
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Supplementary material

A. Pseudo-code

Algorithm 1 Greedy coupling earth moving effort lower bound eL

Data: Expert demonstrations Y = {yi}j∈[1:n], the task horizon m, Agent π, distance metric d

Initialization: Assigning weight 1
n to expert demonstrations as Y ′ = {yj , uj}j∈[1:n], uj =

1
n

for i = 1 to m do
Execute action aπ := π(si) and observe sπi+1. Denote xi = (sπi , a

π
i) or xi = (sπi)

Assign weight wπ = 1
m , EMD effort ei := 0

repeat
yk, u := argmin(yk,we)′d(xi, yk)
if wπ ≥ u then

ei := ei + ukd(xi, yk)
wπ := wπ − uk

else
ei := ei + wπd(xi, yk)
wπ = 0

end if
until wπ ≤ 0
ei is the moving effort eLi

end for

Algorithm 2 Greedy coupling earth moving effort eg

Data: Expert demonstrations Y = {yi}j∈[1:n], the task horizon m, Agent π, distance metric d

Initialization: Assigning weight 1
n to expert demonstrations as Y ′ = {yj , uj}j∈[1:n], uj =

1
n

for i = 1 to m do
Execute action aπ := π(si) and observe sπi+1. Denote xi = (sπi , a

π
i) or xi = (sπi)

Assign weight wπ = 1
m , EMD effort ei := 0

repeat
yk, u := argmin(yk,we)′d(xi, yk) *The greedy coupling strategy
if wπ ≥ u then

ei := ei + ukd(xi, yk)
wπ := wπ − uk

Y ′.pop(yk, uk)
else
ei := ei + wπd(xi, yk)
uk := uk − wπ

wπ = 0
end if

until wπ ≤ 0
ei is the moving effort egi

end for

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Supplementary material

Figure 6. The 4 optimal greedy coupling cases

B. Justification for Proposition 1
Intuitively, when an optimal PWIL policy is acquired, the greedy coupling EMD will be minimized. With the lower bound of
greedy EMD earth moving effort defined eL, we reformulate the Proposition 1 as follows:
Proposition 2. Given an expert finite distribution set as Y = (y, u) ∈ Dd,n, u = 1

n , the task’s horizon as m, agent
generated trajectory set as X = (x,w) ∈ Dd,m, w = 1

m ; Denote the optimal policy as π∗, the obeservation as time step t
as x∗

t ; the greedy earth moving effort as eg(x∗
t) and the earth moving effort lower bound as eL(x∗

t). The following equality
holds for any t when m | n : m = k × n or n|m: n = k ×m, where k,m, n ∈ N+:

eg(x∗
t) = eL(x∗

t) (15)

Proof. Given an optimal PWIL imitation policy π∗, the observation generated by π∗ at time step t as x∗
t . The optimal policy

π∗ obtains a finite set X∗ that:
x∗
t ∈ X∗, X∗ = argmin

X∗
EMDg(X,Y)

• Fig.6(a): For case m | n,m = kn, k ∈ N+, each hole in the demonstration set Y will be perfectly filled with k piles of
dirt, each pile of dirt x∗

t with mass 1
m will be moved entirely to its closest hole y∗jmin

with capacity 1
n . For each pile

of dirt, its minimum earth moving effort is 0. As is shown in Fig. 6(a): in such case EMD∗(X∗, Y) = 0, meaning that
the optimal policy conditioned EMDg is 0. It also indicates that for the optimal policy π∗’s obervation x∗

t :

∀x∗
t , x

∗
t ∈ Y.

As each pile of dirt’s position is identical to its closest hole’s position and each hole is able to be filled with k piles of
dirt, so that eg(x∗

t) = eL(x∗
t) = 0.

• Fig.6(c) presents the case n | m,n = km, k ∈ N+. Since the EMD’s lower bound is the distance between the centroids
of two distributions 1, the EMD’s lower bound is also the EMDg’s lower bound. Now we have, for EMDg, its lower
bound is the distance between the centroids of X and Y . This lower bound could be written as:

EMDL(X∗, Y) = ||X̄∗ − Ȳ ||,

where ||X̄∗ − Ȳ || is the distance between the centroids of two distribution sets.

When n = km, k ∈ N+, the minimized EMDg(X,Y) is equal to its lower bound EMDL(X,Y): each xi is equally
divided and moved to its k closest holes based on the greedy nature (it could be considered as that the demonstration
set Y is clustered into m clusters with the number of k holes, and xπ∗

i is the cluster centroid). Each pile of dirt xi

could be equally divided and moved to k holes with mass 1
n . In this case:

eg(x∗
t) = eL(x∗

t) =

k∑
j=0

1

n
d(x∗

t , yj).

1The lower bound of EMD is proven in: Cohen, Scott, and Leonidas Guibas. The earth mover’s distance: Lower bounds and invariance
under translation. STANFORD UNIV CA DEPT OF COMPUTER SCIENCE, 1997.

