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Figure 4: Block diagram of the fully-connected residual (FCR) decoder architecture. Left: the
diagram of one residual block of the FCR decoder. Note that the basic residual block of the encoder
architecture is exactly the same. Right: residual blocks connected in the FCR architecture.

A ARCHITECTURE DETAILS

Residual block depicted in Fig. @ (left) is used as the basic building block of the ProtoRes encoder
and decoder.

Decoders The block diagram of the global position and the inverse kinematics decoders used in the
main architecture (see Fig.[2) is presented in Fig.[d] The architecture has fully connected residual
topology consisting of multiple fully connected blocks connected using residual connections. Each
block has residual and forward outputs. The forward output contributes to the final output of the
decoder. The residual connection sums the hidden state of the block with the linear projection of the
input and applies a ReLU non-linearity.

In the main text we use a convention that the number of layers and blocks in the encoder, as well
as in GPD and IKD decoders is the same and is given by L and R respectively. Obviously, using a
different number of layers and residual blocks in each of the blocks might be more optimal.

Forward Kinematics pass is applied to the output of the IKD, transforming local joint rotations and
global root position into the global joint rotations and positions using skeleton kinematic equations.
The FK pass relies on the offset vector 0; = [0y j, 0y, j, 0, j|T and the rotation matrix R; for each joint
Jj- The offset vector is a fixed non-learnable vector representing bone length constraint for joint j. It
provides the displacement of this joint with respect to its parent joint when joint j rotation is zero. R;
can be naively represented using local Euler rotation angles &, B;,7;:

Ox,j cosa; —sine; 0] [cosB; O sinf;] [l 0 0
0; = |f)y,j ; Rj=[sina; cosq; 01 l 0 1 0 1 lo cos; _Sinwl' (13)
0z,j 0 0 1| [—sinB; 0 cosB;] [0 siny; cosy;

However, we use a more robust representation proposed by (Zhou et al., [2019), relying on vector
norm W = u/||ul|, and vector cross product u x v = |[u||||v]| cos(y) T (y is the angle between u and
v in the plane containing them and 1’ is the normal to the plane):

~ < o~ ~ “~ ~ ~ o~ = A ~ ~
rj,x:fR,j[l 23], rj,z:rj,foR,j[4:6]7 l'jA’y:l'/yZXl'jﬁx, Rj:[rj,x rj,y l‘j’z]. (14)
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Provided with the local offset vectors and rotation matrices of all joints, the global rigid transform of
any joint j is predicted following the tree recursion from the parent joint p(j) of joint j:

~ o~ R. o
Gj=Gy()) [0/ Od : (15)

The global transform matrix G, of joint j contains its global rotation matrix, (A}}3 =G,[1:3,1:3],

and its 3D global position, g; = G;[1 : 3,4].

B EFFECTOR NOISE MODEL

This section describes the details of the NOISEMODEL that is used in Algorithm [I|to corrupt model
effector input x[i,:] based on appropriate noise level o(A;).

B.1 POSITION EFFECTOR NOISE MODEL

If effector type is positional (7; = 0), i.e. effector i is a coordinate in 3D space, typically corresponding
to the desired position of joint /; in 3D space, we employ Gaussian white noise model:

x[i,1:3] =g, +0(A)e;  x[i,4:6]=0. (16)

Here x[i,:] is the i-th model input, g; is the ground truth location of joint ;, 6(A;) is the noise
standard deviation computed based on eq. (20) and ¢; is a 3D vector sampled from the zero-mean
Normal distribution N(0,T).

B.2 ROTATION EFFECTOR NOISE MODEL

If effector type is angular (7; = 1), i.e. effector i is a 6DoF rotation matrix representation, we employ
random rotation model that is implemented in the following stages. First, suppose f7. is the ground
truth 6DoF representation of the global rotation of joint /; corresponding to effector i. We transform
it to the rotation matrix representation G ,'i3 using equation . Second, we generate the random 3D

Euler angles vector &; from the zero-mean Gaussian distribution N(0, O'(A,')I)EI and convert it to the
random rotation matrix ¥; using eq. (13):

Y, = |sing[l] cosg] 0 0 1 0

cosgll] —singll] 0] [ cosgl2] 0O sing[2]
1
0 0 | 1] l sing[2] 0 cosg2]

1 0 0
lO cosgl3] —sing[3]|. (17)
0 sing[3] cosgl3]

Third, we apply random rotation to the ground truth matrix, G}f’ = ‘I—‘,G}f. Finally, we convert the
randomly perturbed rotation matrix back to the 6DoF representation:

x[i,1:3]=G;”[;,1], x[i,4:6]=G;"[:,2]. (18)

B.3 LOOK-AT EFFECTOR NOISE MODEL

If effector type is look-at (7; = 2), i.e. effector i is a position of the target at which a given joint is
supposed to look, we employ random sampling of the target point along the ray cast in the direction
formed by the global rotation of a given joint.

First, we sample the local direction vector d; from the zero-mean normal 3D distribution N(0,I) and
normalize it to unit length. Second, we sample the distance between the joint and the target object, d,
from the normal distribution N(0,5) folded over at 0 by taking the absolute value. The location of
the target object is then determined as t; = g, + did; + 6(A;)¢;. Finally, the output is constructed as
follows:

x[i,1:3]=t;, x[i,4:6]=d,. (19)

As previously, € is a 3D vector sampled from the zero-mean Normal distribution N(0,1).
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Algorithm 1 Loss calculation for a single item in the training batch of ProtoRes.

Require: R;,G;;N ~ UNIFORM(3,16] > Ground truth for all joints j € [0,J); number of effectors

Ensure: x > Sample inputs
Ii,...,Iy < MULTINOMIAL({0,...,J — 1},N) > Effector IDs
Ti,...,Ty + MULTINOMIAL({0, 1,2} ,N) > Effector type
foriinl...Ndo

A; < UNIFORM0, 1] > Effector tolerance
o (A); W(A;) « oAl min(Wy, 1/0(A;)) > Effector noise std and weight
x[i,:] +~ NOISEMODEL(Gy,,0(A;),T;) > Generate noisy effector

end for_

Predict: fRJ, J,G Vj based on x
1

L”};d < m P 17,—0 W (A;) MSE(gy;,fr 1) > Randomized GPD position loss
Lifd 1+ W YN, Lg—0W(A;)MSE(g;,,81,) > Randomized IKD position loss
L3t 1n Y MSE(g i8R.7) > Deterministic GPD position loss
Lﬁfj,m — Z]=1 MSE(g;,8;) > Deterministic IKD position loss
Lz)eé—geo A Z§=1 GEO(R},Rj) > Deterministic local rotation loss
Lg;gb—geo « m YN Aro W(A) GEO(G}?,G}?) > Randomized global rotation loss
d 1 N . A .
Liat AT Yo Lp—p LAT(X[i,1: 3],x[i,4: 6}7G}i3) > Randomized Look-at loss
Wpos d d 1/ rde d de
L+ 5 (L;r;?de2 + L{I:ld t Lgpd t led L2) J (le:t[ + Lgobfgeo + Llocc{fgeo) > Total loss

C TRAINING AND EVALUATION METHODOLOGY: DETAILS

The training methodology involves techniques targeting to (i) regularize model via data augmentation,
(ii) learn handling of sparse inputs and (iii) effectively combine multi-task loss terms.

