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Abstract

Semi-Unbalanced Optimal Transport (SemiUQOT) shows great promise in matching
two discrete probability measures by relaxing one of the marginal constraints. Pre-
vious SemiUOT solvers often incorporate an entropy regularization term, inevitably
resulting in inaccurate matching solutions. To address this issue, we propose an
Equivalent Transformation Mechanism (ETM) approach to determine the marginal
probability distributions of SemiUOT with KL divergence. Furthermore, we vali-
date the generalization capability of ETM by exploiting the marginal probability
distributions of Unbalanced Optimal Transport (UOT). ETM is able to determine
the exact marginal probabilities of both SemiUOT and UOT, based on which we
can transform the SemiUOT/UOT into classic Optimal Transport (OT) problem.
Moreover, we propose a KKT-Multiplier regularization term combined with Multi-
plier Regularized Optimal Transport (MROT) to achieve more accurate matching
results. We conduct extensive experiments to demonstrate the effectiveness of our
proposed methods in addressing SemiUOT and UOT problems.

1 Introduction

Optimal Transport (OT) technique is a powerful tool for matching and discerning two distinct
probability distributions. Nowadays, OT has multiple successful applications in traditional machine
learning [37, 135} [112} 22} 185, 162], unsupervised clustering [4} [15]], domain adaptation [25] 23] 84,
60, 611, diffusion [49} 56|, generative modeling [50, 79, [100, 44] and many others. Nevertheless,
directly solving OT distances could have relatively high computation cost with around super-cubic
time. Although one can adopt entropy-based Sinkhorn algorithm [24] for solving OT efficiently, it
still suffers from the dilemma of dense and inaccurate solutions [58, 163} [31]]. Moreover, classic OT
strictly assumes that the probability masses on both source and target domains should be equal. It
further hurdles the generalization of OT when the data samples inherit noise or outliers.

Recently, Unbalanced Optimal Transport (UOT) [64119,193}192,196,|59] and Semi-Unbalanced Optimal
Transport (SemiUOT) [52] have become more attractive in adapting outliers since they allow relaxing

*Corresponding author.
39th Conference on Neural Information Processing Systems (NeurIPS 2025).



marginal constraints for transportation results. This advantage makes SemiUOT and UOT powerfully
applicable in transfer learning [[101} 73|80, |29} 26-28]], computer vision [9, |30} 21} [74}116}167, 1101,
structure data exploration [90], natural language processing [3]], and other areas. SemiUOT and UOT
relax the strict OT mass equality constraints by introducing relaxation terms defined by Kullback-
Leibler (KL) divergence [83l], ¢; norm [10], or /2 norm [8]], whose effects are controlled by a
coefficient 7. Meanwhile, KL divergence is the most commonly-used in real practice [95]]. Previous
solvers always involves extra regularization terms, i.e., entropy regularization term and proximal
point term [34], for tackling Semi and UOT problems. Meanwhile adding additional entropy terms
will lead to dense and inaccurate matching solutions. Latest, [17] and [78]] further reconsider solving
UOT problem with majority maximization algorithm without the requirements of regularization
terms. However, these methods are sensitive to the choice of T, i.e., providing sparse and accurate
matching solutions when 7 is small, but unsatisfying solutions when 7 is large. Therefore, it is quite
challenging to efficiently achieve accurate matching solutions for both SemiUOT and UOT problems.

In this paper, we propose a new method, i.e., Equivalent Transformation Mechanism (ETM), which
directly finds the exact marginal probabilities of discrete SemiUOT and UOT with KL divergence.
Specifically, ETM first finds the marginal probability distributions for SemiUOT and UOT problems
based on Karush-Kuhn-Tucker (KKT) conditions and their dual forms. This induces a new insight for
understanding SemiUOT and UOT problems, i.e., We can transform SemiUOT and UOT problems into
classic OT problems based on adjusting initial marginal weights via ETM. We propose ETM-Refine
to achieve exact marginal probabilities without needing overwhelming computation. Specifically,
ETM-Refine first seeks the approximate results of marginal distributions via the fixed-point iteration
with the smoothness function, and applies quasi-Newton based iterative methods to obtain exact
results within quite a few steps. This competitively reduces the computation burden to obtain
accurate matching results on SemiUOT/UOT. Beyond solving the marginal distribution, we also
discover that the KKT multipliers provide valuable guidance for addressing the OT problem, which
is transformed from the SemiUOT or UOT problem with adjusted marginal weights. Therefore we
further propose Multiplier Regularized Optimal Transport (MROT) for achieving more sparse and
accurate OT matching solutions. We summarize our contributions: (1) To our best knowledge, we
first propose both exact and approximate solutions for ETM on two problems, i.e., SemiUOT and
UOT. After optimizing these problems, one can obtain the sample marginal probabilities and transfer
SemiUOT/UOT into standard optimal transport problems. (2) We first innovatively propose multiplier
constraint terms to establish MROT for achieving more accurate results. (3) We conduct extensive
experiments on both synthetic and real-world datasets to evaluate the performance of proposed ETM.

2 Preliminary

We first provide a brief introduction of SemiUOT and UQOT. Let us consider two sets of data samples
X € RM*D and Z € RV*P in source and target domains, where M, N denote the number of
samples and D denotes the data dimension. Samples in each domain have corresponding prior-given
mass weights, i.e., a € RM>1 for source domain and b € RN*1 for target domain. The semi-
unbalanced optimal transport problem is set to measure the minimum cost among data samples X
and Z, meanwhile filtering out the noise and outliers by relaxing one of marginal constraints:

1rni>nO Jsemivor = (C,7) + 7KL (wly|a), s.t.w 1y =b. (1

Tij 2

where C € RM*N denotes the pairwise distance matrix. Meanwhile w € R *Y denotes the
coupling matching matrix among the data samples X and Z. 7 denotes the hyper parameter and
KL (+) denotes the commonly-used KL divergence. SemiUOT relaxes the constraint w1y # a and
keep the constraint 7w 1,; = b. Likewise, the unbalanced optimal transport problem [83] further
relaxes both two marginal constraints, i.e., 7wly # a and w1y # b as shown:

min Juor = (C,7) + 7,KL (wlx|a) + 7KL(7 " 15]|b), 2)

7T7j_7' 20

where 7, and 7, denote the balanced hyper parameters. Previous researches always add an entropy
regularization term to enhance the scalability of solving 7v* of SemiUOT and UOT. However, it still
suffers from the dense and inaccurate solution dilemma in real practice.



3 Methodology

In this section, we will first introduce Equivalent Transformation Mechanism (ETM), which inves-
tigates the problem of SemiUOT/UOT from the perspective of marginal probability distribution.
Then we illustrate the effect of Multiplier Regularized Optimal Transport (MROT) that finds out the
accurate solutions of 7v* for SemiUOT and UOT, with the guidance of KKT-Multiplier Regularization.

3.1 Equivalent Transformation Mechanism

ETM aims to seek the exact marginal distributions with satisfyingly efficient computation. Previous
methods [83,[20] always directly adopted entropy-based regularization term into tackling SemiUOT
and UOT problems. Although such approaches can provide fast computation speed, it will lead to
relatively ambiguous and dense solutions that does not match most of the situations in real practice
[55L191]. In this section, we propose ETM-based methods to determine the marginal probabilities
of source data samples in SemiUOT, accompanied by detailed illustrations. We then extend the
ETM-based method to address the more complex UOT problem.

ETM for SemiUOT. To start with, we illustrate the ETM for transforming SemiUOT to classic OT,
and introduce three types of ETM-based methods, i.e., ETM-Exact, ETM-Approx, and ETM-Refine,
for determining the marginal probability distributions. Specifically, ETM-Exact directly computes the
dual variables via iterative methods, e.g., LBFGS, achieving the exact results with an overwhelming
computation burden. While ETM-Approx is a variant of ETM for SemiUOT by replacing the infimum
with its smoothness approximation. Then we newly propose a fixed-point iteration method to solve
the optimization problem efficiently. To further figure out the exact results, ETM-Refine applies
ETM-Exact with quite a few iterations to solve the exact SemiUOT, by taking the approximate
results as starting points. ETM-Refine shows competitive performance while maintaining efficient
computation. By utilizing the methods above, one can transform SemiUOT into classic optimal
transport problem by adjusting initial marginal weights. In the following, we will introduce the
deduction and optimization details for the proposed ETM-based method on SemiUOT.

Proposition 1. (Principles of Equivalent Transformation Mechanism for SemiUOT) Given SemiUOT
with KL-Divergence JsemivoT, one can obtain its Fenchel-Lagrange multipliers form as:

N
. i 1
min TZaieXp (_fTC> —ij(gj —C:) s.t. fi—&-gj—&—sij :Cij, Sij > 0.
i= j=1
(3

where f, g, s and ( denote Lagrange multipliers. Moreover, SemiUOT problem can be further
transformed into the form of optimal transport with marginal constraints as follows:

e
T

min Jp = (C, ), s.it. wly = a ®exp (—
>0

) —a, w1y =0>b. 4)

When 7 — o0, the source marginal probability is given as wly = wra and wy, = (b,1x)/{(a, 1)

The proof of Proposition 1 can be found in Appendix [B] We can observe that transforming SemiUOT
into classic OT is to elementally adjust the initial weights of data samples by exp(—(f"+¢"/7)). To
further simplify the calculation by reducing variable g, we set g; = infyc(as (Crj — fr) according
to the c-transform theorem [103]]. Hence we only need to optimize f and ¢ without additional
constraints:

N

mlanTZaleXp( f1+C) Z[inf [Crj — fx] — C| by, (&)
J

- ke[M)]

We refer to Lp as the newly proposed Exact SemiUOT Equation. To solve this exact SemiUOT in
Eq.(®), we initialize ¢ = 0 for the optimization and introduce an iterative method derived from LBFGS
[109]. Specifically, we first fix ¢ then adopting LBFGS method to reach optimal results of £ and

gf infye(ar)(Crj — ff) at the (-th iteration. Then we optimize { = T[log(zil\il a;exp(—ff/T))—
log(3_7—; b;)] which is obtained by considering V¢ Lp = 0 and it guarantees Y}~ | e~ Ui/ =

Zjvzl b;. We iteratively update Ly to reach the optimal solutions on ¢*, f* and g*. We refer to the
entire optimization scheme as ETM-Exact approach for Eq.(3).
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Figure 1: The SemiUOT matching solutions on w* when 7 = 0.1 or 7 = 100 among the Robust-
SemiSinkhorn [52] and our proposed ETM-Refine + MROT-Ent, ETM-Refine + MROT-Norm with
ne = 10% and e = 1072, We set ngeg = 0.1 for entropy or Lo-norm regularization term.