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Supplementary material

this proposition does not hold anymore for the case m ∤ n or n ∤ m . However, we could still have a soft assumption that this
proposition also works when m ∤ n or n ∤ m. We now discuss these two cases:

• Fig.6(b) presents the minimized EMDg case when m ∤ n : m = kn+ q, k, q ∈ N+, q < n. It could be considered that
firstly there are maximum k × n piles of dirt that could be completely moved to its closest holes and their positions
are identical to their corresponding holes’ positions. It means that based on the greedy nature of greedy earth moving
strategy, there exist k × n piles of dirt that will be moved and only moved to their closest holes. For these piles, their
positions are identical to their corresponding holes and eg(x∗

t) = eL(x∗
t).

However, there are still q piles of dirt remaining to be moved while these dirt piles cannot be entirely allocated to their
closest holes. For these piles of dirt, eg(x∗

t) > eL(x∗
t).

It is worth noting that k × n > q , which indicates that a larger amount of piles can be assigned to its closest holes.
Practically we could consider eg(x∗

t) ≈ eL(x∗
t) when m = kn+ q, k, q ∈ N+, q < n.

• Fig.6(d) presents the minimized EMDg case when n ∤ m : n = km+ q, k, q ∈ N+, q < m. As the centroid distance is
the lower bound of EMDg , when an optimal policy π∗ (EMDg is minimized) is acquired, the shape of trajectory set X
will have similar properties as when n = km. In this case, each dirt will be nearly the centroids of expert set Y . Each
observation x∗

t will be divided and moved to at least k + 1 holes. We have a soft assumption that eg(x∗
t) ≈ eL(x∗

t).

In summary:

• if m | n : m = k × n, k,m, n ∈ N+, EMDg(F g, X, Y) = 0, each hole yj ∈ Y will be filled with k piles xi ∈ X and
xi’s position is identical to yj , eg(x∗

t) = eL(x∗
t).

• if n | m : n = k ×m, k,m, n ∈ N+, each xi is the centroid of k holes yj , and xi will be matched with its closest k
holes yj . eg(x∗

t) = eL(x∗
t).

• if n ∤ m or m ∤ n, practically we could consider eg(x∗
t) ≈ eL(x∗

t).

C. Experiments details
For PWIL (greedy coupling EMD) reward calculation, we use the source code provided by PWIL. We choose TD3 (Fujimoto
et al., 2018) as the representative of off-policy RL. The implementation is based on stable-baselines32 (Raffin et al., 2019).
We used 10 random seeds for each experiment.

C.1. Demonstration generation

We first train the expert policies based on the TD3 implementations provided in stable-baselines3 using its default parame-
ters (Raffin et al., 2019). After training, we use the trained model to run Pybullet tasks. After training, we generate 20 expert
trajectories with a 20 random seeds for each PyBullet task. The trajectory’s horizon is 1000 steps for all tasks.

C.2. PWIL setups

For PWIL reward calculation, we used the source code provided by the original PWIL work. The script can be found on
PWIL’s official Github page3. The reward function is implemented the same as in the original PWIL work (?):

ri = R(egi) = 5× (
T√

|S|+ |A|
)× egi . (16)

T√
|S|+|A|

is a scaling factor that acts as a normalizer on the dimensionality of the state and action spaces and on the time

horizon of the task. We use the standardized Euclidean distance which is the L2 distance on the concatenation of the
observation and the action, weighted along each dimension by the inverse standard deviation of the expert demonstrations.

2https://github.com/DLR-RM/stable-baselines3
3https://github.com/google-research/google-research/tree/master/pwil

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Supplementary material

C.3. Network structures and hyperparameters

The actor architecture is a 3-layer neural network (the default setup in stable-baselines3): the first layer has size 400
with tanh activation and layer normalization (Ba et al., 2016), the second layer and third layer have size 300 with ReLU-
activation (Agarap, 2018), the last layer size is equal to the action space dimension with a tanh activation scaled to the action
range of the environment. For the critic network we use a 3-layer neural network: the first layer has size 400 with tanh
activation and layer normalization, the second layer is of size 300 with ReLU activation, the third layer is of size 256 with
ReLU activation, the last FC layer is of dimension 1 to output the value (for TD3). For exploration, we use a Gaussian noise
layer on top of the last layer with standard deviation σ = 0.1, and clip to the action range of the environment. We evaluate
the agent without exploration noise.

We chose γ = 0.99 for reward discounted accumulative calculation; replay buffer size=10e6; the soft update coefficient
τ = 0.005; 1000 steps of the model to collect transitions for before learning starts (all parameter is the stable-baselines3
default parameters). All these parameters (network architectures, hyperparameters) use default values of stable-baselines3.

We use the Adam optimizer (Kingma & Ba, 2014) with λa = 5105 for the actor and λc = 7105 for the critic. We use a
batch size of 256. We prefill the replay buffer with 10000 state-action pairs from the set of demonstrations (which means
that we put multiple times the same expert transitions in the buffer). We perform updates on the actor and the critic every
k = 1 interactions with the environment.