Data augmentation is based on the rotation and mirror augmentations. The former rotates the
skeleton around the vertical Y axis by a random angle in [0,27]. Rotation w.r.t. ground XZ plane is not
applied to avoid creating poses implausible according to the gravity direction. Mirror augmentation
removes any implicit left- or right-handedness biases by flipping the skeleton w.r.t. the YZ plane.

Sparse inputs modeling relies on effector sampling. First, the total number of effectors is sampled
uniformly at random in the range [3, 16]. Given the total number of effectors, the effector IDs (one of
64 joints) and types (one of 3 types: position, rotation, or look-at) are sampled from the Multinomial
without replacement. This sampling scheme produces an exponentially large number of different
permutations of effector types and joints, resulting in strong regularizing effects.

Effector tolerance and randomized loss weighting. The motivation behind the randomized loss
weighting is two-fold. First, the randomized loss weighting was originally introduced as a binary
indicator to force the model to better respect constraints provided as effectors, compared to the joints
predicted by the model. Afterwards, we realized that this can be made more flexible by generating
a continuous variable representing the tolerance level. This variable can be provided as an input to
the network and it can be exposed as a user interface feature to let the user control the degree of
responsiveness of the model to different effectors. We also discovered that the latter feature only
works when a noise is added to effector value and the standard deviation of the noise is appropriately
synchronised with the tolerance. The noise teaches the model to disregard the effector completely if
the tolerance input value corresponds to the high noise variance regime.

Second, we observed that the use of the randomized weighting improves multi-task training and
generalization performance. Initially, we noticed that increasing the weight of position loss would
drive the generalization on the position metric to a better spot, while the rotation metric generalization
would be compromised, which is not surprising. This was especially evident when the position loss
weight was increased by one or two orders of magnitude. This is a well-known phenomenon when

INote that in the case of angles, sampling from the Tikhonov (a.k.a. circular normal or von Mises) distribution
might be a better idea, but Gaussian worked well in our case.
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dealing with multiple loss terms, which we informally call “fighting” between losses (related to
the Pareto front, more formally). This effect can be observed when comparing two bottom rows in
Table 2. Introducing the randomized loss weighting scheme we observed two things. “Fighting”
disappeared, i.e. the randomly generated weights of position effectors varied in a wide range between
le-1 and le5 within a batch, but the fact that some of the weight values are one or two orders of
magnitude greater than the baseline position weight of 100, did not lead to the deterioration of the
rotation loss. Moreover, the introduction of the randomized loss weighting positively affected the
generalization on both position and rotation metrics, which can be assessed by comparing the first
row of Table 2 with its bottom rows. This leads us to believe that the randomized loss weighting
introduces a sinergy in the multi-task training that is not achievable by simple adjustment of static
loss weights. We believe this technique could be more generally applicable to multi-task training, but
a more detailed investigation of this is outside of the current scope.

We now describe the technical details behind randomized loss weighting implementation. For each
sampled effector, we further uniformly sample A € [0, 1] treated as effector tolerance. Given an
effector tolerance A, noise (noise models used for different effector types are described in detail in
Appendix [B) with variance proportional to A is added to effector data before feeding them to the
neural network:

o(A) = oy A", (20)

We use 11 > 10 to shape the distribution of ¢ to smaller values. Furthermore, to each effector is
attached a randomized loss weight reciprocal to o (A), capped at Wy if 6(A) < 1/W):

W(A) = min(Wy, 1/0(A)). 1)

A drives network inputs and is simultaneously used to weigh losses by W (A). Thus ProtoRes learns to
respect effector tolerance, leading to two positive outcomes. First, ProtoRes provides a tool allowing
one to emphasize small tolerance effectors (A ~ 0) and relax the large tolerance ones (A ~ 1). Second,
randomized loss weighting improves the overall accuracy in the multi-task training scenario.

The detailed procedure to compute the ProtoRes loss based on one batch item is presented in
Algorithm[T]and the summary is provided below. First, we sample (i) the number of effectors and (ii)
their associated type and ID. For each effector, we randomly sample the tolerance level and compute
the associated noise std and loss weight. Given noise std, an appropriate noise model is applied to
generate input data based on effector type as described in Appendix [B] Then ProtoRes predlcts draft
joint positions fR _j» local joint rotations R; j» as well as world-space rotations and positions G for all
joints j € [0,J). We conclude by calculating the individual deterministic and randomized loss terms,
whose weighted sum is used for backpropagation.

D DATASETS: DETAILS

D.1 DATASETS DESCRIPTIONS

miniMixamo We use the following procedure to create our first dataset from the publicly available
MOCAP data available frommixamo . com, generously provided by|Adobe Inc.|(2020). We down-
load a total of 1598 clips and retarget them on our custom 64-joint skeleton using the Mixamo online
tool. This skeleton definition is used in Unity to extract the global positions as well as global and
local rotations of each joint at the rate of 60 frames per second (total 356,545 frames). The resulting
dataset is partitioned at the clip level into train/validation/test splits (with proportion 0.8/0.1/0.1,
respectively) by sampling clip IDs uniformly at random. Splitting by clip makes the evaluation frame-
work more realistic and less prone to overfitting: frames belonging to the same clip are often similar.
At last, the final splits retain only 10% of randomly sampled frames (miniMixamo has 33,676 frames
total after subsampling) and all the clip identification information (clip ID, meta-data/description,
character information, etc.) is discarded. This anonymization guarantees that the original sequences
from mixamo . com cannot be reconstructed from our dataset, allowing us to release the dataset for
reproducibility purposes without violating the original dataset license (Adobe Inc., 2020).

For miniMixamo our contribution is as follows. Mixamo data is not available as a single file. There-
fore, anyone who wants to use the data for academic purposes needs to go through a lengthy process
of downloading individual files. Importantly, this step creates additional risks for the reproducibility
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of results. We have gone through this step and assembled all files in one place. Furthermore, Mixamo
data cannot be redistributed, according to Adobe licensing, which is again a reproducibility risk.
However, we do not need the entire dataset for benchmarking on the task we defined. Therefore,
we defined a suitable subsampling and anonymization procedure that allowed us to obtain (i) a high
quality reproducible benchmark dataset for our task and (ii) a legal permission from Mixamo/Adobe
to redistribute this benchmark for academic research purposes. We are extremely grateful to the
representatives from Mixamo and Adobe who approved it to facilitate the democratization of character
animation. The entire process of creating the benchmark took us a few months of work, which we
consider a significant contribution to the research community.

miniAnonymous To collect our second dataset we predefine a wide range of human motion
scenarios and hire a qualified MOCAP studio to record 1776 clips (967,258 total frames @60
fps). Then we create a dataset of a total of 96,666 subsampled frames following exactly the same
methodology that was employed for miniMixamo.