Although Lyp is convex and has unique solutions, the presence of inf(-) renders it a non-smooth
function, preventing it from efficient optimization [1l]. To further accelerate the optimization pro-

cess, we consider making a smooth approximation on replacing inf(-) with LogSumExp(-) as
f1e—Ckj M F—Ckj

inf e (ar[Chj — fi] & —€log[Y4m e = | since [elog[Ypr e = | =suprepnlfi — Cisll <

elog M following [75]. Here ¢ > 0 denotes the balanced hyperparameter between accuracy and
function smoothness. Smaller € (e.g., ¢ — 0) could lead to more accurate but less smooth solutions.

Then we can obtain the proposed Approximate SemiUOT Equation as Lp by replacing inf(-) with the
smoothness term for f:

M = N M =
minLp =7 a;exp <—fi+<>+zbj elog [ZeXp =Gl el o
fiC i=1 T j=1 k=1 €

Proposition 2. (Calculation for Approximate SemiUOT Equation) Given Approximate SemiUOT
equation Zp, it can be optimized via Equivalent Transformation Mechanism with Approximation
(ETM-Approx). That is, ETM-Approx aims to solve the following equation for each f:

= —asexp (—@) + exp (%) ﬁ: bj exp (_%)

j=1 224:1 exp (fk_ecw>

Specifically, we can adopt fixed-point iteration method for solving Eq.(7) at the (-th iteration:

Pr+1 ¢ x bj CSj
fi7 =v |log (as exp <—T>> —log Z Wexp <—€> , Vsell,M],
€

j=1

- ®)
where v = T€¢/(T + €) for simplification and ¥, ;(f*) denotes the corresponding calculation
as shown Vﬂe’j(fz) = Z,I:I:l exp((]?,f — Cj)/€). The proposed procedure can converge with a
theoretical guarantee. Finally, updating variable ( by further considering VCZP = Qvia ¢ =
T[log(zi]\il a; exp(fﬁ* /7)) — log(zyz1 b;)), finally achieving optimal results F* and ¢*.
The proof of Proposition 2 can be found in Appendix [C| Generally, Proposition 2 outlines the
optimization procedure using the newly proposed ETM-Approx approach for addressing the Ap-
proximate Semi-UOT Equation. We can observe that the ETM-Approx approach is easy to compute

and implement, while avoiding complex calculations (e.g., searching the descent direction and
finding the step size) and not requiring a large amount of storage space against previous methods.

Therefore, the ETM-Approx approach is an efficient method for determining the result of f * and
g; = —¢ log[ZkM:1 exp((fy — Ckj)/¢€)], transforming SemiUOT into the optimal transport problem.

afs

=0. (7)



Remark 1. ETM-Approx can reach the linear convergence rate via the fixed-point iteration shown as
O(NMlog(1/eer)) where eory = ||f — f*|loo and f* denotes the optimal solution.

Moreover we can finally figure out the exact optimal solution f* via the approximate optimal solution
f * on Lp using Proposition 2. That is, if we directly optimize Lp from a randomly initial pornt we
could spend more time on quasi-Newton gradient descent (e.g., LBFGS) for reaching f*. Since f *is
close to f*, it should be more efficient to use f* as the initial guess for optimizing f* via ETM-Exact
which has super-linear convergence rate [46} 47, 86,1109, 39]. And we regard the whole procedure
as ETM-Refine method with time complexity of O(N M log(1/eer) + N M (log M )dr) where dr
denotes the number of iterations. ETM-Refine utilizes the strength of ETM-Approx in efficient
computation for the exact results. In summary, we can utilize ETM-based methods to transform
SemiUOT into classic OT problem. We illustrate the optimization details in Alg.1 and Appendix D}
Algorithm 1 The algorithm of ETM-Based method on SemiUOT

Input: C': cost matrix; a, b: initial marginal probability; 7, e: Hyper parameters.
Randomly initialize the value of fit,
Choose ETM-Exact, ETM-Approx or ETM-Refine on SemiUOT for optimization.
(1) Function: ETM-Exact on SemiUOT(C, a, b, 7, f{=0 = finit)
Optimize f via L-BFGS algorithm on Lp.

Optimize g via g; = infear(Crj — fL)-
Optimize ¢ via ¢ = rllog(Y ", a; exp(—fi/)) — log(X1, bj)]-
Return: The optimal solutions of f*, g* and *.
(2) Function: ETM-Approx on SemiUOT(C, a, b, T, Fi=0 = pinity
Optimize f via Proposition 2 on Lp
Optimize g via g; = —¢ log[zk 1 exp((fk — Crj)/e).
Optimize ¢ via { = 7'[log;(2:Z 1 a; exp(— fl/T)) log(X:;,V:1 b;)].
Return: The optimal solutions of f* g* and C*.
(3) Function: ETM-Refine on SemiUOT(C, a, b, T, F=0 = finity
Obtain f* = ETM-Approx on SemiUOT(C, a, b, 7, f©=0 = = f".

Obtain f* = ETM-Exact on SemrUOT(C a,b, 7, =0 = ).
Return: The optimal solutions of f*, g* and *. .

ETM for UOT. We have obtained the marginal probability of SemiUOT via tackling Proposition
1 with proposed ETM-based method. In this section, we will further extend ETM for solving the
marginal probability on UOT, which is also a commonly existing optimization problem.

Proposition 3. (Principles of Equivalent Transformation Mechanism for UOT) Given UOT with
KL-Divergence Juor, its Fenchel-Lagrange multipliers form is given:

wi o wi +v; + si5 = Cij,
in;nc [TaZalexp( +C> +Tb;b exp( %)], s.t. {Sij 267 ’ ’ 9)

where u, v, s and ( denote Lagrange multipliers. Moreover, UOT problem can also be transformed
into classic optimal transport as follows:

rnirOlJU: (C,m), s.t.wly =a®exp (7%) =a, w1y =b®exp (71) —¢ ) =B.
™2

Ta T
(10
Note that when 7,,7, — 00, the source and target marginal probabilities can be determined as
wly = \/wra and w1y = b/\/wr, where wy, = (b, 1n)/{a, 1) respectively.

The proof of Proposition 3 can be found in Appendix [E} Likewise, we set v; = infjc[as) (Crj — ug)
by the c-transform theorem [103] to simplify the calculation. Hence we obtain Exact UOT Equation:

‘ — O
mmLU = Tazazexp< H—C) +TbeXp( )Zb exp (Supke[M] (s kj)) . (1)
T,

T
i=1 @ b

We first fix C then adopting LBFGS approach to optimize Ly on w. Then we futher optimize

(= ;-;[log(XZZ La; exp(—ut /1)) — log(z 1 bjexp(— e/77,))] at the /-th iteration where vf =
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Figure 2: Results of #* on UOT when 7, = 7, = 0.1 or 7, = 7, = 100 among Ent-UOT [83]],
MM-UOT [17], GEMUOT [78] and ETM-Refine+MROT-Norm with 5 = 102 and NMReg = 0.1.

infrear(Crj — uf) and & = 7,7,/(74 + 7) by considering V¢ Ly = 0. Here we regard the
above process as the ETM-Exact approach for solving UOT problem. Note that the non-smooth
function sup(+) will result in inefficient optimization. However, if we directly apply a similar function
approximation to replace sup(-) following Eq.(6), the optimization problem becomes quite complex,
making it relatively difficult to determine the iterative solutions. Meanwhile, Proposition 2 enlightens
us with a completely new ETM-Approx approach for optimizing UOT.

Optimization 1. (Calculation of ETM-Approx approach for UOT) Since the optimization problem in
Eq.(9) is convex, we can also utilize block gradient descent to optimize the problem. Specifically, we
first fix 0 and optimize variable @' at the I-th iteration by replacing the original marginal probability
b in Eq.(6) with b ® exp(—(v — ¢)/7) = B accordingly to transform UOT into SemiUOT problem:

M
mjnf%:TaZaieXp( l+<>+ZBJ [elog [Zexp( Ck])

i=1

+¢ (12)

It is equivalent to solve the equation by taking the differentiation w.r.t. on s over E% and set it O:

= ~ ~ N ) _Cs

oL < o ﬁ exp( e )

8AU — _agexp <_“+C> +exp (“) Z MJ e (13)
s T €/ im | Xgmexp (u)

Obviously, it is equivalent to replace b with 3 in Eq.(7) for solving Eq.(T3). Then we can utilize
the iteration step shown in Eq. @ to obtaln u't!l. After that we fix u' ™! and optimize variable v'*!
via ’Ul+1 = —¢ log[zk Lexp((@,™ — Cy;)/€)]. We can achieve the optimal solution on @* and
v* V1a iteratively computing via the above procedure accordingly. Finally, we update variable ¢
via considering ¢ = (7,7/ (74 + Tb))[log(Z:7 1 @i exp(—uf /1)) — log(z 1 bj exp(=v7 /m))].
Due to the space limits, the deduction details are provided in Appendix [F} Moreover it has the time
complexity of O(NM log(1/cer)) Where ey = ||t — U*|| o With the linear convergence rate.

