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Abstract

Deep convolutional neural networks are now widely deployed in vision ap-
plications, but the size of training data can bottleneck their performance.
Transfer learning offers the chance for CNNs to learn with limited data sam-
ples by transferring knowledge from weights pre-trained on large datasets.
On the other hand, blindly transferring all learned features from the source
dataset brings unnecessary computation to CNNs on the target task. In
this paper, we propose attentive feature distillation and selection (AFDS)
that not only adjusts the strength of regularization introduced by transfer
learning but also dynamically determines which are the important features
to transfer. When deploying AFDS on ResNet-101, we achieve state-of-the-
art computation reduction at the same accuracy budget, outperforming all
existing transfer learning methods. On a 10× MACs reduction budget,
transfer learned from ImageNet to Stanford Dogs 120, AFDS achieves an
accuracy that is 12.51% higher than its best competitor.

1 Introduction

Despite recent successes of CNNs achieving state-of-the-art performance in vision applica-
tions (Tan & Le, 2019; Cai & Vasconcelos, 2018; Zhao et al., 2018; Ren et al., 2015), there
are two major shortcomings limiting their deployments in real life. First, training CNNs
from random initializations to achieve high task accuracy generally requires a large amount
of data that is expensive to collect. Second, CNNs are typically compute-intensive and
memory-demanding, hindering their adoption to power-limited scenarios.

To address the former challenge, transfer learning (Pan & Yang, 2009) is thus designed to
transfer knowledge learned from the source task to a target dataset that has limited data
samples. In practice, we often choose a source dataset such that the input domain of the
source comprises the domain of the target. A common paradigm for transfer learning is to
train a model on a large source dataset, and then fine-tune the pre-trained weights with
regularization methods on the target dataset (Zagoruyko & Komodakis, 2017; Yim et al.,
2017; Li et al., 2018; Li & Hoiem, 2018; Li et al., 2019). For example, one regularization
method, L2-SP (Li et al., 2018), penalizes the L2-distances of weights between the source
and the target datasets, where the values of weights on the source dataset are pretrained.
The pretrained weights on the source dataset serves as a starting point when training on the
target data. When fine-tuning on the target dataset, the regularization constrains the search
space around this starting point, which in turn prevents overfitting the target dataset.

Intuitively, the responsibility of transfer learning is to preserve the source knowledge acquired
by important neurons. The neurons thereby retain their abilities to extract features from
the source domain, and contribute to the network’s performance on the target dataset.
Moreover, by determining the importance of neurons, unimportant ones can further be
removed from computation during inference with network pruning methods (Luo et al.,
2017; He et al., 2017b; Zhuang et al., 2018; Ye et al., 2018; Gao et al., 2019). The removal of
unnecessary compute not only makes CNNs smaller in size but also reduces computational
costs while minimizing possible accuracy degradations. As the source domain encompasses
the target, many neurons responsible for extracting features from the source domain may
become irrelevant to the target domain and can be removed. In Figure 1, a simple empirical
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study of the channel neurons’ activation magnitudes corroborates our intuition: as deeper
layers extract higher-level features, more neurons become either specialized or irrelevant
to dogs. The discussion above hence prompts two questions regarding the neurons: which
neurons should we transfer source knowledge to, and which are actually important to the
target model?

Stanford Dogs ImageNet

(a) Example images.
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(b) Maximum channel activations.

Figure 1: (a) shows sample images from two datasets, ImageNet contains images with greater
diversity. (b) shows the average maximum activations of 20 channel neurons in 3 layers of
ResNet-101 that are most excited by images from Dogs.

Yet traditional transfer learning methods fail to provide answers to both, as generally they
transfer knowledge either equally for each neuron with the same regularized weights, or
determine the strength of regularization using only the source dataset (Li et al., 2018). The
source domain could be vastly larger than the target, giving importance to weights that are
irrelevant to the target task.

