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ABSTRACT

We introduce Visual Caption Restoration (VCR), a novel vision-language task
that challenges models to accurately restore partially obscured texts using pixel-
level hints within images through complex reasoning. This task stems from the
observation that text embedded in images intrinsically differs from common visual
elements and text due to the need to align the modalities of vision, text, and text
embedded in images. While many works incorporate text into image for visual
question answering, they mostly rely on OCR or masked language modeling, re-
ducing the task to text-based processing. However, text-based processing becomes
ineffective in VCR as accurate text restoration depends on the combined infor-
mation from provided images, context, and subtle cues from the tiny, exposed
areas of masked texts. We develop a pipeline to generate synthetic images for the
VCR task using image-caption pairs, with adjustable caption visibility to control
the task difficulty. With this pipeline, we construct VCR-WIKI for VCR using
Wikipedia images with captions, including 2.11M English and 346K Chinese
training entities, plus 5K validation and 5K test entities in both languages, each in
easy and hard configurations. We also make a hidden test set VCR-HIDDEN to
avoid potential over-fitting on VCR-WIKI. Our results reveal that current vision
language models significantly lag behind human performance in the VCR task, and
merely fine-tuning the models on our dataset does not lead to notable improvements.
We release VCR-WIKI and the data construction code to facilitate future research.

1 INTRODUCTION

Embedded text (!")

Visual image (#$)

"What is the text including the covered text in 
the image? Please just guess the covered 
text without output the explanations."

String text (%")

Figure 1: An example of the VCR
task.

Recent advances in large language models, such as ChatGPT
(OpenAI et al., 2023) and Llama (Touvron et al., 2023), have
spurred significant interest and progress in the field of vision-
language models (VLMs). With models like GPT-4V (OpenAI
et al., 2023) and LLaVA (Liu et al., 2023a; 2024a; 2023b) blend-
ing textual and visual information, the intersection of computer
vision and natural language processing has become a vibrant
research frontier. These integrated models aim to leverage the
potential of vision and language modalities to understand and
interpret multimedia content more effectively.

Amidst this evolving landscape, we introduce VCR, a novel
vision-language task designed to challenge existing models
uniquely. VCR challenges these models to restore obscured
texts within images, which demands an intricate synthesis of text,

∗Equal contribution.
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vision, and text embedded in the image. The VCR task is grounded in two key insights: (1) text
embedded within images, with its characteristics different from common visual elements, represents
a distinct modality that requires careful alignment of vision, textual data, and the structure of written
texts, and (2) neuroscience findings that suggest that humans are proficient in recognizing partially oc-
cluded objects through sophisticated visual and cognitive processes (Thinés et al., 2013; Pessoa et al.,
1998; van Lier & Gerbino, 2015; Fyall et al., 2017; Li et al., 2023a). By leveraging these insights,
VCR seeks to explore how well vision-language models can handle texts embedded within images,
aligning visual elements and natural language to mimic human-like multimodal understanding and
recognition.

The Visual Question Answering (VQA) task (Antol et al., 2015; Wang et al., 2018; Mishra et al.,
2019b; Singh et al., 2019) has been a popular benchmark in assessing how well models align and
interpret visual and linguistic information. Traditional VQA mainly addresses visible elements,
overlooking the nuanced relationship between embedded text and image context. This highlights
the limitations of current models in handling integrated visual-textual data, especially when text is
obscured or altered.

To address these limitations, our VCR task builds on the premise that effective text restoration from
images requires an integrated understanding beyond the capabilities of current VQA benchmarks.
For example, in extreme cases, models rely on existing Optical Character Recognition (OCR) system
to extract text from documents (Singh et al., 2019; Borisyuk et al., 2018). The extracted text is then
used as context for generating answers without a true semantic alignment between the text and the
visual elements of the document. This approach, while effective in simple scenarios, falls short in
more complex settings where text is intricately woven into the visual narrative of the image.

To develop the VCR task, in this work, we introduce a pipeline for generating synthetic images
that allows for manipulation of the visibility of the textual components of the image. This not only
enhances the challenge posed by the task but also provides a scalable way to adjust task difficulty.
The resulting dataset, VCR-WIKI, comprises 2.11M English data and 346K Chinese data sourced
from Wikipedia, featuring captions in both languages across ‘easy’ and ‘hard’ difficulty levels. Our
evaluations indicate that existing vision-language models significantly underperform compared to
human benchmarks, underscoring the need for novel model architectures and training paradigms
specifically geared towards this complex intermodal alignment. We also constructed a hidden test set
for the VCR task (VCR-HIDDEN) to avoid potential over-fitting on VCR-WIKI.