In summary, Optimization 1 for solving the UOT can be seen as an extension of Proposition 2 applied
to SemiUOT, demonstrating the robust generalization capability of the proposed ETM method.
Likewise, one can utilize u* and v* as the initial guess for solving Exact UOT Equation on Eq.(TT)
via ETM-Refine. Hence, ETM-based methods (i.e., ETM-Exact, ETM-Approx and ETM-Refine)
transform UOT into classic optimal transport via computing the exact marginal distributions.

3.2 Multiplier Regularized Optimal Transport Induced by KKT-Multiplier Regularization

According to the Proposition 1-3 that discussed in Section 3.1, we have figured out the marginal
probability distributions on both SemiUOT and UOT with commonly used KL Divergence via
proposed ETM-based methods. Motivated by this, we can observe that the core mechanism of
UOT/SemiUOT is carefully reweighting the weights of different samples accordingly. If the samples
are noise or outliers, the corresponding weights will be much smaller than the corresponding weights
among similar data samples. Therefore, UOT/SemiUOT has better adaptability than traditional OT
that commonly treats all data samples equally. In this section, we will further exploit the matching
results of 7 for SemiUOT and UOT using the following corollary:



Corollary 1. Given any UOT/SemiUOT with KL divergence, we can transfer the original problem
into classic optimal transport via adopting proposed ETM approach flexibly. We can further utilize

existing OT solver for solving w* as (UOT, SemiUOT) ETM Method, oy OT Solver,

This observation provides us with entirely new unified insight into solving the matching results of
7* for SemiUOT and UOT. It is essential to utilize the proposed ETM-based method, as it offers
a variety of OT solvers that yield more efficient and accurate results than directly optimizing UOT
or SemiUOT. In general, one can further adopt Sinkhorn (24} [14]], /2-norm term [8]] or some other
sparsification OT solver [58, 41] with different regularization terms to achieve the transportation 7r.

Although some OT solvers (e.g., Sinkhorn [24]]) could figure out 7r efficiently comparing to the linear
programming with cubic time complexity [48]], they often provide ambiguous results that may deviate
significantly from the correct solutions [[72,/58]]. Hence it remains a challenge to efficiently find an
accurate result for 7v*. Recalling the whole process of ETM method, we not only obtain the marginal
probabilities, but also derive multipliers s which can be further utilized as guidance.

Corollary 2. Given the optimal u* and v* in UOT via ETM-based method, one can obtain s on
UOT by s;; = max(0,Cy; — uj — v;) Likewise, the multipliers s on SemiUOT can be obtained via

ETM-based method as s;; = max(0,C;; — f — g;") Multipliers s indicate the value of T, i.e., (case
1) s;; > 0 when m;; = 0 and (case 2) s;; = 0 when m;; > 0 according to the KKT conditions.

The Corollary 2 demonstrates that the value of ;; can be reflected via s;;. This observation inspires
us to further utilize such useful information in accurately calculating matching results 7*.

Proposition 4. (The Definition and Usage of KKT-Multiplier Regularization) Given any OT with
multiplier s, one can obtain accurate solution 7* via proposed KKT-multiplier regularization term
G(m,s) = (m, s), which formulates Multiplier Regularized Optimal Transport (MROT):

1711>11(} Jo = (C, ) + 16 (T, 8) + NRegLreg (), st.wly =, w 1y =P, (14)

where Lreg () denotes the regularization term on 7. o, (3 denote the final marginal probabilities
obtained by ETM-based method, while nres and ng denote the hyperparameters. Ideally, ng should
be set as a relatively large number. Meanwhile the dual form of MROT is given as:

max Lg = (a,¥) + (B, ®) — MRegLueg (Vi + @5 — Cij)/MReg): (15)

where 51']‘ = Cyj + ngsij» ¢ and 1) denote the Lagrange multipliers for MROT. ‘C;{eg(') denotes
the conjugate function of Lreg(-) and one can figure out the matching results of 7 via solving the

fOZIOWing equation ij 'CR,eg (Wij) = (% + ¢j - Cij)/nReg-

We provide the deduction of MROT in Appendix [H. That is, minimizing s;;7;; to 0 could re-
sult in s;;m;; = 0, which not only aligns with the KKT complementary condition, but also
reweights the matching for more accurate results. Generally, MROT is orthogonal to adopting
different kinds of regularization term Lgeg(-) for efficient optimization. For instance, one can
use the widely adopted entropy regularization term Lreg(7) = —(m,log(m) — 1) to formulate
Entropic Multiplier Regularized Optimal Transport (MROT-Ent), whose matching results satisfy
mij = exp(—NaSij /MReg) €Xp((¥s + @5 — Cij)/MReg). Obviously, involving the multipliers infor-
mation s has achieved more accurate solutions. Specifically, the non-matching samples pairs will
get lower value on 7;; since G(,s) = (m, s) avoids rigorous results. Otherwise, the matching
results on 7;; will mainly be determined by the transportation cost. Similarly, one can also adopt
La-norm regularization term Lreg () = 3 (m, ) to formulate Sparse Multiplier Regularized Opti-
mal Transport (MROT-Norm) with similar characteristics. The time complexity of MROT depends
on the regularization term Lreg(7r), that is, MROT-Ent and MROT-Norm have a complexity of
O(NMd,) where d, is the number of iterations. In conclusion, we can integrate the ETM-based
methods with MROT method to solve the SemiUOT and UOT problems, achieving accurate results
for both marginal probabilities and the matching solution ;.

4 Experiments

4.1 Experimental setup

Datasets. We conduct experiments on both synthetic and real-world datasets to evaluate the methods.
(1) Synthetic Datasets. We first conduct the experiments on the synthetic datasets. That is, we set



Table 1: Classification accuracy (%) on Office-Home for UDA and Partial UDA

Method for UDA Ar—Cl Ar—Pr Ar—Rw Cl—Ar Cl-Pr Cl-Rw Pr—Ar Pr—Cl Pr-Rw Rw—Ar Rw—Cl Rw—Pr Avg
ResNet [43 34.9 50.0 58.0 374 419 46.2 385 312 60.4 53.9 41.2 59.9  46.1
DeeﬁJDOT 251 50.7 68.6 74.4 599 658 68.1 552 463 73.8 66.0 54.9 78.3  63.5
OT |5 47.2 71.8 76.4 58.6  68.1 70.2 56.5 450 75.8 69.4 52.1 80.6 64.3
JUMBOT [34 55.2 75.5 80.8 65.5 744 74.9 652 527 79.2 73.0 59.9 834 700
JUMBOT + UOT(MM-UQT) 56.3 76.2 81.6 66.0 753 75.1 664 529 79.2 73.8 60.7 84.1 70.6
JUMBOT + UOT(GEMUOT) 57.5 77.4 82.7 67.2 760 75.6 66.1 54.5 80.5 74.9 61.8 852 716
JUMBOT + UOT(¢5-Norm Solver) 57.0 76.7 81.8 66.1 74.5 755 659 534 79.6 74.2 60.6 83.3 70.7
JUMBOT + UOT(Sparse Solver) 57.8 77.1 82.3 66.7 762 75.8 67.0  54.1 80.7 75.4 61.3 84.6 71.5
JUMBOT + UOT(ETM-Refine + MROT-Ent) 59.0 78.5 83.4 68.7 77.1 77.6 683 572 824 76.2 62.5 864 73.1
JUMBOT + UOT(ETM-Refine + MROT-Norm) _ 59.4 78.7 84.1 68.5 713 78.5 68.6 579 82.8 76.3 62.5 86.5 734
Method for Partial UDA Ar—Cl Ar—Pr Ar—Rw Cl—Ar Cl-Pr Cl-Rw Pr—Ar Pr—Cl Pr-Rw Rw—Ar Rw—Cl Rw—Pr Avg
ResNet [43 46.3 67.5 75.9 59.1 59.9 62.7 582 418 74.9 67.4 48.2 742 614
ETN [12 59.2 77.0 79.5 629 657 75.0 683 554 84.4 75.7 57.7 84.5 705
JUMBOT |34 62.7 71.5 84.4 76.0 733 80.5 747  60.8 85.1 80.2 66.5 839 75.
AR [42 67.4 85.3 90.0 773 1706 85.2 79.0 648 89.5 80.4 66.2 864 783
m-POT [77] 64.6 80.6 872 764 716 83.6 771 63.7 87.6 81.4 68.5 874 78.0
MOT [65 63.1 86.1 92.3 78.7 85.4 89.6 79.8 623 89.7 83.8 67.0 89.6 80.6
MOT + UOT(ETM + MROT-Ent) 65.2 87.3 92.8 79.5 86.4 91.0 80.8 645 90.7 84.5 67.9 904  81.8
MOT + UOT(ETM + MROT-Norm) 65.8 88.0 93.1 79.9 86.2 91.3 814 649 91.2 84.9 68.3 90.7 82.1
MOT + SemiUOT/(Robust-SemiSinkhorn) 66.0 88.2 93.0 80.5 86.8 91.5 81.3 652 91.6 85.2 68.5 90.9 824
MOT + SemiUOT(ETM-Refine + MROT-Ent)  68.6 90.4 94.2 83.7 89.5 93.9 835 674 93.9 88.4 71.8 92.1 848
MOT + SemiUOT(ETM-Refine + MROT-Norm)  69.1 90.7 94.6 84.0 903 94.0 838 679 94.4 88.5 71.3 93.6 852
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Figure 3: The time consumption and computation error analysis on UOT and SemiUOT.
the source and target domain distributions as Py = ~ ([:}] , [(1) ?D and Pz =~ ([ﬂ , [7(1)8 ‘(1]‘8])
following previous works [36} [17]. For the SemiUOT scenario, we set target distribution as P then
we sample 80% data from Px with 20% outlier data to generate the source distribution. For the UOT
scenario, we sample 80% data from Px and Pz accordingly while randomly sampling 20% outlier
data for both Px and Pz. (2) Real-world Datasets. We conduct the domain adaptation tasks on
Office-31 (88, Office-Home [102], and ImageCLEF [13]]. More details are provided in Appendix