The following action scenarios were used to collect MOCAP sequences in miniAnonymous. The
detailed hierarchy of motion scenarios is presented in Table[6] First, the following locomotion types:
compass crouch, compass jogs, compass runs, compass walks were collected for female and male
subjects under high energy, low energy and injured scenarios. The same locomotion types were
collected under neutral energy feminine and neutral energy macho scenarios. Furthermore, under
neutral energy generic scenario, for both female and male subjects, we collected following action,
object and environment interaction types: archery, bokken fighting, calisthetics, door interactions, fist
fighting, food, handgun, hands, knife fighting, locomotion, longsword fighting, phone, place, railing
interactions, rifle, seated interactions, shotgun, standings, sword, wall. Among the latter categories,
locomotion and handgun had following more detailed subdivisions. Locomotion: compass crawls,
compass crouch, compass jogs, compass rifle aim walks, compass rifle crawl, compass rifle crouch,
compass rifle jogs, compass rifle runs, compass rifle walks, compass runs, compass walks, rifle idles,
walk carry heavy backpack, walk carry heavy sack, walk carry ladder, walk dragging heavy object.
Handgun: downwards, level, upwards, verticals. The motion categories existing in miniAnonymous
and miniMixamo can be compared by looking at Tables[6]and [7] respectively.

The key differentiators of the datasets that we release that make them significant contributions toward
Al driven artistic pose development are as follows:

* Both miniMixamo (derived from the Mixamo, which is generously provided by Adobe) and
miniAnonymous are collected by professional studio contractors relying on the service of
professional actors using high-end MOCAP studio equipment.

* Both datasets are clean and contain data of very high quality. For our dataset, we specifically
had to go through multiple cleaning iterations to make sure all the data collection and
conversion artifacts are removed. We are very grateful to our contractor for being diligent,
detail oriented, and determined to provide the high quality data.

* Both datasets provide data in the industry standard skeleton format compatible with multiple
existing animation rigs and therefore making it easy to experiment with the ML assisted pose
authoring results in 3D development environments such as Unity. This is in contrast to CMU
and AMASS datasets that are collected in heterogeneous environments using non-standard
sensor placements.

* Both our datasets provide 64 joint skeletons and contain fine grain hands and feet data,
unlike other publicly available datasets.

D.2 DATASETS DESCRIPTIVE STATISTICS

The standard deviations of joint positions (in the coordinate system relative to hips joint) and joint
local quaternions are presented in Tables [3]and 4]

The distributions of 30 most popular tags across the frames of the original dataset used to build
miniMixamo and miniAnonymous are shown in Figure 5] It is clear that the two dataset cover
some common activities such as walking and idling, for example. Additionally, there are numerous
categories the two datasets emphasize separately. For example miniMixamo focuses a lot on fighting
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and handling guns, whereas miniAnonymous has more neutral energy activities, provides extensive
labeling of male/female poses as well as covers scenarios of handling objects and food.

The distribution of PCA of flattened rotations of all joints of miniMixamo (red) and miniAnonymous
(blue) datasets is shown in Figure [6] Each point corresponds to a pose. It is clear that there are
both overlapping areas corresponding to clusters with similar poses and areas with disjoint clusters,
showing distinct pose configurations characteristic of the two different datasets.

Table 3: Per-joint hip-local positions standard deviations computed over two proposed datasets

miniMixamo miniAnonymous

Joint X Y Z X Y Z
Hips 0 0 0 0 0 0
Spine0 0 0 0 0 0 0
Spinel 0.0049 0.0034 0.0125  0.0019 0.0003 0.0045
Chest 0.0153 0.0114 0.0353 0.008 0.0032 0.0238
Neck 0.0395 0.0338 0.0859  0.0257 0.0245 0.0805
Head 0.066 0.0609 0.1288  0.0484 0.0608 0.1175
ClavicleLeft 0.0409 0.0481 0.0798  0.0254 0.0414 0.0743
ClavicleRight 0.0412 0.0475 0.0794  0.0255 0.0412 0.0741
BicepLeft 0.0469 0.0723 0.0971  0.0297 0.0483 0.093
ForarmLeft 0.0941 0.1608 0.1577  0.0825 0.1293 0.1563
HandLeft 0.174 0.2697 0.1948  0.1564 0.2381 0.1964
IndexOLeft 0.2026 0.3167 0.21 0.1871 0.2878 0.2116
Index1Left 0.2121 0.3312 0.2164  0.1978 0.3022 0.2183
Index2Left 0.2184 0.3415 0.2208  0.2068 0.3133 0.2238
Index2LeftEnd 0.2247 0.3519 0.2259 0.2151 0.324 0.2292
MiddleOLeft 0.2049 0.317 0.2147  0.1862 0.2873 0.2161
MiddlelLeft 0.2155 0.3333 0.2216  0.1979 0.3028 0.2235
Middle2Left 0.2218 0.3437 0.226 0.2069 0.3144 0.2294
Middle2LeftEnd 0.2278 0.354 02314  0.2151 0.3258 0.2351
RingOLeft 0.2081 0.318 0.2207  0.1866 0.2872 0.2221
Ring1Left 0.2175 0.3324 0.2268  0.1974 0.3017 0.2296
Ring2Left 0.2225 0.341 0.2304  0.2053 0.3126 0.2352
Ring2LeftEnd 0.2273 0.3493 0.2349  0.2129 0.3231 0.2408
PinkyOLeft 0.2106 0.3178 0.2262 0.187 0.2859 0.2276
Pinky 1Left 0.2187 0.3301 02315 0.1969 0.2982 0.235
Pinky2Left 0.2232 0.3379 0.2347  0.2041 0.3071 0.2402
Pinky2LeftEnd 0.2272 0.3449 0.2382  0.2095 0.3142 0.2449
ThumbOLeft 0.1884 0.2971 0.1982  0.1757 0.2681 0.2003
Thumb1Left 0.197 0.3108 0.2039  0.1849 0.2791 0.2021
Thumb2Left 0.2073 0.3258 0.2121  0.1961 0.2935 0.2075
Thumb2LeftEnd 0.2162 0.3374 0.2195  0.2054 0.3054 0.2124
BicepRight 0.05 0.0725 0.0969  0.0296 0.0543 0.086
ForarmRight 0.098 0.17 0.1524  0.0897 0.138 0.1603
HandRight 0.1703 0.2842 0.185 0.169 0.2372 0.1899
IndexORight 0.196 0.3329 0.2045  0.2037 0.2843 0.2093
Index1Right 0.2048 0.348 0.2118 0.215 0.2988 0.2168
Index2Right 0.2099 0.3586 0.2173  0.2251 0.3114 0.2223
Index2RightEnd 0.2145 0.3691 02234 0.2352 0.3235 0.227
MiddleORight 0.1984 0.3335 0.2077  0.2025 0.2821 0.2123
MiddlelRight 0.2078 0.35 0.2154  0.2147 0.2968 0.2194
Middle2Right 0.2119 0.3586 0.2187  0.2221 0.3061 0.2232
Middle2RightEnd 0.215 0.3649 0.2207  0.2274 0.3133 0.2258
RingORight 0.2017 0.3347 0.212 0.2021 0.2803 0.2165
RinglRight 0.2099 0.3495 0.2187 0.2142 0.2946 0.224
Ring2Right 0.2133 0.3566 0.2218 0.223 0.3047 0.2284
Ring2RightEnd 0.2153 0.3612 0.2234  0.2304 0.3136 0.2322
PinkyORight 0.2043 0.3346 0.2158  0.2014 0.278 0.2201
Pinky1Right 0.2112 0.3472 0.2215 0.2118 0.2888 0.2261
Pinky2Right 0.2144 0.3544 0.2251 0.2192 0.2969 0.2296
Pinky2RightEnd 0.2165 0.3591 0.2276  0.2242 0.3039 0.2316
ThumbORight 0.1828 0.3126 0.1926  0.1911 0.2676 0.198
ThumblRight 0.1907 0.3265 0.1985  0.2013 0.2801 0.2021
Thumb2Right 0.1996 0.3399 0.205 0.2123 0.2949 0.2091
Thumb2RightEnd  0.2064 0.3494 0.2096  0.2205 0.3061 0.2148
ThighLeft 0 0 0 0 0 0
CalfLeft 0.083 0.1416 0.1341  0.0673 0.152 0.1385
FootLeft 0.1263 0.1611 0.1942  0.1185 0.1861 0.2062
ToeLeft 0.1453 0.1705 0.2202  0.1338 0.1943 0.2308
ToeLeftEnd 0.1632 0.1789 0.2254  0.1494 0.1985 0.2349
ThighRight 0 0 0 0 0 0
CalfRight 0.0781 0.1352 0.1381  0.0695 0.1495 0.1436
FootRight 0.1258 0.1659 0.2047  0.1181 0.1908 0.209
ToeRight 0.1435 0.1743 02342 0.1319 0.1937 0.2353
ToeRightEnd 0.158 0.1788 0.2414  0.1471 0.1924 0.2402
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Table 4: Per-joint quaternion component standard deviations computed over two proposed datasets