We release VCR-WIKI and its construction code to stimulate further research of developing of
models that can more adeptly navigate the nuanced landscape of the restoration of text embedded in
images to bridge the gap between human and machine perception. The code and datasets are available
at GitHub and Hugging Face.

Contributions The main contributions of this paper are:

C1 Introduce the VCR task to challenge VLMs to restore occluded texts in images.

C2 Develop a pipeline for generating synthetic images with embedded text that allows for
adjusting the visibility of such text, thus providing a rich testing environment for VCR.

C3 Create and release VCR-WIKI, a dataset with multilingual captions and construct the hidden
test set VCR-HIDDEN, designed to benchmark VLMs on text restoration tasks.

C4 Conduct empirical evaluations that show significant gaps between current models and
human performance on the VCR task. This highlights the effectiveness of VCR for assessing
advancements in VLMs and underscores the necessity for innovative model architectures
and training techniques. New models will be actively added to our Github leaderboard.

2 VCR TASK DESCRIPTION

In this section, we compare the VCR task with other existing tasks and answer the following questions:

Q1 What is the difference between VCR and other visual reconstruction tasks?

Q2 Why should we care about VCR?
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For better clarity, we define text embedded in image (TEI) as text incorporated within the image,
visual image (VI) as the non-textual portion of the image, and string text (ST) as the separate textual
element associated with the image (typically the question prompt). A VCR task element can thus
be expressed as (ST, (V I, TEI)), where ST is a string while V I and TEI are presented in image
form. We adopt this notation to facilitate explanation, not to imply physical separation of V I and
TEI in the image. Please refer to Figure 3 for an illustration of V I , TEI , and ST .

A1 VCR relates to both VQA and OCR tasks. VQA takes images and questions as input to generate
free-form responses with non-unique ground-truth, creating evaluation challenges regarding non-
unique answers. In contrast to VQA, OCR is a task where the ground-truth responses are unique:
OCR takes as input complete characters in image form and outputs a string representing the characters
in the image, without considering the image context. VCR bridges these tasks by reconstructing
unique text while considering visual context. Figure 2 shows a hard-mode VCR task where humans
can fill blanks easily, but models with only OCR capabilities cannot recover covered text without
context, as pixel-level character hints no longer yield unique solutions.

A2 The proposed VCR task is significant in two aspects.

First, it connects to fundamental neuroscience findings on human cognitive abilities to recognize
partially occluded objects (Fyall et al., 2017; Li et al., 2023a). While existing models struggle
with occluded information, humans excel by combining low-level visual processing with high-level
cognitive functions in the prefrontal cortex. VCR serves as a critical probe distinguishing between
low-level recognition and high-level reasoning cognition—a distinction essential for advancing AI
systems toward human-like perception capabilities.

Figure 2: How humans would possibly solve a VCR task.

Second, VCR presents a unique chal-
lenge substantially different from ex-
isting benchmarks by specifically tar-
geting text-image alignment capabili-
ties. Unlike traditional VQA or oc-
cluded object restoration tasks that
test general visual reasoning, VCR
creates a specialized evaluation frame-
work that tests a model’s ability to
maintain semantic consistency across
multiple modalities simultaneously. It
requires deep integration of visual
content (V I) with partially visible tex-
tual elements (TEI), necessitates in-
ference capabilities that go well be-
yond pattern recognition toward genuine comprehension, and demands contextual reasoning that
mirrors human cognitive processes when faced with incomplete information.

What makes VCR particularly valuable as a benchmark is its precision in targeting the specific frontier
of vision-language integration. By occluding text rather than objects, VCR creates a controlled
environment where success requires sophisticated cross-modal reasoning rather than mere recognition
or memorization. The ability to adjust difficulty through varying occlusion levels provides researchers
with a finely calibrated instrument to measure incremental progress in model capabilities.

For practitioners developing next-generation multimodal systems, VCR offers several distinct ad-
vantages: (1) it provides a reliable measure of text-visual alignment capabilities currently lacking in
standard benchmarks; (2) it simulates real-world scenarios where text is partially visible, damaged,
or obscured; and (3) it offers clear evaluation metrics with unique ground-truth answers, unlike
subjective benchmarks that suffer from evaluation ambiguity. Figure 2 demonstrates how humans
solve a hard-mode VCR task, highlighting the cognitive processes that advanced AI systems should
aim to replicate.

3 DATASET CREATION

The VCR task requires aligning visual images (V I) with text embedded in images (TEI). Therefore,
the dataset creation process relies on a set of highly correlated image-text pairs. We utilize the primary
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Text embedded in image 
(𝑻𝑻𝑻𝑻𝑻𝑻)

Visual image (𝑽𝑽𝑻𝑻)

"What are the covered texts in the 
image? Please restore the 
covered texts without outputting 
the explanations."