Baselines. We first compare the proposed ETM-Refine with MROT method with the following state-
of-the-art UOT/SemiUQT solvers on the synthetic datasets. (1) Ent-UOT [83]] utilizes the entropy
regularization term on tackling UOT problem. (2) MM-UOT [17] adopts majority maximization
algorithm for solving UOT. (3) GEMUOT [78]] adopts ¢5-norm term for reaching transport solutions
on UOT which is the state-of-the-art approach. (4) Robust-SemiSinkhorn [52] adopts the entropy
regularization term for solving SemiUOT problem. We also involve DeepJDOT [25], ROT [5]],
JUMBOT [34], ETN [12], AR [42], m-POT [77], MOT [65] as the model baselines for the real-
world domain adaptation task. These model details are provided in Appendix[J]

Implemented details. For both synthetic and real-world datasets, we set ¢ = 0.01 on both LU and

Lp. We set 7 = 102 and NReg = 0.1 for MROT in the calculation. The initial value of (%) and £0)
as set as zero vectors. The initial sample weights are set to be equal, i.e., a; = 1/M and b; = 1/N.
And we adopt square Euclidean distance for the cost C;;. Besides, we adopt the same framework and
experimental settings of the UDA model JUMBOT [34] for unsupervised domain adaptation and the
partial UDA model MOT [65]] for partial unsupervised domain adaptation with the fair comparison.
For all the experiments, we perform five random experiments and report the average results.

4.2 Performance and Extensive Analysis on Synthetic and Real-World Datasets

Performance on Synthetic Datasets. We sample 50 data samples on both source and target
distributions for finding 7* on UOT/SemiUOT. We first set 7 = {0.1,100} on SemiUOT and
the matching solutions are shown in Fig[I(a)-(b). Note that we randomly sample 20% of noise
in the source datasets. We can observe that previous method Robust-SemiSinkhorn could lead
to ambiguous matching results. Our proposed ETM-Refine with MROT+Ent can reach relatively
accurate results even if 7 is large (e.g., 7 = 100). More importantly, ETM-Refine with MROT-Norm
can achieve more precise results comparing with ETM-Refine with MROT-Ent shown in Fig|I| Then
we also set 7, = 7, = {0.1,100} on UOT and the matching solutions are shown in Figa)-(b).
From that we can observe: (1) Ent-UOT could merely provide dense matching solutions which are
inaccurate. (2) MM-UQT obtains relatively accurate solutions when 7 is small. However, MM-UOT
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Figure 4: The effects on tuning different e = {0.01, 0.1} with the loss descent curve and computation
error e, = ||& — || for ETM-Approx method on solving SemiUOT and UOT problems.

Table 2: Classification accuracy (%) on Office-31 and ImageCLEF for partial UDA

Method A—W D—-W W—D A—D D—A W—A Avg I-P P—I I-C C—I C—P P—C Avg
ResNet [43] 756 963 981 834 839 850 87.1 783 869 91.0 843 725 915 84.1
ETN [12] 847 974 992 913 902 928 92.6 79.6 8.5 929 872 741 934 86.0
JUMBOT [34] 902 989 993 945 93.8 934 95.0 80.1 91.3 93.6 909 757 942 876
AR [42] 93.5 100.0 99.7 96.8 955 96.0 969 83.1 92.8 945 924 763 95.0 89.0
m-POT [77] 962 995 100.0 97.6 944 953 97.2 82.6 941 963 947 785 96.2 90.4
MOT [65] 99.3 100.0 100.0 98.7 96.1 964 984 87.7 950 98.0 950 87.0 98.7 93.6

MOT + UOT(ETM-Refine + MROT-Ent) 99.4 100.0 100.0 989 96.8 97.3 98.7 883 956 984 953 87.6 99.0 94.0
MOT + UOT(ETM-Refine + MROT-Norm) 99.6 100.0 100.0 99.2 973 97.7 99.0 88.7 959 98.7 958 88.0 99.1 944
MOT + SemiUOT(ETM-Refine + MROT-Ent)  99.7 100.0 100.0 994 978 984 992 89.1 96.2 99.2 96.1 885 99.4 9438
MOT + SemiUOT(ETM-Refine + MROT-Norm) 99.8 100.0 100.0 99.7 984 98.8 99.5 89.6 96.7 99.4 96.5 89.1 99.6 95.2

cannot better handle the case when 7 is large (e.g., 7 = 100) due to the deterioration of majority
maximization algorithm. (3) GEMUOT can even reach more sparse matching solution against
Ent-UOT and MM-UOT with the aid of ¢5-norm term. However, the matching results obtained from
GEMUQOT remain coarse and ambiguous, especially when 7 is large. (4) Benefiting from multipliers
s, ETM-Refine with MROT-Norm achieves the most accurate results among existing UOT methods.

Performance on Real-World Datasets. We further conduct the experiments on the real-world
datasets to validate our proposed method. The experimental UDA task results on Office-Home
are shown in Table We also directly adopt ¢5-norm [§]] and sparse solver [58] on solving Jy.
Meanwhile, our proposed ETM-Refine with MROT-Norm obtains the best performance, which
indicates its efficacy for finding more accurate matching results on UDA. Then we adopt the same
experimental setting as MOT to evaluate the partial UDA task where target label space is a subset
of source label space. This makes it more challenging than classic UDA task [[L1166]. The partial
UDA results on Office-Home, Office-31 and ImageCLEF are also shown in Table[T|and Table[2] We
can easily observe that all methods using EMT-Refine with MROT-Norm or MROT-Ent significantly
improve the performance on partial UDA task. Especially, MOT + SemiUOT (ETM-Refine +
MROT-Norm) achieves the best performance, benefiting from its powerful matching capability. UOT
relaxes the dual transportation constraints, causing some target samples cannot be transported to the
source domain. However, SemiUOT overcomes the mentioned issue while avoiding negative transfer
in partial UDA, which boosts the model performance. We also conduct more domain adaptation
experiments to verify the effects of ETM-Refine with MROT-Norm in Appendix[J] Kl

Solver Comparison Analysis. To further analyze the proposed ETM-based methods with MROT,
we conduct the solver comparison in terms of computation time and computation error. We first
sample the same number of source/target data samples from Px and Pz, respectively. As shown
in Fig[3(a)-(b), we conduct the experiments on both UOT and SemiUOT with 7, = 7, = 7 = 1.
We can conclude that ETM-Exact with MROT-Norm is most time-consuming, due to directly
seeking the optimum from a random initial point. Meanwhile, ETM-Refine reaches a similar
computation time with ETM-Approx, validating that it accelerates the process of finding the optimal

u* or f* by utilizing w* or f*. Moreover, we calculate the absolute computation error between
matching solution 7r learned by ETM with MROT and the standard UOT/SemiUQOT solution with
CVXPY as 7*,ie, e =3, ;||my; — m};||1. We sample 500 number of data samples ranging from

T =Ty =7 = {0.01,0.1, 1,10, 100} for calculation and the results are shown in Figc)-(d). We
can observe that although ETM-Approx with MROT-Ent has the fastest computation speed, the
provided results 7 still have the highest error compared to the ground truth 7w*. Meanwhile ETM-
Refine with MROT-Norm can further reach more accurate solutions against MROT-Ent. Though
regularization terms, e.g., entropy and norm, can be directly used in SemiUOT and UOT, they bring
larger computation errors without the guidance of KKT-multiplier s. Robust-SemiSinkhorn causes
the largest computation error in solving SemiUOT. We also find that all existing UOT methods,
i.e., Ent-UOT, MM-UOT, and GEMUOT, not only underperform in matching, but also cost more



computation time. We can observe that ETM-Refine method achieves much better results, especially
when 7 is relatively large, which is consistent with our discovery in Fig[T}Fig[2Q]

Parameter sensitivity Analysis. We finally study the effects of hyper-parameters on model perfor-
mance. We tune e in range of € € {0.01,0.1} and show the results in Figa)-(d). ‘We can observe
that smaller e could provide good approximation on UOT/SemiUOT, reducing the iteration steps
for optimizing Ly and Lp. Although € could hardly affect the performance on ETM-Refine, larger
value on € could consume more iteration steps for solving Ly and Lp since the initial values are
more random. Additionally, we collect the computation error e, = ||& — a*|| o, Which measures the
discrepancy between the marginal probability learned via ETM-Approx & and the ground truth a*.
Larger values of € may fail to reduce the computation error e, when compared to smaller values of e.
Hence we set e = 0.01 empirically and more experimental results can be found in Appendix M| [N]

5 Related Works

Unbalanced and Semi-Unbalanced Optimal Transport. (1) Related works on UOT: UOT with
KL divergence has been widely investigated for dealing with diverse applications [82, 30, (94, 51,
40, 32,1106, 164]. Different types of UOT solutions can be distinguished in terms of using entropy
regularization term or not. Involving entropy in UOT can enhance the model scalability, yet resulting
in dense matching results [98| 5]]. Latest, [17] further considers UOT without entropy terms by
Majorization-Minimization (MM) [20} 99] or regularization path methods [68l 169} 57]. However, the
nature of MM algorithm inherits inexact proximal point of KL term [[105]], which still causes dense
mapping when 7 becomes larger. Meanwhile regularization path methods could be quite slow in
computation, especially when 7 — +oc0. Furthermore, as the number of samples increases, it can
lead to high storage space consumption, which can be problematic. Recently, [21] discovers a similar
transformation between continuous UOT and classic OT problem. However, this discovery cannot
directly extend to SemiUOT and UOT in discrete scenarios, and provides no hint to compute the exact
marginal distributions and corresponding matching 7. (2) Related works on SemiUOT: SemiUOT
with KL divergence only relaxes one of the marginal constraints comparing with UOT. [52] first fully
investigated the corresponding problem and proposed Robust-SemiSinkhorn algorithm. Nevertheless,
it still suffers from inaccurate matching solutions with entropy regularization term. Currently, there
are only extremely few works for solving SemiUOT [71]. Therefore, how to efficiently provide
accurate matching solutions on both discrete SemiUOT and UQOT is still a challenging problem.

