, respectively
in the model trained on the GAN-based synthetic data.

Examining the classification of true minority and synthetic minority samples in the GAN-based
synthetic data training set, we observe that the trained model is better at correctly classifying the
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synthetic minority samples than the true minority samples which is interesting. For run 0, the F1-
score for the true minority training samples is 0.4036 while the F1-score for the synthetic minority
training samples is 1. This also reveals that the model overfits since the test F1-score is much lower.
This is not surprising for such a heavily imbalanced dataset.

3.2 SENTIMENT

We consider all reviews under 600 words long and front pad reviews so that all samples in our dataset
are of length 600. We then use the GoogleNews trained word2vec model to embed the dataset. In
order to make this dataset imbalanced, we downsample the positive reviews to create two datasets
where the positive reviews comprise 1% and 5% of the training set respectively and then ensemble
the training dataset. The resulting dataset is comprised of around 25 thousand samples with 20% in
test. Training models on this dataset is computationally expensive because of the sequence length,
so we only consider a single run for these experiments.

Table 2: Test F1-Scores

Data Imbalance | Baseline GAN-based ADASYN GAN Discriminator | GAN Autoencoder
Synthetic Data | Autoencoder | Novelty Detection Novelty Detection

1% 7.80% 17.76 % 0.00% 2.36% 1.86%

5% 56.75% 52.85% 9.47% 9.63% 9.46%

In Table 2] we compare the results of each of the proposed methods against the baseline. The only
method that significantly improves the F1-score is the model trained on the GAN-based synthetic
data. We also note that with 5% imbalance, the baseline model performance on the ensembles is
high enough that the anomaly detection methods we consider do not improve performance. This
suggests that these synthetic data generation techniques are only effective for highly imbalanced
datasets.

t-SNE Embedding of Minority Training Data
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Figure 3: t-SNE Embedding of Minority Data

For this dataset, we conclude that 5% imbalance is an upper bound for which the proposed anomaly
detection techniques can be used. However, studying classification of true minority and synthetic
minority samples in the GAN-based synthetic data, we notice that the trained model correctly identi-
fies all minority samples in the training set, both true and synthetic. This suggests that the sentiment
analysis task is an easier task.

To understand how well the GAN-based synthetic data training set is able to capture the structure of
the minority data, we use t-SNE to embed a subset of the true and synthetic minority training data
so it can be visualized. In Figure[3] it is clear that the true minority data falls along a line and all but
two synthetic minority samples also fall along the same line. As the synthetic samples are staggered
along the line, it suggests that for the most part, the synthetic minority data successfully mimics the
minority data.
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3.3 POWER
We use a dataset of power usage in a given household in trying to predict if voltage usage changes

significantly. Sequences are of length 20 and there are 6 features. We have around 2 million sample
and approximately 2% of the samples are in the minority class.

Test F1-Scores

F1-Score (%)

Baseline GAN-based ADASYN GAN Discriminator GAN Autoencoder
Synthetic Data Autoencoder  Novelty Detection Novelty Detection
Model

Figure 4: Bar Plot of Test F1-Scores for Each Model

Comparing the results of each of the proposed methods against the baseline in Figure[d] we conclude
that the only method that significantly improves the F1-score is the model trained on the GAN-based
synthetic data. To test the significance of this improvement, we generate ensembles using 5 different
seeds and train a baseline and GAN-based synthetic data model on each run. In the five runs,
the average baseline F1-score is 4.45%, the average F1-score for the GAN-based synthetic data is
5.10%, and the improvement with the GAN-based synthetic data is significant with p-value=0.018
based on the t-test.

Note that the relative difference in the F1-score between the baseline model and the GAN-based
synthetic data model is about 15% and lower than either the Medical Device or Sentiment dataset.
As the Power dataset has fewer features than the other two datasets, we observe that the GAN-based
synthetic data is better able to capture the data structure for more complex sequences.

On this dataset, we also consider sequences where the associated label vectors are of length 4 by
predicting if the voltage change is significant for 4 time periods. As before, sequences are of length
20. We consider a sample as minority if the voltage change is significant in any of the 4 time periods.
Approximately 7% of the data is in the minority class. We only consider the GAN-based synthetic
data model on this dataset as it is the only model that improves on the baseline in Figure 4] The
average baseline F1-score is 0.25% and the average F1-score for the GAN-based synthetic data is
0.59%. Though the imbalance is lower, it is unsurprising that the Fl-score is so low as we are
making 4 predictions for each sequence. We do not do multiple runs for this dataset as the relative
F1-score increase is high. We conclude that the GAN-based synthetic data can be used to improve
model performance for datasets with label sequences.