String text (𝑺𝑺𝑻𝑻)

国鉄80系電車…

Wikipedia Images + 
Captions

Step 1:
Data Filtering

Language 
Safety 

High-Quality
Image-Caption Pairs

Ginger is… Republic Air…

Republic Air…

…… Republic Airport is a 
regional airport in East 
Farmingdale, New York, 
located one mile east of 
Farmingdale village limits.

Step 2: Text Processing

Original Text Find eligible 𝒏𝒏-grams

(Republic Airport is a regional)
(Airport is a regional airport)
(is a Regional airport in East)

……

Find 𝒏𝒏-grams to mask
Keep masking below 50%

Republic Airport is a 
regional airport in East 
Farmingdale, New York, 
located one mile east of 
Farmingdale village limits.

Filter instances without 
masked 𝒏𝒏-grams

Remove texts where all 
𝑛𝑛-grams contain:
 Punctuations
 Digits
 Person, organization, 

location, date, time…

Step 3: Create 𝑻𝑻𝑻𝑻𝑻𝑻

Republic Airport is a 
regional airport in East 
Farmingdale, New York, 
located one mile east of 
Farmingdale village limits.

Easy (less obscured)

Republic Airport is a 
regional airport in East 
Farmingdale, New York, 
located one mile east of 
Farmingdale village limits.

Hard (more obscured)
……

Figure 3: Illustration of the dataset creation pipeline for VCR-WIKI. visual image (V I), text
embedded in image (TEI) and string text (ST ) in an example of the English Hard configuration
of VCR-WIKI. The solid line-enclosed contents (V I and TEI) are part of the image, whereas the
dotted line-enclosed content (ST ) is given separately from the image.

images and their corresponding captions from Wikipedia as the data source1 to create VCR-WIKI, a
Wikipedia-based VCR dataset. The pipeline for creating VCR-WIKI is shown in Figure 3. Before
constructing the dataset, we first filter out instances with sensitive content, including NSFW and
crime-related terms, to mitigate AI risk and biases.

The VCR-WIKI dataset is formatted as a VQA task, where each instance includes an image, a
question, and a ground-truth answer. The images are synthesized from text-image pairs by stacking
the image (V I) with its corresponding text description (TEI) vertically, mimicking the format of a
captioned image. This stacked image is referred to as a stacked V I +TEI image. Each V I +TEI
image is resized to a width of 300 pixels. To avoid excessive image height, we truncate TEI to a
maximum of five lines. We filter the dataset to exclude instances with V I +TEI images exceeding
900 pixels in height to avoid drastic resolution changes during data pre-processing.

We use spaCy to randomly select 5-grams in the caption for masking. To ensure the restoration process
is doable by a human without too much domain knowledge, the 5-grams do not contain numbers,
person names, religious or political groups, facilities, organizations, locations, dates, and times
labeled by spaCy. The total masked token does not exceed 50% of the tokens in the caption. We pick
5-grams for masking as it balances linguistic complexity and task feasibility, capturing meaningful
grammatical structures while avoiding dataset reduction or overly simplified tasks observed with
longer or shorter spans. We exclude instances that do not have any maskable 5-grams. The selected
5-grams are partially obscured by a white rectangle that reveals only the upper and lower parts of the
text, with the proportion of coverage varying according to task difficulty. Furthermore, to assess the
impact of V I on model performance, we create an ablation for each image, maintaining the resolution
of the V I +TEI image, but retaining only the TEI part in the center of the image.

The VCR task involves a predefined question that prompts the model to produce the obscured text in
the image. The ground-truth answer corresponds to the caption displayed in the uncovered portion
of the stacked image. Due to the extensive availability of VLMs and a significant user base in
both English and Chinese, we have chosen to develop the dataset in these two languages. For each
language, we meticulously select the height of the masking rectangle to create two task variants:
(1) an easy version, where the task is easy for native speakers but open-source OCR models almost
always fail, and (2) a hard version, where the revealed part consists of only one to two pixels for the
majority of letters or characters, yet the restoration task remains feasible for native speakers.

To avoid test data leakage, we create a hidden test (VCR-HIDDEN) for the VCR task which will not
be publicized. While it follows our dataset’s general construction principles regarding masked span
length and the span selection criteria, it differs in five key aspects: (1) Image-text pairs no longer
come from the Wikipedia; (2) TEI is randomly positioned either above or below V I; (3) Masked
regions are randomly selected from both “easy” and “hard” settings; (4) Multiple popular fonts
are used randomly for the TEI component; and (5) The V I +TEI image width varies uniformly
between 600 - 1000 pixels. We include results on VCR-HIDDEN in Table 1 and Appendix C.