Recent years have seen a surge of interest in network pruning techniques, many of which
induce sparsity by pushing neuron weights or outputs to zeros, allowing them to be pruned
without a detrimental impact on the task accuracies. Even though pruning methods provide
a solution to neuron/weight importance, unfortunately they do not provide an answer to the
latter question that is are these neurons/weights are important to the target dataset. The
reason for this is that pruning optimization objectives are often in conflict with traditional
transfer learning, as both drive weight values in different directions: zero for pruning and
the initial starting point for transfer learning. As we will see later, a näıve composition of
the two methods could have a disastrous impact on the accuracy of a pruned CNN transfer-
learned on the target dataset.

In this paper, to tackle the challenge of jointly transferring source knowledge and pruning
target CNNs, we propose a new method based on attention mechanism (Vaswani et al.,
2017), attentive feature distillation and selection (AFDS). For the images in the target
dataset, AFDS dynamically learns not only the features to transfer, but also the unimportant
neurons to skip.

During transfer learning, instead of fine-tuning with L2-SP regularization which explores
the proximity of the pre-trained weights, we argue that a better alternative is to mimic
the feature maps, i.e. the output response of each convolutional layer in the source model
when images from the target dataset are shown, with L2-distances. This way the fine-tuned
model can still learn the behavior of the source model. Additionally, without the restriction
of searching only the proximity of the initial position, the weights in the target model can
be optimized freely and thus increasing their generalization capacity. Finally, we present
attentive feature distillation (AFD) to learn which relevant features to transfer.

To accelerate the transfer-learned model, we further propose attentive feature selection
(AFS) to prune networks dynamically. AFS is designed to predictively select important
output channels in the convolution to evaluate and skip unimportant ones, depending on
the input to the convolution. Rarely activated channel neurons can further be removed from
the network, reducing the model’s memory footprint.

From an informal perspective, both AFD and AFS adjust the “valves” that control the flow
of information for each channel neuron. The former adjusts the strength of regularization,
thereby tuning the flow of knowledge being transferred from the source model. The latter
allows salient information to pass on to the subsequent layer and stops the flow of unim-
portant information. A significant attribute that differentiates AFD and AFS from their
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existing counterparts is that we employ attention mechanisms to adaptively learn to “turn
the valves” dynamically with small trainable auxiliary networks.

Our main contributions are as follows:

• We present attentive feature distillation and selection (AFDS) to effectively trans-
fer learn CNNs, and demonstrate state-of-the-art performance on many publicly
available datasets with ResNet-101 (He et al., 2016) models transfer learned from
ImageNet (Deng et al., 2009).

• We pair a large range of existing transfer learning and network pruning methods,
and examine their abilities to trade-off FLOPs with task accuracy.

• By changing the fraction of channel neurons to skip for each convolution, AFDS can
further accelerate the transfer learned models while minimizing the impact on task
accuracy. We found that AFDS generally provides the best FLOPs and accuracy
trade-off when compared to a broad range of paired methods.

2 Related Work

2.1 Transfer Learning

Training a deep CNN to achieve high accuracy generally require a large amount of training
data, which may be expensive to collect. Transfer learning (Pan & Yang, 2009) addresses
this challenge by transferring knowledge learned on a large dataset that has a similar domain
to the training dataset. A typical approach for CNNs is to first train the model on a large
source dataset, and make use of their feature extraction abilities (Donahue et al., 2014;
Razavian et al., 2014). Moreover, it has been demonstrated that the task accuracy can be
further improved by fine-tuning the resulting pre-trained model on a smaller target dataset
with a similar domain but a different task (Yosinski et al., 2014; Azizpour et al., 2015).
Li et al. (2018) proposed L2-SP regularization to minimize the L2-distance between each
fine-tuned parameter and its initial pre-trained value, thus preserving knowledge learned in
the pre-trained model. In addition, they presented L2-SP-Fisher, which further weighs each
L2-distance using Fisher information matrix estimated from the source dataset. Instead
of constraining the parameter search space, Li et al. (2019) showed that it is often more
effective to regularize feature maps during fine-tuning, and further learns which features
to pay attention to. Learning without Forgetting (Li & Hoiem, 2018) learns to adapt
the model to new tasks, while trying to match the output response on the original task
of the original model using knowledge distillation (KD) (Hinton et al., 2014). Methods
proposed by Zagoruyko & Komodakis (2017) and Yim et al. (2017) transfer knowledge from
a teacher model to a student by regularizing features. The former computes and regularizes
spatial statistics across all feature maps channels, whereas the latter estimates the flow
of information across layers for each pair of channels, and transfers this knowledge to the
student. Instead of manually deciding the regularization penalties and what to regularize
as in the previous approaches, Jang et al. (2019) used meta-learning to automatically learn
what knowledge to transfer from the teacher and to where in the student model.

