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ABSTRACT

We demonstrate how machine learning is able to model experiments in quantum
physics. Quantum entanglement is a cornerstone for upcoming quantum technolo-
gies such as quantum computation and quantum cryptography. Of particular interest
are complex quantum states with more than two particles and a large number of
entangled quantum levels. Given such a multiparticle high-dimensional quantum
state, it is usually impossible to reconstruct an experimental setup that produces
it. To search for interesting experiments, one thus has to randomly create millions
of setups on a computer and calculate the respective output states. In this work,
we show that machine learning models can provide significant improvement over
random search. We demonstrate that a long short-term memory (LSTM) neural
network can successfully learn to model quantum experiments by correctly predict-
ing output state characteristics for given setups without the necessity of computing
the states themselves. This approach not only allows for faster search but is also an
essential step towards automated design of multiparticle high-dimensional quantum
experiments using generative machine learning models.

1 INTRODUCTION

In the past decade, artificial neural networks have been applied to a plethora of scientific disciplines,
commercial applications, and every-day tasks with outstanding performance in, e.g., medical diagno-
sis, self-driving, and board games (Esteva et al., 2017; Silver et al., 2017). In contrast to standard
feedforward neural networks, long short-term memory (LSTM) (Hochreiter, 1991; Hochreiter &
Schmidhuber, 1997) architectures have recurrent connections, which allow them to process sequential
data such as text and speech (Sutskever et al., 2014).

Such sequence-processing capabilities can be particularly useful for designing complex quantum
experiments, since the final state of quantum particles depends on the sequence of elements, i.e.
the experimental setup, these particles pass through. For instance, in quantum optical experiments,
photons may traverse a sequence of wave plates, beam splitters, and holographic plates. High-
dimensional quantum states are important for multiparticle and multisetting violations of local realist
models as well as for applications in emerging quantum technologies such as quantum communication
and error correction in quantum computers (Shor, 2000; Kaszlikowski et al., 2000).

Already for three photons and only a few quantum levels, it becomes in general infeasible for humans
to determine the required setup for a desired final quantum state, which makes automated design
procedures for this inverse problem necessary. One example of such an automated procedure is
the algorithm MELVIN (Krenn et al., 2016), which uses a toolbox of optical elements, randomly
generates sequences of these elements, calculates the resulting quantum state, and then checks
whether the state is interesting, i.e. maximally entangled and involving many quantum levels. The
setups proposed by MELVIN have been realized in laboratory experiments (Malik et al., 2016; Erhard
et al., 2018b). Recently, also a reinforcement learning approach has been applied to design new
experiments (Melnikov et al., 2018).

Inspired by these advances, we investigate how LSTM networks can learn quantum optical setups
and predict the characteristics of the resulting quantum states. We train the neural networks using
millions of setups generated by MELVIN. The huge amount of data makes deep learning approaches
the first choice. We use cluster cross validation (Mayr et al., 2016) to evaluate the models.
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2 METHODS

2.1 TARGET VALUES

Let us consider a quantum optical experiment using three photons with orbital angular momentum
(OAM) (Yao & Padgett, 2011; Erhard et al., 2018a). The OAM of a photon is characterized by an
integer whose size and sign represent the shape and handedness of the photon wavefront, respectively.
For instance, after a series of optical elements, a three particle quantum state may have the following
form:

|Ψ〉 =
1

2
(|0, 0, 0〉+ |1, 0, 1〉+ |2, 1, 0〉+ |3, 1, 1〉). (1)

This state represents a physical situation, in which there is 1/4 chance (modulus square of the
amplitude value 1/2) that all three photons have OAM value 0 (first term), and a 1/4 chance that
photons 1 and 3 have OAM value 1, while photon 2 has OAM value 0 (second term), and so on for
the two remaining terms.

We are generally interested in two main characteristics of the quantum states: (1) Are they maximally
entangled? (2) Are they high-dimensional? The dimensionality of a state is represented by its Schmidt
rank vector (SRV) (Huber & de Vicente, 2013; Huber et al., 2013). State |Ψ〉 is indeed maximally
entangled because all terms on the right hand side have the same amplitude value. Its SRV is (4,2,2),
as the first photon is four-dimensionally entangled with the other two photons, whereas photons two
and three are both only two-dimensionally entangled with the rest.