1Datasource: https://huggingface.co/datasets/wikimedia/wit_base.
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3.1 DATASET FORMAT AND STATISTICS

The VCR-WIKI dataset comprises four configurations: English Easy, English Hard, Chinese Easy
and Chinese Hard. Each configuration can be further divided into training, validation, and test splits.
The validation and test splits contain 5,000 entities each. The training set for English configurations
and Chinese configurations contains 2,095,733 and 336,448 instances, respectively, which can be
used for model continuous pretraining. To avoid test data leakage, we also newly include hidden test
sets (VCR-HIDDEN) for both languages as described in Section 3, which contains 100 entities for
each language. We include detailed statistics of the dataset in Table 4 in Appendix A.

4 EXPERIMENTS

In this section, we report the experimental results of existing state-of-the-art vision-language models
on both VCR-WIKI and the VCR-HIDDEN hidden test.

4.1 MODELS

Closed-source and Open-source Models. In this paper, we report results for several state-of-the-art
closed-source and open-source models from the OpenVLM Leaderboard2, as well as selected state-
of-the-art models as of February 2025 for VCR-WIKI. For the VCR-HIDDEN hidden test, we report
results of state-of-the-art closed-source and open-source models available as of February 2025. See
Appendix B for complete model specifications. We commit to evaluating emerging state-of-the-art
VLMs to reflect cutting-edge advancements. Results for later models will be actively updated in the
leaderboard hosted on https://github.com/tianyu-z/VCR.

Fine-tuned Models. To test whether VLMs can learn to conduct VCR via fine-tuning, we select
three models from the open-sourced models: CogVLM2-Llama3-19B-Chat, MiniCPM-Llama3-V2.5,
and Qwen2-VL-7B-Instruct, and fine-tune them on a subset of VCR’s training set.

More specifically, we fine-tune CogVLM2-Llama3-19B-Chat, MiniCPM-Llama3-V2.5, and Qwen2-
VL-7B-Instruct in the English Hard configuration, and CogVLM2-Llama3-19B-Chinese-Chat,
MiniCPM-Llama3-V2.5, and Qwen2-VL-7B-Instruct on the Chinese Hard configuration. The models
are finetuned using LoRA (Hu et al., 2022) with r = 8 and α = 32. We adopt the schedule-free
AdamW optimizer (Defazio et al., 2024) with a learning rate 2e−4. The effective batch size is 64.
Each model is trained on the first 16,000 examples of the training set for 1 epoch. All fine-tuning
experiments are performed on a single node with 4 NVIDIA L40S 48G GPUs.

4.2 METRICS

We measure the quality of the model’s restoration of each masked n-gram (where n = 5 in our
setting, as specified in Section 3). Due to the variability of different models’ outputs, for each masked
n-gram m ∈ Vn

e , where Ve is the vocabulary of the evaluation tokenizer3, we extract the most similar
n-gram m̂ ∈ Vn

e with the least edit distance in the model’s generation.

We report the two metrics below in our experiment section to measure the restoration quality:
Exact Match (EM ) ≡ EM(m, m̂) = I(m = m̂), which measures whether the restored n-gram
m̂ totally matches the ground-truth m; and Jaccard Index (J) ≡ |S(m)∩S(m̂)|

|S(m)∪S(m̂)| , which measures the
similarity of m̂ and m as bag-of-words.

4.3 RELATIONSHIP TO OTHER BENCHMARKS.

We evaluated 38 Vision-Language Models (VLMs) across 23 different benchmarks, using the VLM
performance scores as features of each benchmark to compute a correlation matrix. Based on this

2We selected the highest-performing open-source models with fewer than 40 billion parameters from
https://huggingface.co/spaces/opencompass/open_vlm_leaderboard as of May 2024
and their later versions for VCR-WIKI.

3We utilize spaCy’s en core web sm’s and zh core web sm’s tokenizer for English and Chinese evalu-
ation, respectively.
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matrix, in Figure 4, we applied K-Means clustering and visualized the results in 2D by plotting the first
two principal components derived from the correlation matrix rows for each benchmark. Additionally,

Figure 4: Projection of benchmarks onto the first two
principal components derived from the correlation ma-
trix of VLM performance scores. Each point represents
a benchmark, and proximity indicates higher similarity
based on model performance correlation.

we provide a heatmap of the correlation ma-
trix in Appendix E.