Inspired by Li et al. (2019) and Jang et al. (2019), this paper introduces attentive feature
distillation (AFD), which similarly transfers knowledge by learning from the teacher’s fea-
ture maps. It however differs from Jang et al. (2019) as the teacher and student models
share the same network topology, and it instead learns which channel to transfer from the
teacher to the student in the same convolutional output.

2.2 Structured Sparsity

Sparsity in neural networks has been a long-studied subject (Reed, 1993; LeCun et al.,
1990; Chauvin, 1989; Mozer & Smolensky, 1989; Hassibi et al., 1994). Related techniques
have been applied to modern deep CNNs with great success (Guo et al., 2016; Dong et al.,
2017a), significantly lowering their storage requirements. In general, as these methods zero
out individual weights, producing irregular sparse connections, which cannot be efficiently
exploited by GPUs to speed up computation.
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For this, many recent work turned their attention to structured sparsity (Alvarez & Salz-
mann, 2016; Wen et al., 2016; Liu et al., 2017; He et al., 2017a; 2018). This approach aims
to find coarse-grained sparsity and preserves dense structures, thus allowing conventional
GPUs to compute them efficiently. Alvarez & Salzmann (2016) and Wen et al. (2016) both
added group Lasso to penalize non-zero weights, and removed channels entirely that have
been reduced to zero. Liu et al. (2017) proposed network slimming (NS), which adds L1 reg-
ularization to the trainable channel-wise scaling parameters γ used in batch normalization,
and gradually prunes channels with small γ values by threshold. He et al. (2018) introduced
soft filter pruning (SFP), which iteratively fine-tunes and sets channels with small L2-norms
to zero.

Pruning algorithms remove weights or neurons from the network. The network may there-
fore lose its ability to process some difficult inputs correctly, as the neurons responsible for
them are permanently discarded. Gao et al. (2019) have found empirically that task accu-
racies degrades considerably when most of the computation are removed from the network,
and introduced feature boosting and suppression (FBS). Instead of removing neurons perma-
nently from the network, FBS learns to dynamically prune unimportant channels, depending
on the current input image. In this paper, attentive feature selection (AFS) builds on top
of the advantages of both static and dynamic pruning algorithms. AFS not only preserves
neurons that are important to some input images, but also removes unimportant ones for
most inputs from the network, reducing both the memory and compute requirements for
inference.

There are methods that dynamically select which paths to evaluate in a network dependent
on the input (Figurnov et al., 2017; Dong et al., 2017b; Bolukbasi et al., 2017; Lin et al., 2017;
Shazeer et al., 2017; Wu et al., 2018; Ren et al., 2018). They however introduce architectural
and/or training method changes, and thus cannot be applied directly on existing popular
models pre-trained on ImageNet (Deng et al., 2009).

3 Attentive Feature Distillation and Selection

3.1 High-Level Overview

Target model

Source model
…

AFD loss

…

AFS

L2-distAFS

AFD

Conv+BN
layer

Conv+BN
layer

…

… Task loss

Figure 2: High-level overview of AFDS.