A setup is labeled “positive” (yE = 1) if its output state is maximally entangled and if the setup
obeys some further restrictions, e.g., behaves well under multi-pair emission, and otherwise labeled
“negative” (yE = 0). The target label capturing the state dimensionality is the SRV ySRV =
(n,m, k)>. We train LSTM networks to directly predict these state characteristics (entanglement and
SRV) from a given experimental setup without actually predicting the quantum state itself.

2.2 LOSS FUNCTION

For classification, we use binary cross entropy (BCE) in combination with logistic sigmoid output
activation for learning. For regression, it is always possible to reorder the photon labels such
that the SRV has entries in non-increasing order. An SRV label is thus represented by 3-tuple
ySRV = (n,m, k)> which satisfies n ≥ m ≥ k. With slight abuse of notation, we model n ∼ P(λ)
as a Poisson-distributed random variable and m ∼ B(n, p), k ∼ B(m, q) as Binomials with ranges
m ∈ {1, . . . n} and k ∈ {1, . . . ,m} and success probabilities p and q, respectively. The resulting
log-likelihood objective (omitting all terms not depending on λ, p, q) for a data point x with label
(n,m, k)> is

`(λ̂, p̂, q̂ | x) = n log λ̂− λ̂+m log p̂+ (n−m) log(1− p̂) + k log q̂ + (m− k) log(1− q̂) (2)

where λ̂, p̂, q̂ are the network predictions (i.e. functions of x) for the distribution parameters of n,m, k
respectively. The Schmidt rank value predictions are n̂ = λ̂, m̂ = p̂λ̂, k̂ = p̂q̂λ̂. To see this, we need
to consider the marginals of the joint probability mass function

f(n,m, k) =
λne−λ

n!

(
n

m

)
pm(1− p)n−m

(
m

k

)
qk(1− q)m−k. (3)

To obtain the marginal distribution of m, we can first sum over all possible k, which is easy. To sum
out n we first observe that

(
n
m

)
= 0 for n < m, i.e. the first m terms are zero and we may write

f(m) =

∞∑
n=0

f(n,m) =

∞∑
n=0

f(m+ n,m) (4)
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Figure 1: Sequence processing model for a many-to-one mapping. The target value ŷ can be either an
estimate for yE (entanglement classification) or ySRV (SRV regression).

capturing only non-zero terms. It follows that

f(m) =

∞∑
n=0

λn+me−λ

(n+m)!

(
n+m

m

)
pm(1− p)n

= e−λpmλm
∞∑
n=0

λn(1− p)n
(n+m)!

(
n+m

m

)

=
e−λpmλm

m!

∞∑
n=0

λn(1− p)n
n!

=
e−pλ(pλ)m

m!
,

(5)

which is P(pλ)-distributed. Using the same argument for k we get that the marginal of k is P(pqλ)-
distributed. The estimates n̂, m̂, k̂ are obtained by taking the means of their respective marginals.

2.3 NETWORK ARCHITECTURE

The used sequence processing model is depicted in Figure 1. We train two networks, one for
entanglement classification (target yE), and one for SRV regression (target ySRV). The reason why
we avoid multitask learning in this context is that we do not want to incorporate correlations between
entanglement and SRV into our models. For instance, the SRV (6,6,6) was only observed in non-
maximally entangled samples so far, which is a perfect correlation. This would cause a multitask
network to automatically label such a sample as negative only because of its SRV. By training separate
networks we lower the risk of incorporating such correlations.

A setup of N elements is being fed into a network by its sequence of individual optical components
x = (x1, x2, ..., xN )>, where in our data N ranges from 6 to 15. We use an LSTM with 2048 hidden
units and a component embedding space with 64 dimensions. The component embedding technique
is similar to word embeddings (Mikolov et al., 2013).

3 EXPERIMENTS

3.1 DATASET

The dataset produced by MELVIN consists of 7,853,853 different setups of which 1,638,233 samples
are labeled positive. Each setup consists of a sequence x of optical elements, and the two target
values yE and ySRV. We are interested in whether the trained model is able to extrapolate to unseen
SRVs. Therefore, we cluster the data by leading Schmidt rank n. Figure 2 shows the the number of
positive and negative samples in the data set for each n.