VCRZH, EASY and VCRZH, HARD were ex-
cluded from these processes due to the lim-
ited availability of VLMs that support Chi-
nese. According to Figure 4, VCREN, EASY
shows a tentative similarity to ChartQA and
TextVQA, as all three benchmarks evalu-
ate the ability to extract and reason about
text from natural images and documents.
However, VCREN, EASY does not exhibit sig-
nificant similarity to the other benchmarks.
Meanwhile, VCREN, HARD stands apart from
all other benchmarks. We attribute this to
the fact that VCREN, HARD emphasizes cap-
tion recovery with minimal pixel-level in-
formation, a skill not tested by any of the
other benchmarks. Therefore, we assert that
the VCR series benchmarks assess unique
aspects of VLMs that are not covered by any
of the other benchmarks in our evaluation.

4.4 EXPERIMENTAL RESULTS

For VCR-HIDDEN, Table 1 presents state-of-the-art VLMs’ performance as of February 2025,
with more comprehensive results for more models in Table 6 (English) and Table 7 (Chinese). In
addition, Table 2 shows exact match scores and Jaccard indices on VCR-WIKI. Figure 5 compares
our fine-tuned models against base models across all VCR settings. For faster benchmarking, Tables 8
and 9 in the Appendix provide results on smaller VCR-WIKI test sets containing 100 or 500 samples.
In this section, we analyze models’ performance as of our paper submission date (October 2024) on
the VCR task, highlighting key insights through comparative evaluations.

VCR Remains a Challenging Task for SOTA VLMs. Despite high-performing models like
Qwen2-VL excelling in VCREN, EASY and VCREN, HARD settings, most recent models struggle signifi-
cantly, especially under harder settings where metrics approach zero. This highlights not only the
inherent difficulty of the VCR task but also that subpar performance on VCR-WIKI stems from a
lack of reasoning capabilities or sufficient text-image alignment rather than unfamiliarity with the
underlying text, as many VLMs are pretrained on similar data. These results emphasize the need
for advancements in VLM designs to achieve robust performance across all settings. Besides, to
avoid over-fitting on the train set we released, we also include results from our hidden test set VCR-
HIDDEN, which is not publically accessible. For most recent models, we observe a performance
decline on VCR-HIDDEN compared with VCR-WIKI. We will keep updating the both the public
VCR-WIKI and private VCR-HIDDEN leaderboards in our Github repository.

Enhanced OCR Capabilities Do Not Necessarily Translate to Improved VCR Performance.
Our analysis reveals that models proficient in OCR, such as InternLM-XComposer2-VL, and those
excelling in image document understanding, like DocOwl 1.5 and Monkey, demonstrate subpar
performance across most VCR settings. This discrepancy suggests that while these models can
accurately recognize text within images, they lack the advanced reasoning capabilities required to
effectively interpret and utilize this information within the context of the VCR task. This finding also
highlights a fundamental distinction between OCR tasks and the more complex VCR task.

Language-Specific Performance: Need for Enhanced Multilingual Capabilities. A significant
performance degradation is observed when models are evaluated on Chinese configurations, despite
assertions of basic English-Chinese bilingual capabilities. This decline is particularly surprising
given the logographic nature of Chinese characters, which theoretically offer higher recognizability
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Table 1: Performance of some SOTA-level VLMs (as of February 2025) on the VCR-HIDDEN
in English and Chinese. We label the best result of each setting and metric with bold fonts. A
superscript of * marks that the model was released after the initial public release of the VCR-WIKI
dataset (June 10, 2024). Subscripts show bootstrapped standard deviation. Refer to Table 6 for the
complete results in English and Table 7 for the complete results in Chinese.

Language Open/closed
source Model name Model size Exact match (%) ↑ Jaccard index (%) ↑

V I + TEI TEI ∆ V I + TEI TEI ∆

English

Closed

Claude 3.7 Sonnet* - 74.002.99 58.503.38 15.50 81.532.34 61.473.26 20.06
Gemini 2.0 Flash* - 48.503.55 42.003.55 6.50 66.352.76 61.162.76 5.20
GPT-4o - 41.503.43 45.503.55 -4.00 48.093.39 51.513.30 -3.43
o1* - 26.503.17 18.502.64 8.00 31.173.11 22.062.79 9.11
Grok 2 Vision* - 16.502.43 26.003.15 -9.50 36.052.47 43.832.79 -7.78

Open

CogVLM2 19B 53.003.72 51.003.56 2.00 64.972.76 61.012.98 3.97
DeepSeek-VL2* 28B 23.502.93 32.003.31 -8.50 31.752.94 45.502.90 -13.75
InternVL2.5* 78B 83.502.70 79.502.83 4.00 91.471.39 87.601.88 3.87
Llama-3.2-Vision* 90B 51.003.52 33.503.20 17.50 63.212.88 50.552.86 12.66
QvQ-Preview* 72B 66.003.40 62.503.25 3.50 75.762.66 72.572.73 3.19
Qwen2.5-VL* 72B 86.502.43 79.502.88 7.00 92.281.52 86.432.01 5.86
Ovis2* 34B 62.003.52 60.503.43 1.50 73.302.70 71.342.85 1.97