6 Conclusion

In this paper, we propose Equivalent Transformation Mechanism (ETM) approach with ETM-Exact,
ETM-Approx, and ETM-Refine to solve the marginal probabilities of SemiUOT and UOT. We
illustrate that the essence of SemiUOT/UQOT is reweighting data samples accordingly and thus
SemiUOT/UQT problem can be transformed into standard optimal transport. Moreover, we propose
KKT-Multiplier Regularization with Multiplier Regularized Optimal Transport (MROT) to obtain
more accurate solutions. We conduct extensive experiments to show the superior performance of
ETM with MROT, on both synthetic and real-world datasets of different tasks and applications.
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A Notation Table

We provide the important notations and their descriptions for clarification on Table[3]

Appendix

Symbol

Description

X ERMXD
ZGRNXD
M
N
D
acRM
becRY
T € RMXN
CERJMXN

o e QRIS

~ &

v

JSemiUOT
Juot

Source domain data matrix

Target domain data matrix

Number of source samples

Number of target samples

Data dimension

Source marginal probability vector

Target marginal probability vector
Coupling matching matrix (transport plan)
Cost (distance) matrix

KL divergence coefficient for SemiUOT
KL divergence coefficient for source (UOT)
KL divergence coefficient for target (UOT)
Adjusted source marginal (via ETM)
Adjusted target marginal (via ETM)

Dual variable (SemiUOT, source)

Dual variable (SemiUOT, target)

Dual variable (UOT, source)

Dual variable (UQOT, target)

Scalar dual variable (shared)

KKT multiplier variable

Scaling factor: wy, = <<21>>

LogSumExp smoothing parameter

Update step: v = I,

Objective function of SemiUOT

Objective function of UOT

Exact SemiUOT Equation

Approximate SemiUOT Equation

Exact UOT Equation

Approximate UOT Equation
KKT-multiplier regularization term: (7, s)

Regularization term for OT (e.g. entropy or /5)

Regularization weight for multiplier term
Regularization weight (entropy or £5)
Adjusted cost: Cy; = Cy5 + nasij

Dual variable in MROT (source side)
Dual variable in MROT (target side)

B Proof of Proposition 1

Table 3: Important notations

Proposition 1. (Principles of Equivalent Transformation Mechanism for SemiUOT) Given SemiUOT

with KL-Divergence JsemivoT, one can obtain its Fenchel-Lagrange multipliers form as:

M N
Saen (<L) <3000, - 0
i=1 j=1

min |7

f.9.¢

s.t. fi + g; + Sij = Cij, 535 > 0.
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where f, g, s and ( denote Lagrange multipliers. Moreover, SemiUOT problem can be further
transformed into the form of optimal transport with marginal constraints as follows:

min Jp = (C, =),
>0
a7

st. wly =a®exp (—f +< )za, w1y =b.
T

When T — 00, the source marginal probability is given as wly = wra and wy, = (b, 1x)/{a, 1)

Proof. To start with, we first review the definition of SemiUOT as shown below:
min Jsemivor = (C,w) + 7KL (7ly|a)
i3 20 (18)
st m=0b.
Then we can rewrite the optimization problem:
minJ = (C, ) + 7KL (7ly|a)

>0
(Constraint) : @ 1y =b 19)
" |(Optional) : wly =a
Note that we do not need to know the exact value of o beforehand. We adopt this optional constraint

only for simplifying the following deduction. The Lagrange multipliers of SemiUOT with KL-
Divergence is given as:

max min Jsemivor = TKL (W]-N”a) + <-f + Ca Tr1N> + <g - Ca b> +
5>0,f,9.¢ 7>0 (20)

<Cff®1;7 ]-M®g—r *377‘->a
where f, g, s and ( are dual variables. By taking the differentiation on 7;; we have:

N
> T

0JsemivoT j=1
“om, = |7log a + fi+ | +(Cij — fi — g5 — sij)
N (2D
:Cij+7'10gj_ ) +<7gj73ij
=0.
Therefore, we can obtain the results as:
N
Z _ ( fi+ C)
71'1‘]‘ =aq;eXp|{ ——
: T
=1
(22)

M
> mij=b
i=1

Cij —fi—9;—si; =0
After that, we can take these back into KL-Divergence to simplify the calculation:
7KL (wlxfa) + (f + ( mly)

= 7KL <aexp (fj:C) ||a) + <f+CaanP (f:C>>

. — futt M
:TZ a; eXp (_fz;"C) logazeXp< T )_aiexp (_fi:‘()_’_ai +Z(fi+<)aiexp <_f7,+<)

a; T
i=1 v i=1

M
= Z {—Tai exp (—fl : Q) + Tai] .

=1

(23)
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Therefore we can obtain its Fenchel-Lagrange multipliers form of SemiUOT as:

min jSemiUOT = —7KL (TrlN”a) - <f + <77r1N> - <g - Ca 7rT11\4>

.9
= Texp <—7<_) <a,exp (—{)> — (g — ¢, b) + Oconst (24)

sit. fi + g5 < Cyj,

where Oconst = — Zﬁl Ta; and we can neglect it during the following calculation. Once we obtain
the optimal solution on f*, g* and (*, we will discover that:

7KL (7ly]ja) = 7KL (a7exp (— F j<*> ||a) = Const. (25)

Hence SemiUOQOT problem can be transformed into classic optimal transport problem accordingly.
Finally we can obtain the optimal solution on ¢ by considering 6‘7595% = 0 as below:

M £, N
(=171 |log (Z a; exp (—;)) — log ij . (26)
j=1

=1

Once we set 7 — 00, the results of the limitation will be shown as:

i . b1

lim a; exp —M = lim a;exp —£ =aq; (6, 1) = WL,a;. 27
S Foo T T 400 T (a,1)

Therefore we conclude the proof of the Proposition 1. O

C Proof of Proposition 2

Proposition 2. (Calculation for Approximate SemiUOT Equation) Given Approximate SemiUOT

equation Zp, it can be optimized via Equivalent Transformation Mechanism with Approximation
(ETM-Approx). That is, ETM-Approx aims to solve the following equation for each f:

> > >\ N b; exp _&
OLe _ e <_fT+C> +exp ({) S| — ( ) —0.  (28)

0 j=1 Ziw:leXp(f’“ C’”)

Specifically, we can adopt fixed-point iteration method for solving Eq.@28) at the (-th iteration as

follows:
b; Chj
% Th (>>

N
fﬁlzy log (aMexp <—f_)>—lg ;( Ef(f‘) exp( CZ“))

¢ N
ﬁ“‘l =v |log <a1 exp (7_)> —log Z

; (29)

where v = Te/(T + €) for simplification and ¥_;( ]?e ) denotes the corresponding calculation:

M Y
fr fr = Cij
= e I 30
) Eﬁ: Xp < - ) (30)
The proposed procedure can be convergent with a theoretical guarantee. Fmally, updating the
Lagrange multiplier ¢ by further considering VCLp =0via( = T[lOg(ZZ Laiexp(—fi/T)) —

~

1og(2j:1 b;)]. One can achieve the optimal results on f* and (* via iterative computing accordingly.
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Proof. We first review the proposed Approximate SemiUOT Equation Ep as below:

K

rnmLp:TZaZ fZ+C+Zb [elogl ke j‘|+4. 3D

k=1

Then we consider optimizing J/”; as follows:

aLP <T+6A> ase_é
— =0 = eXp fs = )
ofs Te $ (b,- exp<—cfj/e>) (32)
- Weyj(f)
where 7. ;( f) is defined as Eq.(30). At that time we adopt fixed-point iteration method to optimize
f accordingly:
s b e—Cuij/e N N
ff“zl/ 10g<a16 f)—log Z( (,fg)> :fl(flev"'afﬁ>
j= 7.7
Fr+1 — -4 & ~cure\ || 7 7
fs =V log(ase T)—lOg Z ff) :]:S<f17"'7fM) ) (33)
=1 Wei

M=

ff(j'l =v |log (aMe f) — log

bjech/E> n n
—— =Fu (1 fu
j=1 ( %’j(ﬂ) ( )

where v = (fz) w.r.t ff, we can observe that:
—~ Csj
OF(J1) _ e ! LRSS e ()],
oJt Tred fen(-S)] R\ ) |
| o |

<1
<1

F (J’EE f@ ) _ OF( f) OFs(f) OF( 1{4)
v of oft oft,
. Fe_
T 1 XN: b; exp (—%) M exp(f“ GCW)
TreXN EXP(* fj) b, i=1 %,j( Z) u=1 %,J(fe)
Z Yo () J
Jj=1 7
= <1
T+e€

(35)

19



We can easily conclude that:

F (o Fa) <1 (36)

Fum (J?f, 7%) <1
Therefore, we can conclude that the proposed ETM-Approx method guarantees convergence according
to Theorem 2.9 in [70]. O]

Remark 1. ETM-Approx can reach the linear convergence rate via the fixed-point iteration shown as
O(NM log(1/€err)) where eexr = || f — f*[|oc and f* denotes the optimal solution.