miniMixamo miniAnonymous

Joint X Y Z w X Y Z w
Hips 0.187 0.2239 0.0952  0.5381  0.1614 0.4735 0.0951  0.4673
Spine0 0.0928 0.0343 0.0358  0.0133  0.0325 0.019 0.0139  0.0015
Spinel 0.0579 0.038 0.0344  0.0076  0.0694 0.0308 0.021 0.0065
Chest 0.0612 0.0292 0.0227  0.0065  0.0695 0.0319 0.0204  0.0075
Neck 0.1241 0.0682 0.0572  0.0236  0.1368 0.0887 0.0691  0.0347
Head 0.1183 0.1206 0.0703  0.0374  0.1349 0.0948 0.0746  0.0337
ClavicleLeft 0.2139 0.2156 02234  0.2039  0.4424 0.3554 0.4045  0.3964
ClavicleRight 0.4307 0.4887 0.4985 04309  0.4785 0.459 0.475 0.4696
BicepLeft 0.188 0.2132 0.1935  0.0744  0.2015 0.2523 0.2225  0.1059
ForarmLeft 0.1131 0.1535 0.259 0.1768  0.1958 0.2931 0.2892  0.2372
HandLeft 0.1732 0.2283 0.1276  0.0856  0.2091 0.0034 0.1179  0.0603
IndexOLeft 0.188 0.0278 0.047 0.0623  0.2013 0.0117 0.063 0.055
Index1Left 0.222 0.0055 0.0225  0.1145  0.1915 0.0007 0.0014  0.0787
Index2Left 0.178 0.0056 0.0157  0.0675  0.1743 0.0006 0.0014  0.0587
Index2LeftEnd 0 0 0 0 0.0007 0.0006 0.0014  0.0013
MiddleOLeft 0.2031 0.0203 0.0395  0.0757  0.2614 0.0175 0.0166  0.0933
MiddlelLeft 0.2265 0.0056 0.0236  0.1177  0.1648 0.0033 0.0017  0.0594
Middle2Left 0.186 0.0052 0. 0153 0. 0714 0.1758 0.0012 0.0017  0.0522
Middle2LeftEnd 0 0 0.0007 0.0005 0.0014  0.0012
RingOLeft 0.2151 0.0242 0.046 0.0908 0.2561 0.0249 0.0297 0.087
RinglLeft 0.2306 0.0075 0.0235  0.1218  0.1867 0.0004 0.0014  0.0773
Ring2Left 0.186 0.0058 0.0179  0.0706  0.1498 0.0005 0.0014 0.048
Ring2LeftEnd 0 0 0 0 0.0007 0.0005 0.0014  0.0012
PinkyOLeft 0.2179 0.0377 0.0701 0.094 0.2533 0.0585 0.0901  0.0874
Pinky1Left 0.2133 0.0104 0.0238  0.0929  0.1978 0.0004 0.0014  0.0853
Pinky2Left 0.1999 0.009 0.0187  0.1088  0.1798 0.0008 0.0012  0.0701
Pinky2LeftEnd 0 0 0 0 0.0009 0.0008 0.0012  0.0012
ThumbOLeft 0.1266 0.0871 02072 0.0443  0.0957 0.1374 0.071 0.1124
Thumb]1Left 0.0447 0.0613 0.0984  0.0422  0.0635 0.0006 0.0006  0.0127
Thumb2Left 0.0625 0.0502 0.1524  0.0531  0.1265 0.0004 0.0007  0.0174
Thumb2LeftEnd 0 0 0 0 0.0012 0.0004 0.0007 0.001
BicepRight 0.1912 0.206 0.2099  0.0897  0.2043 0.2555 0.2305  0.1083
ForarmRight 0.1039 0.1349 0.3054  0.2408  0.2122 0.2554 0.4638  0.4425
HandRight 0.1609 0.1848 0.1284  0.0902  0.2169 0.0082 0.15 0.0648
IndexORight 0.2545 0.0292 0.0448  0.9321 0.197 0.0148 0.0535  0.0535
Index1Right 0.3376 0.0053 0.0201 0.9063  0.1763 0.0013 0.0009  0.0662
Index2Right 0.2512 0.0055 0.0155  0.9351 0.158 0.0008 0.0013  0.0449
Index2RightEnd 0 0 0 0 0.0008 0.0009 0.0013  0.0014
MiddleORight 0.2965 0.0163 0.0516  0.9213 0.261 0.0177 0.0176  0.0915
Middle1Right 0.4421 0.0074 0.0226  0.8616  0.1968 0.0048 0.0017  0.0765
Middle2Right 0.2967 0.0079 0.0154 09217  0.2133 0.0014 0.0014  0.0762
Middle2RightEnd 0 0 0 0 0.0036 0.0009 0.0012  0.0013
RingORight 0.3277 0.026 0.0569 0911 0.2494 0.0263 0.0405  0.0754
Ring1Right 0.4355 0.0079 0.0238  0.8645  0.2002 0.001 0.0011 0.073
Ring2Right 03114 0.0099 0.0167 09168  0.1543 0.0009 0.0012  0.0415
Ring2RightEnd 0 0 0 0 0.0009 0.0009 0.0012  0.0012
PinkyORight 0.3372 0.0452 0.076 0.9051  0.2767 0.0574 0.0737  0.1006
Pinky1Right 0.3847 0.0131 0.0251  0.8887  0.1991 0.001 0.001 0.0786
Pinky2Right 0.314 0.0109 0.0171 09143  0.1973 0.001 0.0011  0.0668
Pinky2RightEnd 0 0 0 0 0.001 0.001 0.0011 0.0012
ThumbORight 0.1855 0.0962 0.1144 09211  0.2739 0.6352 0.1285  0.4566
ThumblRight 0.0484 0.0561 0.265 0.9293  0.0747 0.0007 0.0012  0.0179
Thumb2Right 0.0652 0.0359 0.2321  0.9364 0.169 0.0009 0.001 0.04
Thumb2RightEnd 0 0 0 0 0.0012 0.0009 0.001 0.0014
ThighLeft 0.107 0.0975 0.0818  0.2296  0.1164 0.0884 0.0704  0.2397
CalfLeft 0.2419 0.075 0.0448 0.145 0.2698 0.049 0.0427  0.1751
FootLeft 0.1158 0.0685 0.073 0.0554  0.1258 0.091 0.0894  0.0697
ToeLeft 0.0658 0.026 0.018 0.0552 0.052 0.045 0.0365  0.0328
ToeLeftEnd 0 0 0 0 0.0009 0.0002 0.0009  0.0008
ThighRight 0.1083 0.0959 0.0783  0.2298  0.1234 0.0895 0.0783  0.2442
CalfRight 0.2458 0.0738 0.0437  0.1525  0.2835 0.0426 0.03 0.1927
FootRight 0.1237 0.0685 0.077 0.059 0.1215 0.1012 0.0912  0.0627
ToeRight 0.0786 0.0257 0.0154  0.0649  0.0595 0.0431 0.0286  0.0483
ToeRightEnd 0 0 0 0 0.001 0.0002 0.0009  0.0008
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Figure 5: The distribution of tags across frames in the original Mixamo (top) and Anonymous
(bottom) datasets.