4 CONCLUSIONS

We have presented several techniques for synthetic oversampling in anomaly detection for multi-
feature sequence datasets. Models were evaluated on three datasets where it was observed that
GAN-based synthetic data generation outperforms all other models on all datasets. We also note
that GAN-based synthetic data yielded larger classification Fl-score increases over other models
for datasets with more features. Furthermore, we provide evidence that the GAN-based synthetic
data is capable of capturing the structure of minority data. We also demonstrate that GAN-based
synthetic data generation techniques can be applied to datasets with label sequences. Finally, we
provide evidence that synthetic oversampling is beneficial for datasets with substantial imbalances
(less than 5% in our datasets).
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A APPROACHES

A.1 ADASYN ON AUTOENCODERS

We discern how to use an autoencoder and ADASYN to generate synthetic data. We first train
an autoencoder on minority data. Using the trained autoencoder on the minority data, we obtain
h9. € R* for each sequence. Once we have embedded the sequence, we can then run the SMOTE

algorithm to get fz%. Next, we can use the decoder half of the autoencoder to lift fz% back to . The
benefit of this approach is that the encoded minority data captures the structure of the sequence. All
that remains is to generate the associated labels for the synthetic data.

An approach is to find a way to use the weights for interpolating between the minority data in the
SMOTE algorithm to generate the associated label vector via interpolation. Based on SMOTE for

sequence z*, given (h%.)" and (hY.)” obtained from 2% and 7, respectively, a synthetic sample
(19),, = 091"+ (0)" - 047)
syn

is generated where (hOT)j is one of the neighbors of (h%)Z and w' = (w}, ..., w’) are fixed weights
with ® representing component wise multiplication. Note that this equality does not hold for z, z*,
and 27 where  is generated by the decoder with respect to (iALOT) . We then generate the associated
label vector as ' o _ .
g=y +w'ly —vy)

where @’ = £ 3%, w!. The downside to this approach is that if wj is a uniformly chosen random
number in [0,1], then w* ~ 0.5 for s large. Therefore, instead of considering the SMOTE algorithm
in conjunction with the autoencoder, we consider the ADASYN algorithm instead. There are two
main differences between ADASYN and SMOTE. Instead of choosing weights wj ~ U[0, 1], we

choose a single random interpolation weight, w?’, for each synthetic sample. In addition, the number
of synthetic sequences to generate from each sequence in the minority set is adaptively chosen. The
label vector, 3, associated with Z is defined as

J=yi+w'(y — Yj)-

This method then allows us to apply ADASYN to sequences in a way that should both preserve the
structure of the data and generate both sequences and labels.

A.2 GAN NOVELTY DETECTION AND GAN DISCRIMINATOR DETECTION

While the previous section trains the GAN model on the minority data, in novelty detection, GAN is
trained only on the majority data. One approach to novelty detection is to examine the autoencoder
reconstruction loss. When computing the autoencoder reconstruction loss on the trained model, we
expect the reconstruction loss be higher for the minority class than for the majority class. Simi-
larly, we can examine the discriminator output of the trained model. Unlike existing GAN based
anomaly detection methods for sequences (Chang et al.,|2019b)), this model does not depend on the
autoencoder reconstruction loss to train the generator, but instead allows for the use of other discrim-
inator functions. This flexibility allows for the use of different GAN architectures such as improved
Wasserstein GAN (Gulrajani et al.l 2017).

We expect that the minority class data should be classified as fake data by the discriminator, while the
majority class data would be classified as real data. However, since the novelty detection prediction
with GAN model on majority data from Figure[I|requires the label vector, y, it needs to be modified.
The model is similar to the model sketched out in Figure[I] except that we use LSTM cells to get
the sequence h, of hidden states from sequences x, and the discriminator and autoencoder take as
input h, and z, respectively. The generator takes as input noise z and sequence x. The loss function
used to train this GAN model is similar to the loss function in (I)) and it is trained by using the same
logic as the GAN-based synthetic data model. Basically, the model is the same except that the labels
y are neglected. We can then use either the autoencoder or the discriminator of this GAN model to
classify the majority and minority classes in a novelty detection method. Note that this approach
only infers minority/majority classification and not the actual labels .
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B COMPUTATIONAL STUDY

For each of the datasets, the data is ensembled into 10 ensembles such that each ensemble contains
all of the minority data and a random subset of the majority data. Sequences in each dataset are
front-padded to the maximum sequence length for model training. The GAN based oversampling
and novelty detection methods are implemented using Tensorflow and the remaining models are
implemented using Keras with Tensorflow. We use the Adam optimizer for the GAN based models
(Chintala et al., 2016; Radford et al.l [2015), while for the remaining models, we use the Adadelta
optimizer (Zeiler, 2012) in model training. All models are trained on a single GPU card. For each
dataset, we tune the number of layers and number of neurons of the baseline model. We use the best
performing model as the baseline for comparison.
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