Proof. We can formulate the whole optimization process for Proposition 2 as below :
2+1 N N4
Tt =r (fu"' an)

B R (B F) = (B T = P (R0 F9).

P41 i i
= R (e )
According to the above discussion, we have the following results:

70~ 7 = [Funae (F9) ~ Fapi (7))

o0 ’

T ~
< 1 g0 _ px
T 5 T ~
< T H]aeﬂ) _F LT Hf(eﬂ) _ JzU)H '
T+e€ co TtE )
Therefore the error between the solution f (+1) at the (£ + 1) iteration and the optimal results f *is
given as:
¢
‘f(f+1) . f* < TH+e€ T Hf(l) o J?(O)‘ (39)
co € T+e€ oo
Hence ETM-Approx can be linear convergence via the fixed-point iteration shown as
O(NMlog(1/eerr)) where eerr = ||f — £*||oo and f* denotes the optimal solution. O

D Algorithm for ETM-Based Method on SemiUOT

We also provide the pseudo algorithm of the proposed ETM-Based approachs (e.g., ETM-Exact,
ETM-Approx, and ETM-Refine) for solving SemiUOT in Alg[I|to make a clearer illustration.

E Proof of Proposition 3

Proposition 3. (Principles of Equivalent Transformation Mechanism for UOT) Given UOT with
KL-Divergence Jyor, its Fenchel-Lagrange multipliers form is given:

M N S
. _ut _vi=¢
min |7, E a;e” e +Tp g bje (40)
i=1 j=1

u,v,¢

st ui +vj + 555 = Cyj, 555 20,
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where u, v, s and ( denote Lagrange multipliers. Moreover, UOT problem can also be transformed
into classic optimal transport as follows:

min Ju = (C, =)

Tly =a®ex _u*+(* =«
N = P T - 41
s.t. o .
7rT1M=b®exp<—v )z,@
)

Note that when 7,,7, — 00, the source and target marginal probabilities can be determined as
wly = Jwpa and ' 1y = b/\/wr, where wy, = (b, 1x)/{a, 1,) respectively.

Proof. To start with, we first rewrite the optimization problem as below:
min.J = (C, ) + 7, KL (71y|ja) + 7, KL(7 " 1,]|b)
w20 (42)
s.t. (Optional) : wly =a, = 1y =p.
where a and 3 denote the marginal probabilities for source and target domains respectively. Note
that we do not need the true value fo o and 3 beforehand. That is, the constraints here are optional
for the following UOT deduction. The Lagrange multipliers of UOT with KL-Divergence is given as:

_max Cm;%JUOT =1, KL (wlylla) + {(u+ (,7mln) + TbKL(ﬂ'TlMHb) + (v — CJrTlM) + %vor,
s_ 7u7v) 7T_
43)

where Guor = 3, ;(Cij —u; —vj — s45)m; = (C —u® 1% — 1y ®v' —s,m) and u, v and ¢
are dual variables. By taking the differentiation on 7;; we have:

N M
> Tij Z Tij

dJuor j=1 i=1
o, = |7, log o +u; +C| + TblOgTj+Uj —C| + (Cij —ui —v; — s45)
N M
2 i 2 i
= Cyj + Talog —— + 1 log = — — 55 =0.
i j
(44)
Then we can obtain the results:
N (=)
Z?Tij =a;exXxp| ——
° Ta
J=1
M v —C\" (45)
Sy e (1)
° Tb
i=1
Ci-fuifvjfsij =0
By taking the above results into KL-Divergence, we can further simplify the results:
M
R (mlla) + (ut Gl =3 | ~rasexp (- 258 4 ol
— Ta
= (46)

N
7KL (" 1p/|b) + (v — (7T 1y) = Z [—Tbbj exp (—gJT_C) + Tbb]}
, b
Jj=1
Therefore we can obtain its Fenchel-Lagrange multipliers form of UOT as:

miréjUOT = —7.KL(7ly|la) — (u+ ¢, wly) — KL(7w "1a]|b) — (v — ¢, " 1)

= T, €Xp (—f) <a, exp <—:>> + Tp exp (f) <b, exp (—:)> + Oconst
a a b b

s.t. (173 +Uj S Cij,
(47)

21



where Oconst = — Zf\il Tali — Z;\le Tpb;, and we can neglect it during the following calculation.
Once we obtain the optimal solution on w*, v* and ¢*, the KL-Divergence will turn out to be
constants and therefore the original optimization problem can be transformed into classic optimal

transport. Finally we can obtain the optimal solution on ¢ by considering 6*78% = 0 as below:

= TaTt [log <a,exp (_u>> — log <b,exp (_v) >] . (48)
Ta + Tp Ta Tb

Once we set 7, — oo and 7, — 00, the results of the limitation will be shown as:

i . b1
lim a; exp <_u JrC) = lim a; exp <—C) =a; (b, Ly) = Jwra;,

Tq—>+00,Tp—>+00 Ta Taq—>+00,Tp—+00 Ta <a, 1M>
A ) v — C . . ) C 1. <a7 1M> — 1 .
Ta‘>+01<1)f£lb‘>+oo bj exp ( T > N Ta4)+oléf£ll)‘>+oo bj exp ( Tb> =0 (b,1y) oL, bs-
(49)
Therefore we conclude the proof of the Proposition 3. O

F Illustrations of Optimization 1

Optimization 1. (Calculation of ETM-Approx approach for UOT) To start with, we first review the
Exact UOT Equation is defined as:

mmLU—TaZateXp< ui+<)+TbeXp( >Zb exp(—)
Ta

i=1
i su ur — Ch.
:TazaieXp <—UJ1+C) +TbeXP( )Zb exp < pke[M]( k k3)>’
‘ Ta ™
i=1

where v; = —supyear (ur — Ck;) meanwhile the marginal probabilities are set as 71y = a ©

(50)

exp (— (u + C)/Ta) =aand w1y = boexp(—(v—)/m) = B. Since the optimization
problem in Eq.(9) is convex we can also utilize block gradient descent to optimize the problem.
Specifically, we first fix v' and optimize variable u' at the I-th iteration by replacing the original
marginal probability b in Eq.(6) with 3 accordingly to transform UOT into SemiUOT problem:

m>ir& JG =(C,m) 4+ 7,KL (wly|a),

(Constraint) : 1y =b0o exp <_v7——b <> =3 (51)
s.t.

(Optional) : w1y =a ®exp (u—l—() =

At that time, the Fenchel-Lagrange multipliers form of Eq.(51)) is given via the Proposition 1:

M

. ’L+
mJnL%:TaZaieXp( C) Zﬁj v; —

i=1

u; + ¢ al
—TaZ%EXP( ) Z(kg[lf [ij—“k]—C)5j~

j=1

(52)

Note that w and v denote the Lagrange multiplier for Eq.(5I) while we have v; =
infyerar [Crj — ur] = vj and w = . To further accelerate the optimization process, we consider to

—Cy.
make a smooth approximation on replacing inf(+) as inf ke[ m)[Crj—ur] = —¢ log[z el e%} =

U;. Therefore, we first fix 7! and optimize variable %' at the [-th iteration to solve the following
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equation on f% accordingly:

M
min L{j = 7, E a; exp (—
u

C) +§:ﬂj [elog l%eﬂkl%] +<]

i=1
M i —Chj

_Tazazexp( 7I—’—C>‘i_zb exp( C> lﬁlog[Ze € ‘|+C‘|

= (53)

The optimization objective shares a similar formulation as Eq[31] At that time we adopt fixed-point
iteration method to optimize u accordingly based on the Proposition 2:

~011 Ta€ -< - el ~0 ¢
Uq = ﬁ log (a,le 7-(,,> —log Z W :Z/ll (Ul,"' 'LLM>

Jj=1

041 Ta€ ¢ o~ (B Ol i ~
it = log (ase w) log Z(U) =U, (ay,---,uy) . (54

Ta + €

11 Ta€ o ( _L) o N 5je*CMj/e y (Ae . )
u = ape 7o | — y7Zarr~ e = Up, U
M A # |12 U Tt

Ta T € -
Jj=1

The iteration process can be shown to converge efficiently based on Proposition 2. After that we fix
u and optimize variable ¥ via v; = —e 105[224:1 exp((Ur — Ckj)/€)]. We can achieve the optimal
solution on ©* and v* via iteratively computing via the above procedure accordingly. Finally, we

update ¢ via ¢ = (747/(Ta JrTb))[log(ZZ 1 @ exp(—uf/1,)) — log(z 1 bjexp(— */Tb))].

G Algorithm for ETM-Based Method on UOT

We also provide the pseudo algorithm of the proposed ETM-Based approachs (e.g., ETM-Exact,
ETM-Approx and ETM-Refine) for solving UOT in Alg.2 to make a more clear illustration.

H Proof of Proposition 4

Proposition 4. (The Definition and Usage of KKT-Multiplier Regularization) Given any OT with
multiplier s, one can obtain accurate solution ©* via proposed KKT-multiplier regularization term
G(m,s) = (m, 8), which formulates Multiplier Regularized Optimal Transport (MROT):

min Jo = (C, ) + 1, 8) + negLries ()
= (55)
st.wly=a, =w 1y =20,

where Lreq () denotes the regularization term on w. o, B denote the final marginal probabilities
obtained by ETM-based method, while nreg, 1c denotes the hyper parameter. Ideally, ng should be
set as a relatively large number. Meanwhile the dual form of MROT is given as:

* i+ 5 — Cyj
I{,bl,a(;{LG = <a7’¢)> + <67 ¢> - nRegEReg </lp’r;ijng>7 (56)

where C’” = Cij + ngsij, ¢ and 1) denote the Lagrange multipliers for MROT. EReg( ) denotes
the conjugate function of Lreg(-) and one can figure out the matching results of 7 via solving the

following equation NV .. Lreg(mij) = (Vi + ¢ — Cij) [NReg-
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Algorithm 2 The algorithm of ETM-Based method on UOT

Input: C': cost matrix; a, b: initial marginal probability; 7, 73, €: Hyper parameters.
Randomly initialize the value of w™.
Choose ETM-Exact, ETM-Approx or ETM-Refine on UOT for optimization.