E TRAINING AND EVALUATION SETUP: DETAILS

We use Algorithm|[T]of Appendix[C|to sample batches of size 2048 from the training subset. The num-
ber of effectors is sampled once per batch and is fixed for all batch items to maximize data throughput.
The training loop is implemented in PyTorch (Paszke et al., [2019) using Adam optimizer (Kingma &
with a learning rate of 0.0002. Hyperparameter values are adjusted on the validation set
(see Appendix [E|for hyperparameter settings).

det

loc—geo

We report Lg;’d_ 10, L8 L metrics calculated on the test set, using models trained on the

training set. Lg;’df 12 1s computed only on the root joint. These metrics characterise both the 3D

position accuracy (Lg;’d_ 125 Lﬁfj_ 1) and the bone rotation accuracy (Lf;ct_ geo)- They are defined as

follows:

L4964, 15 = MSE(go,fr0) (22)
J
L =Y MSE(g).&)) (23)
j=1
d J D
'Cl(fct—geo = GEO(RjaRj) (24)
j=1
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&

Figure 6: The distribution of PCA of flattened rotations of all joints of miniMixamo (red) and
miniAnonymous (blue) datasets. Each point corresponds to a pose. It is clear that there are both
overlapping areas corresponding to clusters with similar poses and areas with disjoint clusters,
showing distinct pose configurations characteristic of the two different datasets.

Hyperparameter Value Grid

Epochs, miniMixamo/ miniAnonymous 40k/15k [20k, 40k, 80k] / [10k, 15k, 40k]
Losses MSE, GEO, LAT MSE, GEO, LAT

Width (dy,) 1024 [256, 512, 1024, 2048]
Blocks (R) 3 [1,2,3]

Layers (L) 3 [2, 3, 4]

Batch size 2048 [512, 1024, 2048, 4096]
Optimizer Adam [Adam, SGD]
Learning rate 2e-4 [le-4, 2e-4, 5e-4, 1e-3]
Base L2 loss scale (W) le2 [1, 10, 1e2, 1e3, 1e4]
Max noise scale (01,0, Op,1) 0.1 [0.01, 0.1, 1]

Max effector weight (W) 1le3 [10, 1e2, 1e3, led]
Noise exponent, ] 13 13

Dropout 0.01 [0.0, 0.01, 0.05, 0.1, 0.2]
Embedding dimensionality 32 [16, 32, 64, 128]
Augmentattion mirror, rotation [mirror, rotation, translation]

Table 5: Settings of ProtoRes hyperparameters and the hyperparameter search grid.

Here ’tv'R,O and gy are ground truth global location of the root joint and its prediction from the GPD,
respectively; g; and g; ground truth location of joint j obtained by subjecting the rotation prediction
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High Energy Low Energy Injured Neutral Energy

Generic Generic Generic Feminine Macho Generic

Female & Male Female & Male Female & Male Female Male Female & Male
Locomotion Locomotion Locomotion Locomotion  Locomotion  Locomotion
- Crouch - Crouch - Crouch Crouch Crouch - Crawls
- Jogs - Jogs - Jogs - Jogs - Jogs - Crouch
- Runs - Runs - Runs - Runs - Runs - Jogs
- Walk - Walk - Walk - Walk - Walk - Rifle Aim Walk
- Rifle Crawl
- Rifle Crouch
- Rifle Jogs
- Rifle Walks
- Runs
- Walks
- Idles
- Rifle Idles
- Walk Heavy Backpack
- Walk Heavy Sack
- Walk Ladder
- Walk Dragging Object
Archery
Bokken Fighting
Calisthetics
Door Interactions
Fist Fighting
Food
Handgun
- Downwards
- Level
- Misc
- Upwards
- Verticals
Hands
Knife Fighting
Longsword Fighting
Misc
Phone
Place
Railing Interactions
Rifle
Seated Interactions
Shotgun
Standing
Sword
Wall

Table 6: The hierarchy of motion styles and categories in miniAnonymous. Female & Male indicate
that every clip of every underlying category has been captured with both a female and a male actor.

from IKD to the forward kinematics process; R; and R ; are ground truth local rotation matrix of joint
Jj and its prediction obtained from the IKD, respectively.

The evaluation framework tests model performance on a pre-generated set of seven files containing 6,
7, ..., 12 effectors respectively. Skeleton is split in six zones, with four main zones including each
limb, the hip zone and the head zone. In each file, we first sample one positional effector from each
main zone. Remaining effectors are sampled randomly from all zones and effector types, mimicking
pose authoring scenarios observed in practice. Metrics are averaged over all samples in all files,
assessing the overall quality of pose reconstruction in scenario with sparse and variable inputs. All
tables present results averaged over 4 random seed retries and metric values computed every 10
epochs over last 1000 epochs, rounded to the last statistically significant digit.

Hyperparameter settings The training loop is implemented in PyTorch (Paszke et al.,[2019)) using
Adam optimizer (Kingma & Bal 2015) with a learning rate of 0.0002. We tried to use SGD optimizer
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Motion Category

Combat
Adventure
Sport
Dance
Fantasy
Superhero

Table 7: Motion categories in miniMixamo

TRANSLATION | Transformer Baseline OUTPUTS
INVARIANCE POSE DECODER
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JIx32 N
Rotation, Nrx6—| N"G Tnear - Linear
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—_—
N=Np+Ng+N_ | . Linear ) X
Effector 5] Joint Rotations
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Figure 7: Block diagram of the Transformer baseline architecture.

to train the architecture, but it was very difficult to obtain stable results with it. Adam optimizer
turned out to be much more suitable for our problem. The learning rate was selected to be 0.0002,
which is lower than Adam’s default. Obtaining stable training results with higher learning rates was
not feasible. Batch size is selected to be 2048 to accelerate training speed. In practice we observed
slightly better generalization results with smaller batch size (1024 and 512). The detailed settings of
ProtoRes hyperparameters are presented in Table [5]

F MASKED-FCR BASELINE ARCHITECTURE

Masked-FCR is a brute-force unstructured baseline that uses a very wide J -3 - 7 input layer (J joints,
3 effector types, 6D effector plus one tolerance value) to handle all possible effector permutations.
Each missing effector is masked with one of 3 -J learnable 7D placeholders. Masked-FCR has 3
encoder and 6 decoder blocks to match ProtoRes.