Chinese

Closed

Claude 3.7 Sonnet* - 3.001.16 0.500.50 2.50 9.931.44 0.920.52 9.02
Gemini 2.0 Flash* - 1.000.70 1.000.69 0.00 12.361.11 11.771.09 0.59
GPT-4o - 1.500.89 0.500.50 1.00 3.781.01 2.220.66 1.56

Open

CogVLM2-Chinese 19B 3.001.17 1.500.82 1.50 16.051.47 13.151.21 2.90
InternVL2.5* 78B 21.002.91 11.502.30 9.50 46.232.52 34.802.12 11.43
QvQ-Preview* 72B 18.502.75 23.503.01 -5.00 24.712.73 34.852.90 -10.13
Qwen2.5-VL* 72B 33.503.35 28.003.21 5.50 52.652.78 46.832.72 5.82
Ovis2* 34B 2.001.00 1.000.73 1.00 14.121.39 13.491.28 0.62

compared to alphabetic scripts (Wu et al., 2024a; Zhao et al., 2022). These results indicate a critical
need for targeted improvements in multilingual support to ensure consistent performance across
different languages.

Model Size Does Not Guarantee Superior Performance. Comparative analysis between Llama-
3.2-11B and Llama-3.2-90B models reveals that both exhibit similar performance levels on the
VCREN, EASY and VCREN, HARD settings. This observation suggests that merely increasing model
size does not inherently enhance VCR performance. Instead, advancements in the cognitive abilities
of models, achieved through improved training strategies, reasoning frameworks, or architectural
innovations, are essential for meaningful performance gains in VCR tasks.

Model Resolution Is Not Directly Correlated with Performance Enhancement. InternLM-
XComposer2-VL-4K, despite its higher resolution, demonstrates significantly lower performance on
the VCREN, EASY setting compared to its lower-resolution counterparts. This decline may result from
more aggressive image partitioning strategies that disrupt the spatial continuity of text or from more
intensive pixel or token compression techniques that lead to the loss of crucial local details. Both
factors are critical for the accurate interpretation required in VCR tasks.

Inclusion of V I Input Images Negatively Impacts Performance. The addition of V I generally
results in negative performance changes (∆ < 0), indicating that the image information is not being
effectively leveraged by the models. This negative impact may stem from the importance of key
information locations, which could be compromised by image partitioning strategies that fail to
preserve spatial relationships essential for accurate reasoning.

Model Design Influences Performance Gains from VCR-WIKI Finetuning. As shown in Figure
5, finetuning on the VCR-WIKI dataset yields varying performance improvements across different
model designs. Specifically: 1) CogVLM2 demonstrates substantial performance enhancements
across all four settings after finetuning, indicating that its overall design may be well-aligned with the
image-text reasoning demands of VCR, though further empirical validation is needed to substantiate
this hypothesis. 2) MiniCPM-V2.5 shows only marginal performance increases from an already
low baseline, particularly in the VCRZH, EASY and VCRZH, HARD settings. This limited improvement
indicates potential design limitations that hinder its ability to effectively address the complexities
of the VCR task. 3) Qwen2-VL-7B maintains relatively high performance both before and after
finetuning, implying that the model is sufficiently pre-trained on relevant tasks to perform well on the
VCR task without extensive additional training.

We hope that through controlled variables, the VCR-WIKI dataset delivers fully comparable results
across languages, difficulty levels, image inclusion, and fine-tuning stages. Each comparison is
intended to guide specific and targeted improvements in VLM development.
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Table 2: Performance of vision language models on VCR-WIKI in English and Chinese, for easy and
hard modes. We label the best result of each setting and metric with bold fonts, the best open-source
model with underline, and the best open-source model released before VCR-WIKI’s initial public
release (June 10, 2024) with italic font. A superscript of * marks that the model was released after
the initial public release of VCR-WIKI. Subscripts show bootstrapped standard deviation. For more
latest models’ results, please visit our GitHub repository.