3.2 WORKFLOW

All samples with n ≥ 9 are moved to a special extrapolation set consisting of only 1,754 setups (gray
cell in Table 1). The remainder of the data, i.e. all samples with n < 9, is then divided into a training
set and a conventional test set with 20 % of the data drawn at random (iid). This workflow is shown
in Figure 3.
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Figure 2: Negative and positive samples in the data set as a function of the leading Schmidt rank n.

0,1
0,1 2 3 4 5 6 7 8 9-12

Table 1: Cluster cross validation folds (0-8) and extrapolation set (9-12) characterized by leading
Schmidt rank n. Samples with n = 0 and samples with n = 1 are combined and then split into two
folds (0,1) at random.

The test set is used to estimate the conventional generalization error, while the extrapolation set is
used to shed light on the ability of the learned model to perform on higher Schmidt rank numbers.
If the model extrapolates successfully, we can hope to find experimental setups that lead to new
interesting quantum states.

Cluster cross validation (CCV) is an evaluation method similar to standard cross validation. Instead
of grouping the folds iid, CCV groups them according to a clustering method. Thus, CCV removes
similarities between training and validation set and simulates situations in which the withheld folds
have not been obtained yet, thereby allowing us to investigate the ability of the network to discover
these withheld setups. We use CCV with nine folds (white cells in Table 1). Seven of these folds
correspond to the leading Schmidt ranks 2, . . . , 8. The samples with n = 1 (not entangled) and n = 0
(not even a valid three-photon state) are negative by definition. These samples represent special
cases of yE = 0 setups and it is not necessary to generalize to these cases without training on them.
Therefore, the 4,300,268 samples with n < 2 are divided into two folds at random such that the
model will always see some of these special samples while training.

3.3 RESULTS

Let us examine if the LSTM network has learned something about quantum physics. A good model
will identify positive setups correctly while discarding as many negative setups as possible. This
behavior is reflected in the metrics true positive rate TPR = TP/(TP + FN) and true negative rate
TNR = TN/(TN + FP), with TP, TN, FP, FN the true positives, true negatives, false positives, false
negatives, respectively. A metric that quantifies the success rate within the positive predictions is the
hit rate (i.e. precision or positive predicted value), defined as HR = TP/(TP + FP) (Simm et al.,
2018).

For each withheld CCV fold n, we characterize a setup to be “interesting” when it fulfills the
following two criteria: (i) It is classified positive (ŷE > τ ) with τ the classification threshold of
the sigmoid output activation. (ii) The SRV prediction ŷSRV = (n̂, m̂, k̂)> is such that there exists
a ySRV = (n,m, k)> with ‖ySRV − ŷSRV‖2 < r. We call r the SRV radius. We denote samples
which are classified as interesting (uninteresting) and indeed positive (negative) as true positives
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Figure 3: Workflow. We split the entire data by their leading Schmidt rank n. All samples with n ≥ 9
constitute the extrapolation set, which we use to explore the out-of-distribution capabilities of our
model. For the remaining samples (i.e. n < 9) we make a random test split at a ratio of 1/4. The test
set is used to estimate the conventional generalization error of our model. We use the training set to
perform cluster cross validation.

(negatives). And we denote samples which are classified as interesting (uninteresting) and indeed
negative (positive) as false positives (false negatives).

We employ stochastic gradient descent for training the LSTM network with momentum 0.5 and batch
size 128. We sample mini-batches in such a way that positive and negative samples appear equally
often in training. For balanced SRV regression, the leading Schmidt rank vector number n is misused
as class label. The models were trained using early stopping after 40000 weight update steps for
the entanglement classification network and 14000 update steps for the SRV regression network.
Hyperparameter search was performed in advance on a data set similar to the training set.

Figure 4 shows the TNR, TPR, and rediscovery ratio for sigmoid threshold τ = 0.5 and SRV radius
r = 3. The rediscovery ratio is defined as the number of distinct SRVs, for which at least 20% of
the samples are rediscovered by our method, i.e. identified as interesting, divided by the number
of distinct SRVs in the respective cluster. The TNR for fold 0,1 is 0.9996, and the hit rate HR on
the extrapolation set 9-12 is 0.659. Error bars in Figure 4 and later in the text are 95 % binomial
proportion confidence intervals. Model performance depends heavily on parameters τ and r. Figure
5 shows the “beyond distribution” results for a variety of sigmoid thresholds and SRV radii.