We begin by providing a high-level overview of attentive feature distillation and selec-
tion (AFDS). AFDS introduces two new components to augment each conventional batch-
normalized convolutional (ConvBN) layer (Ioffe & Szegedy, 2015), as illustrated in Figure 2.
The AFS preemptively learns the importance of each channel, in the output of the ConvBN
layer, and can suppress unimportant channels, thus allowing the expensive convolution op-
eration to skip evaluating these channels. The AFD learns the importance of each channel
in the output activation, and use the importance as weights to regularize feature maps in
the target model with L2-distance. Each component is a small neural network containing
a small number of parameters that can be trained with conventional stochastic gradient
descent (SGD).
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3.2 Preliminaries

Consider a set of training data D where each sample (x, y) consists of an input image
x ∈ RC×H×W , and a ground-truth label y ∈ N. Here C, H and W respectively denote the
number of channels, and the height and width of the input image. Training a deep CNN
classifier thus minimizes the following loss function with an optimization method based on
SGD:

L(θ) = E(x,y)∼D[LCE(f(x,θ), y) +R(θ,x) + λ‖θ‖22], (1)

where θ comprises all parameters of the model, the loss LCE(f(x,θ), y) denotes the cross-
entropy loss between the CNN output f(x,θ) and the label y. The regularizer R(θ,x) is
often used to reduce the risk of overfitting. In conventional training, R(θ,x) = 0. Finally,
we impose a L2 penalty on θ, where ‖z‖2 represents the L2-norm of z across all its elements.

We assume that f(x,θ) is a feed-forward CNN composed of N ConvBN layers for feature
extraction, fl(xl−1,θl) with l ∈ L = {1, 2, . . . , N}, and a final fully-connected layer for
classification, g(xN ,θg). Here, for the lth layer, xl−1 is the input to the layer, with x0

indicating x, and θl is the layer’s parameters. Therefore, the lth layer is defined as:

xl = fl(xl−1,θl) = relu(γl · norm(conv(xl−1,θl)) + βl), (2)

where xl ∈ RCl×Hl×Wl contains Cl feature maps of the layer, each with a Hl height
and Wl width. The function conv(xl−1,θl) is a convolution that takes xl−1 as input
and uses trainable parameters θl, and norm(z) performs batch normalization. Finally,
γl,βl ∈ RCl are trainable vectors, the multiplications (·) and additions (+) are channel-wise,
and relu(z) = max(z, 0) stands for the ReLU activation. Although we use the feed-forward
classifier above for simplicity, it can be easily modified to contain additional structures such
as residual connections (He et al., 2016) and computations for object detection (Ren et al.,
2015).

During transfer learning, as we fine-tune the network with a different task, the final layer
g(xN ,θg) is generally replaced with a new randomly-initialized one h(xN ,θh). To prevent
overfitting, additional terms are used during transfer learning, for instance, L2-SP (Li et al.,
2018) further constrains the parameters θl to explore around their initial values θ?l :

R(θ,x) = λSP
∑
l∈L

‖θl − θ?l ‖
2
2 + λL2‖θ‖22. (3)

Instead of regularizing parameters, methods based on knowledge distillation (Hinton et al.,
2014) encourages the model to mimic the behavior of the original while learning the target
task. Learning without Forgetting (LwF) (Li & Hoiem, 2018) uses the following regularizer
to mimic the response from the original classifiers:

R(θ,x) = λLwF LCE(g?(fL(x,θL),θ?g)), (4)

where fL(x,θL) indicates the first N layers, and g? and θ?g respectively denote the orig-
inal fully-connected (FC) layer and its associated parameters, and generally λLwF = 1.
Zagoruyko & Komodakis (2017), Yim et al. (2017) and Li et al. (2019) chose to regularize
feature maps in some intermediate layers L′ ⊆ L. We assume that x?l is the lth layer out-
put of the original model with weights θ? when the input x is shown to the model, and r
is a method-dependent function that constrains the relationship between x?l and xl. The
regularizer can then be defined as follows:

R(θ,x) = λKD

∑
l∈L′

r(x?l ,xl). (5)

3.3 Attentive Feature Distillation

A simple way to extend Equation (5) is to constrain the L2-norm-distance between x?l and
xl, and thus pushing the target model to learn the feature map responses of the source:

R(θ,x) = λFS
∑
l∈L′
‖x?l − xl‖22. (6)
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The above formulation, however, places equal weight to each channel neurons of the feature
maps. As we discussed earlier, the importance of channel neurons varies drastically when
different input images are shown. it is thus desirable to enforce a different penalty for each
channel depending on the input x. For this purpose, we design the regularizer:

R(θ,x) = λAFS

∑
l∈L′

∑
c∈Cl

ρ
[c]
l (x?l )‖(x?l − xl)[c]‖22. (7)

Note that in Equation (7), for any tensor z, the term z[c] denotes the cth slice of the tensor.
The transfer importance predictor ρl : RCl×Hl×Wl → RCl computes for each channel the
importance of the source activation maps, which governs the strength of the L2 regularization
for each channel. The predictor function is trainable and is defined as a small network with
two FC layers:

ρ
[c]
l (x?l ) = softmax(relu([(x?l )ϕl + νl)ϕ

′
l + ν′l). (8)

The function [ : RC×H×W → RC×HW flattens the spatial dimensions in a channel-wise
fashion; The parameters ϕl ∈ RHW×H , νl ∈ R1×H , ϕ′l ∈ RH and ν′l ∈ RC can thus be
trained to adjust the importance of each channel dynamically; finally, the softmax activation
is borrowed from attention mechanism (Vaswani et al., 2017) to normalize the importance
values. In our experiments, ϕl and ϕ′l use He et al. (2015)’s initialization, νl and ν′l are
both initialized to 0.

3.4 Attentive Feature Selection

In a fashion similar to feature boosting and suppression (FBS) (Gao et al., 2019), AFS
modifies the ConvBN layers from Equation (2):

f̂l(xl−1,θl) = relu(πl(xl−1) · norm(conv(xl−1,θl)) + βl), (9)

where the predictor function takes as input the activation maps of the previous layer, i.e. πl :
RCl−1×Hl−1×Wl−1 → RC , is used to replace the vector γl. This function dynamically predicts
the importance of each channel, and suppresses certain unimportant channels by setting
them to zero. The expensive conv function can hence be accelerated by skipping the disabled
output channels. The predictor function is defined as below:

πl(xl−1) = ml · ql(xl−1), where ql(xl−1) = wtaddCle(sl · hl(xl−1) + (1− sl) · γl), (10)

where ml, sl ∈ {0, 1}Cl are both constant masks that take binary values: ml prunes output
channels by permanently setting them to zeros, and sl decides for each channel whether the
output of hl(xl−1) or γl should be used. It is clear that when ml = 1, no channel neurons
are removed from the network. In Section 3.5, we explain how ml and γl can be determined
during the fine-tuning process. The winner-take-all function wtaddCle(z) preserves the ddCle
most salient values in z, and suppresses the remaining ones by setting them to zeros. The
density value 0 < d ≤ 1 is a constant that controls the number of channels to preserve during
inference, with 1 preserving all Cl channels. The smaller d gets, the more channels can be
skipped, which in turn accelerates the model. Finally, the function hl : RCl−1×H×W → RCl

is a small network that is used to predict the importance of each channel. It is composed of
a global average pool followed by a FC layer, where pool : RCl−1×H×W → RCl−1 computes
the average across the spatial dimensions for each channel:

h(xl−1) = relu(pool(xl−1)ϕ′′l + ν′′l ). (11)

For the initialization of the FC parameters, we apply He et al. (2015)’s method on the
trainable weights ϕ′′l ∈ RCl−1×Cl and ν′′l ∈ RCl is initialized to zeros.

3.5 Training Procedure

In this section, we describe the pipeline of AFDS for transferring knowledge from a source
model to a new model by fine-tuning on target dataset. The detailed algorithm can be found
in Appendix A.

Initially, we have a pre-trained model f with parameters θ? for the source dataset (e.g. Im-
ageNet). To ensure better accuracies on compressed target models, All ConvBN layers fl in
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f are extended with AFS as discussed in Section 3.4, with d initially set to 1, which means
that all output channels in a convolutional layer are evaluated during inference, i.e. no ac-
celeration. The pre-trained model is then fine-tuned on the target training dataset D with
the AFD regularization proposed in Section 3.3.