Language Mode Open/closed
source Model name Model size Exact match (%) ↑ Jaccard index (%) ↑

V I + TEI TEI ∆ V I + TEI TEI ∆

English

Easy

Closed

Claude 3 Opus - 62.00.13 77.00.5 -15 77.670.32 88.410.39 -10.74
Claude 3.5 Sonnet - 63.851.71 72.81.56 -8.94 74.651.33 83.481.14 -8.83
Gemini 1.5 Pro - 62.731.66 82.981.3 -20.25 77.711.21 91.560.76 -13.85
GPT-4 Turbo - 78.740.13 81.940.25 -3.2 88.540.24 92.180.3 -3.65
GPT-4o - 91.550.29 94.560.13 -3.01 96.440.11 97.760.06 -1.32
GPT-4V - 52.040.24 37.860.22 14.17 65.360.39 54.130.41 11.23
Qwen-VL-Max - 76.80.5 85.530.19 -8.74 85.710.28 91.450.29 -5.74
Reka Core - 66.461.64 78.511.42 -12.05 84.230.86 90.450.7 -6.22

Open

Cambrian-1* 34B 79.690.43 81.280.43 -1.59 89.270.28 92.540.19 -3.27
CogVLM2 19B 83 .250 .07 78 .290 .04 4.96 89 .750 .1 88 .070 .08 1.68
DeepSeek-VL 7B 38.010.12 45.940.1 -7.93 60.020.15 64.720.04 -4.7
DeepSeek-VL2* 28B 4.070.21 5.210.24 -1.14 5.050.23 5.970.25 -0.93
DocOwl-1.5-Omni 8B 0.840.01 1.550.02 -0.71 13.340.03 14.620.04 -1.28
Idefics3* 8B 25.990.48 31.430.51 -5.44 47.220.42 54.000.39 -6.78
InternLM-XComposer2-VL 7B 46.640.1 46.40.11 0.24 70.990.1 72.140.07 -1.14
InternLM-XComposer2-VL-4K 7B 5.320.24 3.710.21 1.60 22.140.28 18.780.25 3.37
InternLM-XComposer2.5-VL* 7B 41.350.55 25.370.51 15.97 63.040.42 49.950.41 13.09
InternVL-V2* 40B 84.670.40 87.710.37 -3.04 92.640.22 95.100.16 -2.47
InternVL-V2* 76B 83.200.43 90.250.33 -7.05 91.260.24 96.100.14 -4.83
Llama-3.2* 11B 79.850.45 67.530.53 12.32 90.580.22 81.110.33 9.47
Llama-3.2* 90B 80.540.43 71.050.51 9.48 89.810.26 84.220.30 5.59
MiniCPM-V2.5 8B 31.810.08 40.050.09 -8.25 53.240.1 63.20.1 -9.96
Monkey 7B 50.660.1 56.20.08 -5.54 67.60.09 72.820.08 -5.22
Pixtral* 12B 18.410.42 11.600.36 6.81 41.250.37 31.600.33 9.65
Ovis2* 34B 74.130.48 73.640.49 0.49 83.130.35 86.790.28 -3.66
Qwen-VL 7B 49.710.17 52.150.15 -2.44 69.940.07 72.280.08 -2.34
Qwen2-VL* 7B 89.700.34 93.440.26 -3.74 93.840.24 97.470.12 -3.62
Qwen2-VL* 72B 91.300.32 94.640.26 -3.34 94.040.23 97.420.14 -3.38
Qwen2.5-VL* 7B 94.810.25 93.790.27 1.01 98.090.10 97.240.13 0.84
Qwen2.5-VL* 72B 91.870.29 87.650.37 4.23 95.480.18 90.750.30 4.73
Yi-VL 34B 0.820.03 1.610.04 -0.79 5.590.04 7.720.03 -2.13

Hard

Closed

Claude 3 Opus - 37.80.28 50.00.33 -12.2 57.680.8 70.160.64 -12.48
Claude 3.5 Sonnet - 41.741.69 44.721.78 -2.98 56.151.46 58.541.6 -2.4
Gemini 1.5 Pro - 28.071.58 38.761.68 -10.68 51.91.22 59.621.27 -7.72
GPT-4 Turbo - 45.150.28 48.640.57 -3.5 65.720.25 67.860.2 -2.14
GPT-4o - 73.20.16 82.430.17 -9.22 86.170.21 92.010.2 -5.84
GPT-4V - 25.830.44 14.950.3 10.87 44.630.48 30.080.67 14.56
Qwen-VL-Max - 41.650.32 52.720.2 -11.07 61.180.35 70.190.37 -9.01
Reka Core - 6.710.89 11.181.15 -4.47 25.840.95 35.831.05 -9.99