G TRANSFORMER BASELINE ARCHITECTURE

We implement Transformer baseline using the default Transformer module available from PyTorch
https://pytorch.org/docs/stable/generated/torch.nn.Transformer.
html. The block diagram of the Transformer baseline architecture is shown in Fig.

We use a standard transformer application scenario in which the transformer source input is fed
with the variable length input and the required outputs are queried via target input. In our case
the variable length input corresponds to the effector data concatenated with embedded effector
categorical variables. The query for the output consists of the embeddings of all joints. Note that
the joint embedding is reused both for source and target inputs and both inputs are projected to the
internal d_model dimensionality of transformer.
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Hyperparameter Value Grid
FCR decoder parameteres
FCR Blocks (R) 6 N/A
FCR Width (dy,) 1024 N/A
Transformer parameteres
d_model 128 [64, 128, 256]
nhead 8 [1,2,4,8]
num_encoder_layers 2 [1,2,3]
num_decoder_layers 2 [1,2,3]
dim_feedforward 1024  [256, 512, 1024]
dropout 0.01 0.01
activation relu relu
Base L2 loss scale (W) 100 [10, 100]

Table 8: Settings of Transformer baseline hyperparameters and the hyperparameter search grid.

The embeddings of joint IDs are used to query the Transformer output, producing one encoder
embedding for each of J joints. The J encodings are fed into the 6-block FCR decoder (to match
the total number of decoder blocks in ProtoRes) with two heads: one predicting rotation and one
predicting unconstrained position. This is similar to the use of Transformer to predict bounding box
class IDs and sizes for object detection (Carion et al.l 2020). Predictions of rotations and of the root
joint are used in the forward kinematics pass, just as in ProtoRes.

Internally, Transformer processes both source and target inputs via self-attention first and then
applies the multi-head attention between source and target after self-attention. This results in the
output embedding for each skeleton joint that depends on all the input information as well as the
learned interactions across all output skeleton joints. The output embedding of the transformer is
then decoded to unconstrained position and rotation outputs using a two-headed Fully-Connected
residual stack (this is the same architecture as the one used in ProtoRes decoders). Note that this is a
well-known Transformer application scheme that has recently been used to achieve SOTA results in
object detection, for example (Carion et al.,|2020). Table 8|lists the hyperparameter settings for the
Transformer baseline. Note that only hyperparameters that are unique to this baseline or different
from the ProtoRes defaults appearing in Table [5]are listed.

H ABLATION OF THE DECODER: DETAILS

The detailed results of the decoder ablation are shown in Table[9l One block of decoder is much less
computationally expensive than one block of encoder. One block of encoder processes N effectors,
whereas the decoder deals with the partially defined pose representation collapsed to a vector. Hence
the decoder block is N times less expensive. To demonstrate the effectiveness of decoder, we keep all
hyperparameters at defaults described in Section and vary the number of encoder and decoder
blocks in ProtoRes (0 decoder blocks corresponds to a simple linear projection of encoder output).
We measure the train time of each configuration on NVIDIA M40 24GB GPU installed on Dell
PowerEdge R720 server with two Intel Xeon E5-2667 2.90GHz CPU. The table reveals a few things.
First, adding more decoder blocks significantly increases accuracy when the number of encoder
blocks is lower (e.g. 3 or 5). When the number of encoder blocks is high (e.g. 7) linear projection
provides similar accuracy. Second, using non-trivial decoder is computationally more efficient. For
example, the 3 encoder and 3 decoder blocks configuration has comparable accuracy with 5 encoder
and 1 decoder blocks, however it is noticeably more compute efficient (5+1 configuration uses 40%
more compute time than 3+3).
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Table 9: Ablation of the decoder. Random benchmark, lower values are better. Train time is measured
on a 2GPU Dell PowerEdge R720 server with two NVIDIA M40 24GB GPUs and two Intel Xeon
E5-2667 2.90GHz processors, each GPU running one ProtoRes training session.

miniMixamo miniAnonymous

det det det Train det det det Train
Lgpd7L2 LikdeZ Llocfgeo time. h LgpdeZ Likd7L2 Llocfge() time. h

Encoder Decoder
blocks blocks
1.54e-3  4.59e-3  0.2485 91 1.05e-3  3.65e-3  0.1939 105
1.35e-3  4.34e-3  0.2433 95 0.93e-3 3.52e-3 0.1895 110
1.34e-3  4.24e-3  0.2397 102 0.93e-3 3.34e-3  0.1840 116
1.36e-3 4.16e-3  0.2381 106 0.93e-3 3.28e-3 0.1817 121
1.27e-3  4.20e-3  0.2399 144 0.84e-3 3.27e-3  0.1824 166
1.28e-3  4.30e-3  0.2390 148 0.81e-3 3.24e-3  0.1818 171
1.15e-3  4.02¢-3  0.2345 153 0.77e-3  3.10e-3  0.1791 176
1.18e-3 4.03e-3  0.2351 157 0.82e-3  3.07e-3  0.1785 182
1.13e-3  4.00e-3  0.2355 196 0.74e-3  298e-3 0.1762 226
1.23e-3  4.16e-3  0.2356 200 0.79¢-3  3.07e-3  0.1780 230
1.13e-3  4.51e-3  0.2383 205 0.78¢-3  3.10e-3  0.1780 236
1.15e-3  3.98e-3  0.2352 209 0.82e-3 3.14e-3  0.1783 241
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I ABLATION OF THE PROTOTYPE-SUBTRACT-ACCUMULATE STACKING
PRINCIPLE

Here we compare the proposed Prototype-Subtract-Accumulate (PSA) residual stacking scheme
described in equations (2)-(5) against the ResPointNet (Niemeyer et al., 2019) stacking scheme:
Maxpool-Concat Daisy Chain (MCDC). To implement the MCDC stacking proposed by Niemeyer
et al.|(2019) we setup the experiment as follows.

* Equation (2) is replaced with the concatenation of the output of the previous block, b,, with
the maxpool of the previous block output along axis 1 (we use batch, effector, channels
convention for tensor axes 0,1,2; respectively)

* In equation (4) we only compute b,, since f; is not used
* Equation (3)) is removed

* The final pose embedding is created using the maxpool along axis 1 of b, at the last encoder
block

* We use decoder with O blocks, i.e. only the linear projection at the end to derive both PSA
and MCDC results. This is because (i) residual decoder is not part of the original design
by Niemeyer et al.|(2019), (ii) in this study we focus exclusively on the effects of stacking
within the encoder, equalizing all other experimental conditions.