Empirically we found that in residual networks with greater depths, AFS could become
notably challenging to train to high accuracies. To mitigate this, for each output channel of
a layer l we update sl according to the variance of hl(xl−1) observed on the target dataset.
For each channel if the variance is smaller than a threshold δs, then we set the entry in sl to
zero for that particular channel. This action replaces the output of hl(xl−1) with γl, which
is a trainable parameter initialized to the mean of hl(xl−1). We compute the mean and
variance statistics using Welford (1962)’s online algorithm which can efficiently compute
the statistics in a single-pass with O(1) storage. In our experiments, δs is set to a value such
that 50% of the channel neurons use the predictor function hl.

Moreover, we discovered that many of the channel neurons are rarely activated in a AFS-
based network. We further propose to remove the channel neurons that are activated with
a low frequency. In each layer l, the mask ml is used to disable certain channels from the
network by setting their output to a constant 0, if the probability of a channel neuron being
active is lower than δm. Zeroed-out channels can thus be permanently removed when the
model is used in inference.

4 Experiments

In this section we provide an extensive empirical study of the joint methods of transfer
learning and channel pruning. We evaluate the methods with 6 different benchmark datasets:
Caltech-256 (Griffin et al., 2007) of 256 general object categories; Stanford Dogs 120 (Khosla
et al., 2011) specializes to images containing dogs; MIT Indoors 67 (Quattoni & Torralba,
2009) for indoor scene classification; Caltech-UCSD Birds-200-2011 (Wah et al., 2011) for
classifying birds; and Food-101 (Bossard et al., 2014) for food categories. We refer to Li
et al. (2018) and Li et al. (2019), for a detailed description of the benchmark datasets.
For Caltech-256, we randomly sample either 30 or 60 images from the training set for each
category to produce Caltech-256-30 and -60 training datasets.

We use the ResNet-101 from torchvision1 pre-trained on ImageNet as the network for exper-
iments. For ResNet-101 equipped with AFS, we start by extending the pre-trained model
and replacing each batch normalization with a randomly initialized AFS, and fine-tune the
resulting model on ImageNet for 90 epochs with a learning rate of 0.01 decaying by a factor
of 10 every 30 epochs. The resulting model matches its original baseline accuracy.

For each benchmark dataset, the final FC layer of the network is replaced with a new
FC randomly initialized with He et al. (2015)’s method to match the number of output
categories accordingly. We then perform transfer learning with 4 different methods: L2

(fine-tuning without additional regularization), L2-SP (Li et al., 2018), learning without
forgetting (LwF) (Li & Hoiem, 2018), and finally AFD for models using AFS.

To accelerate the resulting fine-tuned models, we continue fine-tuning the model while gradu-
ally pruning away channels used during inference. For this, we separately examine 3 pruning
strategies: network slimming (NS) (Liu et al., 2017), soft filter pruning (SFP) (He et al.,
2018) and finally AFS for models transfer learned with AFD. Note that NS prunes channels
by sorting them globally, while SFP does so in a layer-wise manner with identical prune
ratios. During this procedure, we start with an unpruned model and incrementally remove
10% of the channels used in inference, i.e. preserving 90%, 80%, and etc., down to 10% of
all channels for the accelerated models. At each step, we fine-tune each model using 4500
steps of SGD with a batch size of 48, at a learning rate of 0.01, before fine-tuning for a
further 4500 steps at a learning rate of 0.001. AFS additionally updates the m and s masks
between the two fine-tuning runs.

1https://pytorch.org/docs/stable/torchvision/index.html
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Table 1: Accuracy comparisons of NS, SFP and AFDS on 6 datasets fine-tuned with their
respective best transfer learning methods under various speed-up constraints.

MACs reduction NS SFP AFDS

MIT Indoors 67
2× 81.45± 0.45 76.07± 0.51 81.45 ± 0.45
5× 66.87± 0.27 60.43± 0.31 69.93 ± 0.27

10× 1.50± 0.30 63.58± 0.13 66.72 ± 0.53

Stanford Dogs 120
2× 87.41 ± 0.56 81.74 ± 0.26 87.41 ± 0.56
5× 73.44 ± 0.27 61.20 ± 0.31 75.14 ± 0.52