(1) Function: ETM-Exact on UOT(C, a, b, 7o, 7, ut=0 = u/"it)
Optimize u L-BFGS algorithm to optimize Ly as:

M N
. su up — Ci;
min Ly =7, Zai exp (_u:&—() + Ty €xp (f) ij exp ( Pre[n] (e k]))
uw a b

-
i=1 =1 b

Optimize v via v; = ir[lf (Crj — ug).
ke[M

Optimize ¢ via ( = % [log <a exp (——a)> log <b exp ( )>} as shown in Eq.(@8).
Return: The optimal solutions of w*, v* and (*.
(2) Function: ETM-Approx on UOT(C a,b, 1y, 7, W0 = uiMit)
Randomly initialize the value of ot'=t.
fort/ =1to T’ do
Optimize u! via Proposition 2 to optimize LU as:

R M T, _¢ Mo
mjnL%:TaZaiexp( Yi ) Zb exp( ) [elog lZe <
“ k=1

i=1

+¢

Optimize 3 via ﬁ;l = —elog[X:,C Lexp((@h — Cyj)/e)-
end for
Optimize ¢ via { = % [log <a exp (——)> log <b, exp (——) >] as shown in Eq.(@8).
Return: The optimal solutions of w*, ©* and (*.
(3) Function: ETM-Refine on UOT(C, a, b, 7., 7, =" = u'?)
Obtain #* = ETM-Approx on UOT(C, a, b, 7, 7, u! = = u/™it).
Obtain u* = ETM-Exact on UOT(C, a, b, 7o, 7, u'=° = @*).
Return: The optimal solutions of u*, v* and (*.

Proof. We first provide the Lagrange multiplier of MROT as:

rfplagmanMROT = (C, ) + ng(m, 8) + NReg Lreg(T) — (Y, w1y — a) — (p, w1y — B)

Cij +ncsij — i — ¢;
TIReg

= (o, 9) + (B, D) + NReg igf Z { i + ﬁch(mg')]
2]
Vi+ ¢; —

= <Ol, ¢> + </37 ¢> — TJReg SUP Z R ZJ Lch('/Tz])‘|
eg

™ .
Y]

i+ d; — Cyj
= (a,¥) + (B, D) — MRegLireg (1/””?)71) _

TIReg
(57)
At that time we have the following results:
OJuror _ Vi Lieg Yitdi—Cij ) _ ai
8'¢l chg
dImroT - Vi + & C ’ %)
T =0 . i+ 0 —Ch\ _ 5
6qu v(ﬁj»CReg < NReg > - BJ
By taking the differentiation on 7;; we have:
dJvroT _ A
“omy,;  Cu MRV Lreg(mij) — i — ¢ = 0. (59)
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For instance, when Lgeg(7) = —(m,log(7) — 1) denotes as the entropy regularization term, the
dual form of MROT-Ent is shown as:

max IMROT—Ent = (€, %) + (B, }) — NReg Zexp <W>

i TReg
- : (60)
_ Vi+ ¢ — Cyj
Tij = exp R
og

When Lreg(7) = (m, ) /2 denotes the square-norm regularization term, the dual form of MROT-
Norm is shown as:

R vi+¢; — Gy
max jMROT—Norm == <a7¢> + <ﬁ7 ¢> - 1 = Z ! :
P,P 2 i nReg
_ J +. (61)
Y+ o = Cy
Ty = | ————
TReg n
Therefore we conclude the proof of Proposition 4. O

Extensions. MROT can be even extended to solve classic optimal transport problem. That is, the
classic optimal transport problem and its dual form can be represented as below:

max sJOT = <fA,a> + <9A7ﬁ>

J : C fAngv
= arg min <7r, >
b A fiA + ng +5i5 =C45, 85520 (62)
st.wly=a, w'ly=p s.t. A A
A inf (C o )
9i kler[lM] ki = Jx

where f©, g©, and s represent the dual variables. To solve the dual form of the classic OT problem,
unconstrained optimization techniques, such as L-BFGS or the Sinkhorn algorithm, can be employed
to optimize for s. Then one can further adopts MROT to solve 7 for classic optimal transport.

In summary, the time complexity of the proposed ETM-Approx+MROT-Ent or ETM-Approx+MROT-
Norm method is provided as O (N M log (1/ecrr) + NMd,) where d denotes the number of itera-
tions on MROT. Meanwhile, the time complexity of the proposed ETM-Refine+MROT-Ent or ETM-
Refine+MROT-Norm method is provided as O (NM log (1/ecrr) + NM (log M)dr + NMd,)
where dr denotes the number of iterations on ETM-Refine.

I Experiments on Domain Adaptations

Datasets. We conduct the unsupervised domain adaptation tasks on Digits, Office-Home, and VisDA.
Digits is the classic dataset for digit classification which contains three standard digit classification
datasets: MINIST [53]], USPS[45] and SVHN [76]]. Each dataset consists of 10 classes of digits,
ranging from 0 to 9. Office-Home [102] is a standard benchmark dataset which includes 15,500
images in 65 object classes in office and home settings, forming four dissimilar domains: Artistic
images (Ar), Clip Art (Cl), Product images (Pr), and Real-World (Rw). VisDA [81] is a large-scale
computer vision dataset on two domains, i.e., Synthetic and Real with 280K images in 12 classes.

Performance. We also conduct the UDA domain adaptation tasks on Digits and VisDA and the
results are shown in Table ] We can observe that the proposed ETM-Refine with MROT-Norm on
SemiUOT achieves state-of-the-art performance on Digits and VisDA.

J Experiments on Partial Domain Adaptations

Datasets. We further conduct the domain adaptation tasks on new datasets, i.e., Office-31 [88] and
ImageCLEF [13]. Office-31 is the commonly-used computer vision dataset for domain adaptation
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Table 4: Classification accuracy (%) on Digits (Source: LeNet) and VisDA dataset (Source:ResNet50)
for UDA (unsupervised domain adaptation) task

Method | S=M M—U U—M  Avg|VisDA
Source 68.3+£0.3 65.3£0.5 66.2+0.2 66.6| 52.4
DeepJDOT [25] 95.4£0.1 95.6+£0.4 96.4+0.3 95.8| 68.0
JUMBOT [34] 98.9+0.1 96.7£0.5 98.2+0.1 97.9| 72.5

JUMBOT + UOT(ETM-Refine + MROT-Ent) |99.4+0.1 98.7£0.3 99.24+0.1 99.1| 73.6
JUMBOT + UOT(ETM-Refine + MROT-Norm) | 99.7+0.1 99.3+0.2 99.6+0.1 99.5| 74.2

Table 5: H-score (%) on Office-Home for universal unsupervised domain adaptation

Method Ar—Cl Ar—Pr Ar—Rw Cl—Ar Cl=Pr Cl-Rw Pr—Ar Pr—Cl Pr-Rw Rw—Ar Rw—Cl Rw—Pr Avg
ResNet [43] 44.65 48.04 50.13 46.64 4691 4896 4747 43.17 5023 4845 4476 4843 4732
OSBP [89 39.59 4509 46.17 4570 4524 4675 4526 4054 4575 4508  41.64 4690 4448
UAN [108 51.64 51.70 5430 61.74 57.63 61.86 5038 47.62 6146 62.87 52,61 6519 5658
CMU |38 56.02 5693 59.15 6695 6427 6782 5472 5109 6639 6824 5789 69.73 61.60
DCC [54 5797 5405 58.01 7464 70.62 7752 6434 7360 7494 8096 7512 8038 70.18
TNT [18 61.90 74.60 8020 73.50 7140 79.60 7420 69.50 8270 77.30  70.10 81.20 74.70
UniOT [16 67.27 80.54 86.03 7351 7733 8428 7554 6333 8599 77.77 6537 8192 76.57

UniOT + UOT(ETM-Refine + MROT-Ent)  68.63 81.72 8794 7588 79.03 8621 7729 68.77 87.14 7859 73.62 8283 7897
UniOT + UOT(ETM-Refine + MROT-Norm) 69.02 81.95 8836 76.12 79.36 8649 77.03 6925 8730 7893 74.18 82.96 79.25

with 4,652 images from three different domains: Amazon (A), Webcam (W) and DSLR (D). Target
domain has the first 10 classes (alphabetical order) following [[11]]. ImageCLEF contains 3 domains
with 12 classes, i.e., Caltech (C), ImageNet (I) and Pascal (P). Target domain has the first 6 classes
(alphabetical order) following [66].

Baselines. We involve DeepJDOT [25], ROT [5], JUMBOT [34], ETN [12], AR [42], m-POT
[77], MOT [65]], as the model baselines for the domain adaptation task. (1) DeepJDOT [25] first
adopts optimal transport into solving domain adaptation problem with deep learning framework.
(2) ROT [5] adopts robust optimal transport into adversarial training for domain adaptation. (3)
JUMBOT [34]] adopts mini-batch unbalanced optimal transport method for domain adaptation. (4)
ETN [12]] utilizes example transfer network to jointly learn domain-invariant representations and
the progressive weighting scheme. (5) AR [42] adopts adversarial reweighting strategy on source
domain data for alignment. (6) m-POT [77] adopts partial optimal transport method in the mini-batch
settings for domain adaptation. (7) MOT [65] adopts masked unbalanced optimal transport technique
on considering label information for PDA tasks.