C.4. BC, SQIL, AdRIL setups

We compared PWIL and our variants with some off-policy imitation learning methods: BC, SQIL, and AdRIL. For these
experiments, we used the source code provided from work (Swamy et al., 2021b;a) 4. For policy and value networks’
structures, we modified them the same as in our PWIL implementations. For exploration, we use a Gaussian noise layer on
top of the last layer with standard deviation σ= 0.1, and clip to the action range of the environment.

More specifically, SQIL and AdRIL is built on top of the Stable Baselines implementation of SAC. AdVIL is written
in pure PyTorch.The rest of the hyper-parameters of reinforcement learning training remain the same as the our PWIL
implementations. For behavior cloning baselines, we used the hyper-parameters from AdRIL’s experiments (Swamy et al.,
2021b;a).

D. Additional Experiments
We provide the additional experiments to prove the findings in Proposition 2: when the optimal policy π∗ is acquired,
eL = eg , which makes r∗ = rU , no matter what value m or n is. It also indirectly indicates that BU (Q) is equal to the true
Bellman operator B∗(Q) when the optimal policy is acquired. The additional BU (Q) shall improve the performance no
matter what value m or n is.

For the expert demonstration set, there are n holes to be filled; for the policy trajectory set, there are m piles of dirt to be
moved. To verify this finding, we create this experiment for different cases when m ̸= n: for expert demonstrations, there
are 5 expert trajectories given, each trajectory contains 1000 steps, thus n = 5000. For policy task horizon, there are 1000
steps, thus m = 1000. We choose 3 different subsampling ratios for expert demonstration:

• we do not subsample the expert trajectory, subsample rate=1, in this case m = 1000, n = 5000, n|m.

• we subsample the expert trajectory every 13 steps (subsample rate=13), in this case m = 1000, n = 384,m ∤ n.

• we subsample the expert trajectory every 20 steps (subsample rate=20), in this case m = 1000, n = 250,m|n.

Table 3 shows the policy evaluation results of the original PWIL and PWIL-upper (PWIL with BU (Q)). Note that the
accumulative reward is based on PWIL reward in this experiment instead of the true environment reward.

We use t-test with p-value threshold of 0.05 to verify if the performances have a significant difference. In general, for
different demonstration subsampling ratios, the PWIL-upper consistently outperforms the original PWIL: 1) when the
subsample rate is 1, the PWIL-upper variant performs better in tasks Hopper, Ant and HalfCheetah 2) when the subsample

4https://github.com/gkswamy98/pillbox

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Supplementary material

Table 3. Additional justification for Eq. 10: In the case n ∤ m (k = 13), PWIL-upper is able to improve the task performance the same as
the cases n | m (k=1) and m | n (k=20). In each subsampling setup, PWIL-upper entails performance gains for most of the tasks. The
threshold of T-test is chosen when p-value < 0.05. Our upper-bounded PWIL performance outperms the orginal PWIL in most of the
case

5 Demonstrations Subsample 1 (n|m) Subsample 13 (n ∤ m) Subsample 20 (m | n)

PWIL reward Evaluation PWIL(baseline) PWIL-upper p-value PWIL(baseline) PWIL-upper p-value PWIL(baseline) PWIL-upper p-value
(mean±std) (mean±std) (mean±std) (mean±std) (mean±std) (mean±std)

Humanoid 288.3± 75.1 285.2± 74.3 6.9e-01 223.4± 64.7 248.1± 70.4 4.0e-04 189.8± 93.3 236.5± 70.0 6.6e-08
Walker2D 1402.4± 82.1 1367.8± 364.3 2.0e-01 1169.6± 214.0 1221.1± 145.2 6.5e-03 986.9± 301.3 1150.4± 215.9 3.2e-09

Hopper 1969.4± 147.6 2062.0± 126.6 1.9e-10 1706.1± 125.0 1803.5± 92.6 2.1e-16 1672.5± 108.6 1758.6± 110.1 1.6e-13
Ant 1090.4± 446.2 1214.4± 111.2 2.0e-04 887.1± 445.2 1057.0± 334.3 3.4e-05 549.0± 458.3 943.1± 317.9 4.6e-20

HalfCheetah 1795.9± 210.3 1862.6± 107.2 1.0e-04 1490.7± 71.7 1478.1± 78.4 1.1e-01 1448.0± 98.2 1489.8± 53.6 4.4e-07

rate is 13, except task HalfCheetah, PWIL-upper significantly outperforms the original PWIL. 3) when the subsample rate is
20, the PWIL-upper beats the original PWIL in all tasks.

This experiment proves that BU (Q) is effective in various conditions when the number of expert observations m does not
match the task’s horizon n. It also indirectly verifies our Claim. 2: when the optimal policy π∗ is acquired, eg(x∗

t) = eL(x∗
t),

and it makes r∗ = rU , BU (Q) = B∗(Q).