10× 1.33 ± 0.50 59.63 ± 0.23 70.70 ± 0.33

Caltech-256-30
2× 85.15 ± 0.38 77.26 ± 0.28 85.15 ± 0.38
5× 66.57 ± 0.23 64.27 ± 0.31 66.64 ± 0.32

10× 5.05 ± 0.50 40.32 ± 0.23 61.45 ± 0.33

Caltech-256-60
2× 87.15 ± 0.35 84.59 ± 0.28 87.15 ± 0.35
5× 66.57 ± 0.23 61.20 ± 0.31 74.46 ± 0.52

10× 1.33 ± 0.50 59.63 ± 0.23 70.16 ± 0.53

CUB-200-2011
2× 78.03 ± 0.45 75.65 ± 0.26 78.03 ± 0.25
5× 73.44 ± 0.27 61.50 ± 0.31 73.35 ± 0.52

10× 0.52 ± 0.50 57.88 ± 0.23 69.07 ± 0.33

Food-101
2× 84.21 ± 0.65 75.65 ± 0.26 84.21 ± 0.65
5× 72.91 ± 0.27 61.50 ± 0.31 73.35 ± 0.52

10× 0.52 ± 0.50 57.88 ± 0.23 69.07 ± 0.63

Table 2: Accuracy comparisons of L2, L2-SP, LwF, AFDS on 6 datasets fine-tuned with
their respective best pruning methods under various speed-up constraints.

MACs reduction L2 L2-SP LwF AFDS

MIT Indoors 67
2× 79.13 ± 0.16 78.09 ± 0.56 81.83 ± 0.35 81.45 ± 0.15
5× 64.02 ± 0.21 62.00 ± 0.31 69.38 ± 0.27 69.93 ± 0.52

10× 58.19 ± 0.40 42.89 ± 0.38 17.79 ± 0.50 66.72 ± 0.53

Stanford Dogs 120
2× 85.38 ± 0.67 87.21 ± 0.56 87.07 ± 0.35 87.41 ± 0.35
5× 70.20 ± 0.37 67.10 ± 0.31 73.44 ± 0.27 75.14 ± 0.52

10× 58.19 ± 0.40 42.89 ± 0.48 17.79 ± 0.50 70.70 ± 0.33

Caltech-256-30
2× 83.83 ± 0.62 83.67 ± 0.53 85.87 ± 0.38 85.15 ± 0.75
5× 61.45 ± 0.17 60.03 ± 0.21 66.57 ± 0.23 66.64 ± 0.32

10× 54.1 ± 0.31 56.12 ± 0.31 40.32 ± 0.52 61.45 ± 0.43

Caltech-256-60
2× 86.27 ± 0.47 85.84 ± 0.51 88.02 ± 0.45 87.15 ± 0.75
5× 71.02 ± 0.37 69.9 ± 0.31 73.95 ± 0.27 74.46 ± 0.52

10× 60.92 ± 0.40 39.41 ± 0.71 26.75 ± 0.50 70.16 ± 0.33

CUB-200-2011
2× 76.27 ± 0.37 75.58 ± 0.46 78.88 ± 0.65 78.03 ± 0.45
5× 66.48 ± 0.37 64.49 ± 0.31 70.52 ± 0.27 73.35 ± 0.52

10× 56.87 ± 0.50 57.13 ± 0.38 29.57 ± 0.31 69.07 ± 0.43

Food-101
2× 83.78 ± 0.61 82.27 ± 0.23 82.38 ± 0.85 84.21 ± 0.55
5× 73.36 ± 0.33 70.12 ± 0.71 73.05 ± 0.67 79.12 ± 0.52

10× 58.19 ± 0.40 42.89 ± 0.48 17.79 ± 0.50 70.70 ± 0.33

Table 3: Comparison to related transfer learning methods.

Method Model Accuracy MACs

CUB

Zagoruyko & Komodakis (2017)
ResNet-34 73.5 3.6 G
ResNet-18 73.0 1.8 G

Jang et al. (2019) ResNet-18 65.05 1.8 G

AFDS
ResNet-101 76.34 2.4 G
ResNet-101 73.35 1.9 G

MIT Indoors 67

Zagoruyko & Komodakis (2017)
ResNet-34 74.0 3.6 G
ResNet-18 72.9 1.8 G

Jang et al. (2019) ResNet-18 64.85 1.8 G

AFDS
ResNet-101 78.09 2.4 G
ResNet-101 74.57 1.9 G
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Figure 3: MACs and accuracy (%) trade-off comparisons among different joint methods.