* Hyperparameters of both architectures are taken from Table[5]in Appendix

We show that our stacking scheme is more accurate and allows stacking deeper networks more
effectively. Quantitative results are shown in Table[T0} It is clear that the proposed stacking approach
provides gain in setups with varying number of encoder blocks. For example, in the case of small
number of 3 blocks (computationally efficient setup) our PSA approach is clearly more accurate
than MCDC approach of (Niemeyer et al., [2019). Similarly, with 7 blocks (training time is more
than two times longer) PSA is again more accurate than MCDC. Moreover, in the case of PSA we
see noticeable accuracy improvement while increasing the number of encoder blocks from 5 to 7,
whereas MCDC provides almost no additional gain beyond 5 blocks. We conclude that the proposed
PSA stacking mechanism is better than MCDC as it provides better accuracy in the computationally
efficient configuration and it is significantly more effective at supporting deeper architectures that
provide better accuracy in the case of PSA, whereas MCDC accuracy saturates at 5 blocks providing
little to no accuracy gain with deeper architectures.
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Table 10: Ablation of the Prototype-Subtract-Accumulate. Random benchmark, lower values are
better.

miniMixamo miniAnonymous

£ ngtd—LZ L %—Lz L?oect—geo £ g;td—LZ £ gcec;—L2 L cht—geo

Stacking scheme Encoder
blocks

MCDC 3 1.52e-3  4.65e-3  0.2539 1.12e-3  3.93e-3 0.1984
MCDC 5 1.28e-3  4.25¢-3 0.2395  0.85e-3 3.25¢-3  0.1831
MCDC 7 1.28e-3  4.24e-3  0.2384  0.85e-3 3.26e-3  0.1830
PSA (ours) 3 1.54e-3  4.59e-3  0.2485 1.05e-3  3.65e-3  0.1939
PSA (ours) 5 1.27e-3  4.20e-3 02399  0.84e-3 3.27e-3 0.1824
PSA (ours) 7 1.13e-3  4.00e-3  0.2355 0.74e-3 2.98e-3 0.1762

J QUALITATIVE COMPARISON TO TRANSFORMER AND FINALIK BASELINES

In this section we provide additional qualitative comparison between ProtoRes and two baselines,
the non-learnable baseline FinalIK and the machine learning baseline Transformer. The FinallK
comparison results appear in the top row of Figure 8| The Transformer comparison results appear in
the bottom row of Figure|[§]

The characteristic feature of FinalIK is that it lacks inductive bias towards realistic poses. Therefore it
is very easy to create effector configurations that result in unnatural poses as can be seen in Figure|[§]
Conversely, creating realistic poses requires significant amount of tuning of the individual joints as
most joints of the body act very independently and locally. With FinallK, it is relatively hard to
produce a believable pose with only a few effectors. ProtoRes fills this gap by providing a learned
prior for realistic poses. As a result, most of the poses created by ProtoRes look natural, no matter
how many effectors are used to steer the pose. In addition, the effector space can be augmented
dynamically to capture missing accents, if necessary.

When comparing ProtoRes against Transformer, we can see that Transformer has a less global
approach to forming a pose than ProtoRes. This manifests itself in the Tranformer based model
having a tendency to create poses in which limbs penetrate each other or the rest of the body (see
Figure [§] bottom row, pictures 1,2,3 from the left). Also, Transformer is very good at following
the effector inputs and reproducing them in the reconstructed pose — so much that it is willing to
sacrifice the overall final pose plausibility at the expense of sticking to the effector, taking the effector
guidance very “literally” and missing its re-interpretation given global context. A good example of
this behaviour is presented in Figure [8|bottom row, rightmost picture. We see that ProtoRes brings the
entire body to the floor and prepares the arms to touch the floor to support the body, all in the attempt
to produce a plausible pause of someone looking at the look-at target that is placed relatively low.
On the other hand, Transformer takes the look-at effector guidance very literally and locally, willing
to break the neck of the pose to look at the provided target and not realizing that the entire body
position needs to be changed to accommodate for this rather peculiar configuration of effectors to
create a believable pose. In general, our observation is that the Transformer based baseline response
to effector inputs tends to be localized. As a consequence, its behaviour has a very pronounced pure
IK flavour to it, at times reminding the behaviour of FinallK, especially when facing difficult effector
configurations. A lot of the time, however, the outputs of ProtoRes and Transformer are comparable
and consistent, since both of them develop strong inductive bias towards realistic poses.

K VIDEOS AND DEMONSTRATIONS

We provide here descriptions related to each video found in the supplementary materials. The Unity
tool that is used to produce demo videos and qualitative pictures shows the raw neural network outputs
without applying any post-processing. This is done to ensure fair comparison of different methods
and avoid any misleading results due to post-processing. Note that most of the demonstrations are
done using a ProtoRes model trained on a large internal dataset not evaluated in this work. One of
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Figure 8: Qualitative comparison results. ProtoRes vs. FinalIK (top row). ProtoRes vs. Transformer
(bottom row).

our demonstrations, described below in Appendix [K:3|qualitatively shows some of the most severe
impacts of training on ablated datasets.

K.1 PROTORES DEMO

The video presents an overview of the integration of ProtoRes as a posing tool inside the Unity game
engine, showcasing how different effector types can be manipulated and how they can influence
the resulting pose. In this demo, a user-defined configuration is presented in the UI, allowing one
to choose which effectors are enabled within that configuration. Note that this configuration could
contain more or less effectors of each type, and can be built for specific posing needs. The most
generic configuration would present all possible effectors inside each effector type sub-menu.

K.2 POSING FROM IMAGES

This video presents screen recordings of a novice user using ProtoRes to quickly prototype poses
taken from 2D silhouette images. Note that one can reach satisfactory results in less than a minute in
each case, with a relatively low number of manipulations. Note also that fine-tuning the resulting
poses can always be achieved by adding more effectors and applying more manipulations.

K.3 Lo0SS ABLATION

This recording shows a setup where different models are used with identical effector setup. Both
models use the ProtoRes architecture. On the left, the model uses the total loss presented in Algorithm
[1] whereas the right-hand side model uses positional losses only (GPD and IKD positional losses)
and both local and global rotational losses, as well as look-at losses are disabled. This demonstration
clearly shows how positional constraints, even when respected, do not suffice to produce realistic
human poses. Joint rotations have to be modeled as well.

K.4 FINALIK COMPARISON

This recording shows a setup where ProtoRes is compared to a full body biped IK system provided
by FinallK [RootMotion| (2020), with an identical effector setup. Note that FinalIK solves constraints
by modifying the current pose, often resulting in smaller changes in the output, when compared to
ProtoRes that predicts a full pose at each update. The lack of a learned model of human poses in
FinallK becomes quickly noticeable when manipulating effectors significantly.

K.5 DATASETS COMPARISON

In these demonstrations, we showcase how training ProtoRes on different datasets can impact
the results. We showcase models trained on the two ablated datasets presented in this work, i.e.
miniAnonymous (left) and miniMixamo (right). We also show performance of a model trained on
the full Mixamo |Adobe Inc.| (2020) dataset (center) to qualitatively show how performance can be
improved with more training data. In all of these recordings, one can notice differences in the resulting
poses, emphasizing the fact that human posing from few effectors, when no extra conditioning signals
are used, is an ambiguous task that will be influenced by the training data.
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The first sequence makes this fact especially obvious on the finger joints and the head’s look-at
direction. The second sequence shows how good data coverage in the training set can significantly
impact performance in special or rare effector configurations. Finally, the third sequence shows a
similar pattern for look-at targets, where the difference in training data can be noticed in the general
posture of the character and the varying levels of robustness with respect to those targets.