0,1 2 3 4 5 6 7 8 9-12
Cluster

0.0

0.2

0.4

0.6

0.8

1.0

TNR
TPR
Rediscovery Ratio

Figure 4: True negative rate (TNR), true positive rate (TPR), rediscovery ratio of the LSTM network
using cluster cross validation for different folds 0-8. True negative rates are high for all validation
folds. All metrics are good for the extrapolation set 9-12, demonstrating that the models perform
well on data beyond the training set distribution, covering only Schmidt rank numbers 0-8. Error bars
represent 95 % binomial proportion confidence intervals.
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Figure 5: True negative rate (scale starts at 0.6), true positive rate, rediscovery ratio, and hit rate
for the extrapolation set 9-12 for varying sigmoid threshold τ and SRV radius r. For too restrictive
parameter choices (τ → 1 and r → 0.5) the TNR approaches 1, while TPR and rediscovery ratio
approach 0, such that no interesting new setups would be identified. For too loose choices (small τ ,
large r), too few negative samples would be rejected, such that the advantage over random search
becomes negligible. For a large variety of τ and r the models perform satisfyingly well, allowing a
decent compromise between TNR and TPR. This is reflected in large values for the hit rate, which is
0.736 on average over all depicted thresholds.

Finally, we investigate the conventional in-distribution generalization error using the test set (20 %
of the data). Entanglement classification: The entanglement training BCE loss value is 10.2. TNR
and TPR are 0.9271± 0.00024 and 0.9469± 0.00041, respectively. The corresponding test error is
10.4. TNR and TPR are 0.9261± 0.00038 and 0.9427± 0.00065, respectively. SRV regression: The
SRV training loss value according to Equation (2) is 2.247, the accuracy with r = 3 is 93.82 % and
the mean distance between label and prediction is 1.3943. The SRV test error is 2.24, the accuracy
with r = 3 is 0.938 and the mean distance between label and prediction is 1.40. These figures are
consistent with a clean training procedure.

4 OUTLOOK

Our experiments demonstrate that an LSTM-based neural network can be trained to model certain
properties of complex quantum systems. Our approach is not limited to entanglement and Schmidt
rank but may be generalized to employ other objective functions such as multiparticle transformations,
interference and fidelity qualities, and so on.

Another possible next step to expand our approach towards the goal of automated design of multiparti-
cle high-dimensional quantum experiments is the exploitation of generative models. Here, we consider
Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) and beam search (Lowerre, 1976)
as possible approaches.
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Generating sequences such as text in adversarial settings has been done using 1D CNNs (Gulrajani
et al., 2017) and LSTMs (Yu et al., 2016; Fedus et al., 2018). The LSTM-based approaches employ
ideas from reinforcement learning to alleviate the problem of propagating gradients through the
softmax outputs of the network. Since our data is in structure similar to text, these approaches are
directly applicable to our setting.

For beam search, there exist two different ideas, namely a discriminative approach and a generative
approach. The discriminative approach incorporates the entire data set (positive and negative samples).
The models trained for this work can be used for the discriminative approach in that one constructs
new sequences by maximizing the belief of the network that the outcome will be a positive setup.
For the generative approach, the idea is to train a model on the positive samples only to learn their
distribution via next element prediction. On inference, beam search can be used to approximate the
most probable sequence given some initial condition (Bengio et al., 2015). Another option to generate
new sequences is to sample from the softmax distribution of the network output at each sequence
position as has been used for text generation models (Graves, 2013; Karpathy & Fei-Fei, 2015).

In general, automated design procedures of experiments has much broader applications beyond
quantum optical setups and can be of importance for many scientific disciplines other than physics.

5 CONCLUSION

We have shown that an LSTM-based neural network can be trained to successfully predict certain
characteristics of high-dimensional multiparticle quantum states from the experimental setup without
any explicit knowledge of quantum mechanics. The network performs well even on unseen data
beyond the training distribution, proving its extrapolation capabilities. This paves the way to
automated design of complex quantum experiments using generative machine learning models.
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