4.1 Detailed Trade-off Comparisons

For each pruned model, we can compute the number of multiply-accumulate operations
(MACs) required to perform inference on an image. For each accelerated convolution, the
required number of MACs is k2HWCinCout, where Cin and Cout are the number of input
and output channels that are not pruned, respectively. We compute the total number of
MACs by summing up the MACs in all convolutions, residual connections, and the final
pooling and FC layers. For AFS as we dynamically select which channels to evaluate during
inference, we additionally add the overhead of the importance predictor layers to the number
of total MACs.

In Figure 3, we present the trade-off relationship between the number of vs. the target
dataset accuracies for Stanford Dogs and Caltech-256-60. It is clear that AFDS (ours)
exceeds various combinations of pruning methods (NS, SFP) and transfer learning methods
(L2, L2-SP, LwF). The results for the remaining datasets can be found in Appendix B.
The trade-off curves show that AFDS minimizes accuracy degradation even if 47% of the
total MACs are removed from the original model, AFDS resulted in only 1.83% drop in
accuracy for the model trained on Stanford Dogs. In extreme cases where we permit only
1
10 of the original computations, our method can still manage a 70.70% accuracy, which is
substantially better when compared to other pruning algorithms: NS drops to 1.33% and
SFP only has 59.63%.

Table 1 provide numerical comparisons of different pruning methods against AFS under
various speed-up constraints. Table 2 similarly compares transfer learning strategies against
AFD. Under most acceleration requirements, the combined method, AFDS, achieves the
best accuracies on the target datasets.

Finally, Table 3 compares AFDS against other literatures that performs transfer learning.
AFDS can achieve state-of-the-art accuracies when compared to methods that produce
models with similar number of MACs.

5 Conclusion

In this paper, we introduced attentive feature distillation and selection (AFDS), a dual-
attention method that aims to reap the advantages of transfer learning and channel pruning
methods. By applying AFDS during fine-tuning, we can not only learn a new model with a
higher target task accuracy, but also further accelerates it by computing a subset of channel
neurons in each convolutional layers. Under a wide range of datasets, we demonstrated the
smallest drop in validation accuracies under the same speed-up constraints when compared
to traditional compression methods i.e. network slimming Liu et al. (2017) and soft filter
pruning He et al. (2018).
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A The Overall Training Algorithm

In Algorithm 1 we illustrate the complete training procedure described above. Here, the
function takes as input the target training dataset D, the source model f and its param-
eters θ?, the total number of steps to fine-tune S, the initial learning rate α, and the
threshold hyperparameters δs and δm respectively for sl and ml. The function returns
the optimized parameters θ for the target dataset, and both constant masks for all layers
s = (s1, s2, . . . , sL) and m = (m1,m2, . . . ,mL). The function SGD then fine-tunes the
model parameters. For each layer l, we compute the mean µl and variance σl statistics of
ql(xl−1), and use it to compute sl.

Algorithm 1 Training Procedure

1: function AFDS(D, f,θ?, S, α, δs, δm)
2: for l ∈ L : sl ← 1
3: for l ∈ L : ml ← 1
4: θ ← SGD(D, f,θ?, s,m, dS2 e, α,R)
5: for l ∈ L do
6: µl ← E(x,y)∼D[ql(xl−1)]

7: σ2
l ← E(x,y)∼D[(ql(xl−1)− µl)2]

8: pl ← E(x,y)∼D[πl(xl−1) > 0]

9: sl ← σ2
l > δs

10: γl ← µl
11: ml ← pl > δm
12: end for
13: θ ← SGD(D, f,θ, s,m, dS2 e,

α
10 ,R)

14: return θ, s,m
15: end function

B Additional Results
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Figure 4: MACs and accuracy (%) trade-off comparisons among different joint methods.
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