K.6 RETARGETING

This video shows that ProtoRes trained on one dataset can be successfully applied to multiple
characters defined on skeletons on which our model was never trained. Currently, the model is trained
on a dataset with a specific skeleton layout with specific bone offsets. In a naive application scenario,
a new skeleton would require retraining the model on a dataset for this specific skeleton, which could
be a prohibitively expensive exercise. To overcome this limitation, we show in this video that the
model learned using our approach can be retargeted to very different skeletons using conventional
retargeting methods via a process that is fully automatic, without changing the model in any way.
Thus, our model can be seamlessly used without any retraining with a wide variety of skeletons. In
practice this solution allows the use of the same model on characters having similar skeleton in terms
of topology and/or morphology and very different in other aspects such as proportions (bone lengths)
or bone count. For instance, as our demo shows, it can be used with any humanoid character and still
produces valuable results. Transfer of the model across skeletons using more sophisticated ML-based
techniques such as fine-tuning, conditioning, domain adaptation is deemed to a be a fruitful future
research area, for which our current results form a strong baseline.

K.7 APPLICATION TO THE QUADRUPED SKELETON

In this video we demonstrate that ProtoRes can be applied to a completely different type of skeleton
(quadruped) and it does not require any additional coding as opposed to FinallK (no hand-crafted
skeleton, effectors, bone chains, pulling, etc). It does require data and re-training however, but does
not contain anything specific to humanoids. In fact, we have successfully trained the proposed model
on a quadruped (dog) dataset without changing the model or hyperparameters, which demonstrates
the generality of the method.

K.8 COMPARISON TO TRANSFORMER

In this video we demonstrate qualitative examples demonstrating the basic difference between
Transformer and ProtoRes. First, generally speaking, in many cases with challenging effector settings
ProtoRes shows much greater robustness to outliers with respect to pose plausibility, whereas in many
cases Transformer’s behaviour feels like that of a pure non-learnable IK model. Second, Transformer
has a tendency to generate self-intersections between the limbs to satisfy some of the constraints
more closely at the expense of the overall pose plausibility. Finally, in response to an extreme look-at
constraint Transformer can bend the neck behind the body, which in reality never happens in the data
and would break the neck of a real human. In contrast, ProtoRes keeps the neck naturally oriented
when the look-at target is unattainable.

From the theoretical perspective, the fundamental difference between the Transformer framework
and the ProtoRes is as follows. ProtoRes creates one global representation of the partially specified
pose and then reconstructs the full pose in one shot through a global IKD. On the other hand,
Transformer generates embeddings of individual joints for the full output pose, from which a shared
IKD reconstructs the local rotation angles for each joint. Transformer has all the ingredients to
reproduce processing similar to our approach. However, in reality the Transformer takes a different
learning route and (i) learns more localized joint predictions and (ii) learns to more strictly respect
local input constraints, even at the expense of creating poses that are not statistically plausible.
Combining the global (ProtoRes) and local (Transformer) approaches to derive better hybrid models
seems like a promising direction for future work.

K.9 LIMITATIONS

The final video shows examples of some specific limitations of the approach that are listed in
Appendix [[] Namely, we first expose specific consequences of the lack of temporal consistency in
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our problem formulation, where smoothly moving an effector can cause flickering on some joints,
such as the fingers. We also show how between some effector configurations, the character must
be flipped completely to stay in a plausible pose, and how it’s possible to place some effectors to
reach an invalid pose coming from that flip region of the latent manifold. Finally, we showcase
some problematic behaviors that can be caused by extreme look-at targets. In some cases, especially
with many other constraints, ProtoRes will tend to produce a plausible pose that will not respect
the look-at constraint. In other cases, the extreme look-at target may cause an unrealistic pose, €.g.
by causing the character to have an impossible neck rotation. It is interesting to note how invalid
poses from look-at effectors tend to happen more often than from other effector types with novice
users. We hypothesize that the plausible region of a look-at target, given a current character pose, is
less intuitive to grasp than for other effector types. Indeed, the current pose of the character seems
to guide more precisely the placement of positional and rotational effectors than look-at effectors,
leading more often to configurations outside of the training distribution for look-at effectors.

L LIMITATIONS

The limitations of our work can be summarized as follows:

 Constraints are not satisfied exactly, as opposed to the conventional systems. The limitation
can be observed in the demo video 4_Final IK_comparison.mp4, which compares ProtoRes
and FinalIK side-by-side. For example, at seconds 18-21 we can see the chest position is not
satisfied exactly by ProtoRes and the generated left foot position traverses the vicinity of the
constraint as the user changes the position of the left foot. Another example like this can be
seen at seconds 35-41, in which the left foot effector is not satisfied exactly by ProtoRes. It
is interesting that for the rather peculiar configuration of effectors, FinalIK produces outputs
that tend to severely twist the joints, perhaps beyond the capabilities of an average human.
At the same time ProtoRes tends to trade the precision of following individual effectors with
the plausibility of the overall pose. This is the price to pay for the ability of the model to
inject the data-driven inductive bias that can be used to reconstruct pose from very sparse
inputs. This could be mitigated using a conventional solver on top of the trained model. In
this case, the model will produce a globally plausible pose, whereas the solver will only do
the final pass to strictly satisfy certain constraints. Also, to provide additional flexibility in
solving some of the constraints more strictly than the others, our model provides an effector
tolerance mechanism that can help the user trade off the strictness of satisfying certain
effectors vs. some others.

» Lack of temporal consistency. Our work solves the problem of creating a discrete pose.
Therefore, it is limited in how it can be applied to modify an underlying smooth animation
clip. For example, we can see flickering of joints (especially fingers) when effectors follow
an underlying smooth animation (the finger embedding space is not smooth and has a high
ambiguity). This happens to a smaller degree with the head when it is not constrained with
look-at or rotation inputs.

* Exotic poses significantly deviating from the the training data distribution (a common
ML/DL problem) may be hard to achieve. For example, the Lotus yoga pose is very hard to
achieve with small number of effectors. Extreme or rare effector configurations may not be
respected. Extreme look-at targets may not be followed or can cause artifacts in the resulting
pose.

* Some effector displacement can cause a complete flip in the final pose as it makes more
sense to be e.g. left-oriented or right-oriented to reach a hand position. This is normal,
but we can sometimes reach “’in-between” poses on the boundary of the hand effector that
causes the flip, leading to weird poses

* We also noted a limitation as "aiming” poses (holding something in the hands). For example,
Finger poses are generally wrong w.r.t. to a gun without additional finger constraints. It may
be cumbersome to place hands + look-at for each aiming pose/angle?

¢ Runtime. In its current state, the model allows interactive real-time rate (about 100 FPS).
This is very good for the primary application area of the model in the interactive pose
design. However, the current model cannot be used for runtime applications such as driving
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charachters directly in real-time games, because it would consume too high of a time budget
(about 10ms, which is too much to be usable in the game runtime context).

* No contextual input is supported (text description or environment awareness), in particular
for finger posing and feet collisions

* Good for realism, but might limit creativity. In particular, no bone stretching support, which
is sometimes used by animators to add more expressiveness to non-realistic characters.

* The current model struggles when a large number of fine-grain controls, especially fingers
are used simultaneously. Perhaps, a more structured hierarchical approach can be used to
enable this functionality.
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