K Experiments on Universal Domain Adaptations

We further conduct the experiments on universal domain adaptations. That is, there are shared
labels between the source and target domains. Additionally, there are private labels specific to each
domain [33}[111]. We conduct the universal domain adaptations on both Office-31 and Office-Home.
Specifically, we set the first 10 classes in alphabetical order as the common label set, the next 10
classes as source private label and the rest 11 classes as target private label for Office-31. Likewise, we
set the first 10 classes in alphabetical order as the common label set, the next 5 classes as source private
label and the rest 55 classes as target private label for Office-Home. We involve the following models
as baselines: (1) OSBP [89] adopts domain adversarial learning for open-set domain adaptation, (2)
UAN [108]] utilizes transferability criterion for universal domain adaptation, (3) CMU [38] learns to
detect open classes with uncertainty estimation, (4) DCC [54]] adopts domain consensus clustering
for adaptation, (5) TNT [18]] adopts evidential neighborhood contrastive learning for adaptation, (6)
UniOT [16] adopts unbalanced optimal transport with adaptive filtering for transferring.

We adopt the same experimental settings as UniOT [16]. We utilize the commonly-used H-score
[38]l to validate the final results as shown in Table 5H6] Note that UniOT + UOT(ETM + MROT)
only replaces the entropic UOT in UniOT with our proposed ETM-Refine method with MROT. From
that, we can observe that UniOT + UOT(ETM-Refine + MROT-Norm) reaches the best performance,
indicating that UOT with ETM + MROT can provide more accurate matching results.

L. Experiments on Treatment Effect Estimation

Datasets for Treatment Effect Estimation. We further conduct ETM-Refine on treatment effect
estimation with two semi-synthetic datasets IHDP [97]] and ACIC [107]]. IHDP is set to estimate the
effect of specialist home visits on infants’ potential cognitive scores and it contains 747 observations
and 25 covariates. ACIC includes 4802 observations and 58 covariates, which comes from the
collaborative perinatal project.
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Table 6: H-Score (%) on Office-31 for universal unsupervised domain adaptation

Method A—D A—W D—A D-W W—=A W=D Avg

ResNet [43] 49.78 4792 48.48 5494 4896 55.60 50.94

OSBP [89] 51.14 50.23 49.75 55.53 50.16 57.20 52.34

UAN [108] 59.68 58.61 60.11 70.62 60.34 7142 63.46

CMU [38] 68.11 67.33 7142 79.32 7223 8042 73.14

DCC [54] 88.50 78.54 70.18 79.29 75.87 88.58 80.16

TNT [18] 85.70 80.40 83.80 92.00 79.10 91.20 85.37

UniOT [16] 86.97 88.48 88.35 98.83 87.60 96.57 91.13

UniOT + UOT(ETM-Refine + MROT-Ent)  88.25 89.62 89.47 99.48 89.10 97.94 92.31
UniOT + UOT(ETM-Refine + MROT-Norm) 88.67 90.14 90.03 99.58 89.42 98.46 92.72

Table 7: Experimental results on Treatment Effect Estimation tasks.

ACIC (PEHE) ACIC (AUUC) THDP (PEHE) THDP (AUUC)
In-Sample Out-Sample In-Sample Out-Sample In-Sample Out-Sample In-Sample Out-Sample
OLS [2] 3.749 4.340 0.843 0.496 3.856 5.674 0.652 0.492
TARNet [97] 3.236 3.254 0.886 0.662 0.749 1.788 0.654 0.711
PSM [87] 5.228 5.094 0.884 0.745 3.219 4.634 0.740 0.681
CFR-WASS [97] 3.128 3.207 0.873 0.669 0.657 1.704 0.656 0.715
ESCEFR [104] 2.252 2.316 0.796 0.754 0.502 1.282 0.665 0.719
ESCFR + UOT(ETM-Refine + MROT-Ent) 2.327 2.261 0.839 0.814 0.497 1.275 0.769 0.763
ESCFR + UOT(ETM-Refine + MROT-Norm)  2.104 2.216 0.883 0.839 0.475 1.146 0.798 0.802

Results. We involve the following models as baselines: (1) OLS [2] utilizes least square regression
with treatment as covariates, (2) TARNet [97] adopts integral orobability metrics for adaptation, (3)
PSM [87] adopts propensity score for causal effects, (4) CFR-WASS [87] utilizes standard optimal
transport for adaptation, (5) ESCFR [104] further utilizes unbalanced optimal transport for adaptation.
We adopt the same experimental settings as ESCFR [104]. We utilize Precision in Estimation of
Heterogeneous Effect (PEHE) [97] and Area Under the Uplift Curve (AUUC) [[7] for the evaluation.
Note that ESCFR + UOT(ETM-Refine + MROT-Ent) only replaces the entropic UOT in ESCFR with
our proposed approximate-to-exact ETM-Refine + MROT-Norm. The experimental results are shown
in Table[/} From that, we can observe that ESCFR + UOT(ETM-Refine + MROT-Norm) achieves the
best performance, indicating the efficacy of our proposed ETM-Refine method.

M More Experimental Results

Parameter sensitivity. We tune ng on SemiUOT via ETM-Refine with MROT-Norm in range
of ng € {0,1,100} using the same data samples shown in Fig and show the results in Fig
We can observe that when 7g is smaller (e.g., ng = 0 or ng = 1), the proposed KKT-multiplier
regularization term G (7, s) = (mr, s) may struggle to play a significant role during the optimization
process. Meanwhile when g = 100, ETM-Refine with MROT-Norm can achieve more accurate
matching results. We can conclude that choosing a larger value of 7 can fully utilize the knowledge
provided by KKT multiplier and enhance the final results. Moreover, we conduct the experiments
for the absolute error when 7 = 1 with N = 500 synthetic data samples on both SemiUOT and
UOT and report the results in Figl6(a)-(b). Larger value on 7¢ can provide more useful KKT-
multiplier information and boost the model performance and therefore we set ng = 100 empirically.
Furthermore, we conduct the hyper parameter experiments by varying e = {0.01,0.05,0.1,0.5,1}
on UDA task in Office-Home and report the results in Fig[6|c). We can observe that smaller value of
€ can provide a more accurate approximation with higher accuracy and thus we set e = 0.01.

ETM + MROT-Norm (n; = 0) ETM + MROT-Norm (15 = 1) ETM + MROT-Norm (75 = 100) Ground Truth
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Figure 5: The matching results on ETM + MROT-Norm on SemiUOT with different values of
ne = {0, 1,100}.
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Figure 7: The results of ( and Lp on UOT and SemiUOT.
N Miscellaneous Discussions

N.1 The role of ¢ in ETM-based method
We first discuss why we should involve translation invariant ¢ in both Ly and Lp. Specifically, we

first analyze the case of SemiUOT. The Fenchel-Lagrange conjugate form of SemiUOT without
translation invariant mechanism is given as:

M fi N
min |7 a;exp | —= | — b;g;
pin |73 o(-2) >t .

We can adopt c-transform on Eq.(63) to obtain the unconstrained optimization problem as:

M N
L F fi .
min Lp=rT1 ;:1 a; exp (T - ;:1 kg[ljfﬂ (Crj — frlbj, (64)

We adopt L-BFGS to optimize Lp using the same data samples as shown in Fig.1 with 7 = 1.
Meanwhile, the translation invariant term ¢ in SemiUQOT should be calculated as follows:

M fi N
¢(=r1log <Z a; exp (—;)) — 7log ij . (65)
i=1 j=1

Ideally, ¢ should equals to O since Zf\il a; exp (7%) = Zjvzl b;. However, we can observe that

¢ > 0 during the iteration epoch on optimizing Lp as shown in Figa). Therefore we can conclude
that ¢ is indispensable during the calculation on SemiUOT. Likewise, the Fenchel-Lagrange conjugate
form of UOT without translation invariant mechanism is given as:

rlrjuil [Ta<a,exp (—Z) > + Tb<b, exp (—:_;) >] st u; +v; < Cyy. (66)
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Here we can adopt c-transform on Eq.(66)) to obtain the unconstrained optimization problem as:

mlnf S a; € Wi + . b.e Supi\/[:I (uk - Ck]) 67)
=Ta i €Xp | —— T i ex .
un Ly E P - b E j €XP (

-
i=1 i=1 b

We also adopt L-BFGS to optimize ZU using the same data samples as shown in Fig.2 with 7, =
7, = 1. Meanwhile, the translation invariant term ¢ in UOT should be calculated as follows:

¢ = TaTb {log <a,exp <—u>> — log <b,exp (—v) >] ) (68)
Ta + Tb Ta 7o

Ideally, ¢ should equals to 0 since <a, exp (—l)> = <b, exp <—T%) > However, we can observe

Ta

that ¢ > 0 during the iteration epoch on optimizing Ly as shown in Figb). Therefore we can
conclude that ( is indispensable during the calculation on UOT. In conclusion, the concept of
translation invariant was first proposed in [96]. However, [96] only utilizes translation invariant
for entropic UOT. We highlight that, in this paper, we further extend translation invariant for
standard UOT/SemiUOT scenario. We illustrate that translation invariant is essential in solving
UOT and SemiUOT problem:s.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction sections reflect the paper’s contributions and
scope in the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper focuses exclusively on discrete Semi-UOT and UOT problems.
Other types of optimal transport problems, such as GW-based Semi-UOT and UOT, are
beyond the scope of this work and remain promising directions for future research.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: All theoretical claims are correctly induced with reasonable assumptions and
correct proofs.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the details of experimental implementation and algorithms in
Section 5 main paper and Appendix D, G, I, J, K, for reproducibility.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We provide the code in appendix.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https !
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide full experimental details with the code, in the main paper and
appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report our results with five times of repetitions and show the significant
results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide both computation complexity and computation time in this paper.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Yes, we do.
Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: This work has no societal impact.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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