Open

Cambrian-1* 34B 27.200.48 29.680.50 -2.48 50.040.40 55.660.39 -5.62
CogVLM2 19B 37 .980 .18 17 .680 .06 20.3 59 .990 .05 39 .690 .03 20.3
DeepSeek-VL 7B 1.00.02 1.750.03 -0.75 15.90.08 17.20.04 -1.3
DeepSeek-VL2* 28B 25.060.47 32.390.51 -7.33 45.550.43 54.180.41 -8.63
DocOwl-1.5-Omni 8B 0.040.0 0.020.0 0.01 7.760.01 7.740.02 0.03
Idefics3* 8B 0.600.08 0.370.07 0.23 10.370.15 9.590.13 0.79
InternLM-XComposer2-VL 7B 0.70.01 0.920.01 -0.22 12.510.02 13.230.02 -0.72
InternLM-XComposer2-VL-4K 7B 0.210.05 0.180.05 0.02 9.520.12 9.520.12 -0.00
InternLM-XComposer2.5-VL* 7B 0.930.11 1.110.11 -0.18 13.820.16 14.720.18 -0.89
InternVL-V2* 40B 13.100.37 19.160.44 -6.06 33.640.36 41.350.39 -7.71
InternVL-V2* 76B 20.580.39 20.290.39 0.29 44.590.34 42.860.34 1.73
Llama-3.2* 11B 14.090.40 6.920.27 7.17 35.260.36 26.350.29 8.90
Llama-3.2* 90B 14.910.40 13.060.37 1.85 35.440.35 34.440.35 1.00
MiniCPM-V2.5 8B 1.410.03 1.960.02 -0.55 11.940.02 13.370.04 -1.43
Monkey 7B 1.960.04 2.430.03 -0.48 14.020.03 14.110.03 -0.09
Pixtral* 12B 0.440.08 0.640.09 -0.20 10.990.13 11.450.15 -0.46
Ovis2* 34B 77.430.46 69.310.49 8.13 87.920.29 87.020.25 0.89
Qwen-VL 7B 2.00.03 2.320.03 -0.32 15.040.05 14.270.05 0.77
Qwen2-VL* 7B 74.320.47 75.200.49 -0.88 85.470.30 87.630.27 -2.15
Qwen2-VL* 72B 69.870.52 71.700.49 -1.83 82.780.33 85.580.28 -2.80
Qwen2.5-VL* 7B 80.470.45 73.830.48 6.65 91.650.20 87.850.25 3.80
Qwen2.5-VL* 72B 79.790.45 67.310.54 12.48 87.910.29 77.120.42 10.78
Yi-VL 34B 0.070.0 0.050.0 0.02 4.310.02 5.890.02 -1.58

Chinese

Easy

Closed

Claude 3 Opus - 0.90.3 1.00.31 -0.1 11.50.48 10.00.49 1.49
Claude 3.5 Sonnet - 1.00.31 0.80.28 0.2 7.540.54 7.50.51 0.03
Gemini 1.5 Pro - 1.10.32 0.50.22 0.6 11.10.56 11.470.48 -0.37
GPT-4o - 14.871.14 22.461.35 -7.58 39.050.99 48.241.09 -9.19
GPT-4 Turbo - 0.20.14 0.10.1 0.1 8.420.36 6.970.29 1.45
Qwen-VL-Max - 6.340.08 9.920.09 -3.58 13.450.41 22.860.46 -9.42
Reka Core - 0.00.0 0.00.0 0 3.430.26 3.150.2 0.28

Open

CogVLM2-Chinese 19B 33 .240 .04 30 .70 .07 2.54 57 .570 .06 53 .660 .04 3.91
DeepSeek-VL 7B 0.00.0 0.00.0 0 4.080.01 6.840.01 -2.76
DeepSeek-VL2* 28B 3.810.18 2.950.17 0.86 10.320.20 10.400.20 -0.07
DocOwl-1.5-Omni 8B 0.00.0 0.00.0 0 1.140.01 3.380.01 -2.23
InternLM-XComposer2-VL 7B 0.270.01 0.230.01 0.04 12.320.02 12.280.03 0.04
InternLM-XComposer2-VL-4K 7B 0.460.07 0.460.07 0.00 12.310.14 13.370.14 -1.05
InternLM-XComposer2.5-VL* 7B 0.460.07 0.580.08 -0.12 12.970.16 14.990.17 -2.01
InternVL-V2* 40B 22.090.41 17.260.39 4.84 47.620.34 37.930.35 9.69
InternVL-V2* 76B 18.450.44 21.090.44 -2.64 41.160.37 44.480.38 -3.32
MiniCPM-V2.5 8B 4.10.02 5.050.08 -0.95 18.030.07 22.940.04 -4.9
Monkey 7B 0.620.01 1.440.01 -0.82 8.340.06 10.950.03 -2.61
Ovis2* 34B 21.720.40 16.680.36 5.04 39.940.37 36.430.34 3.51
Qwen-VL 7B 0.040.01 0.00.0 0.04 1.50.01 0.340.01 1.15
Qwen2-VL* 7B 59.940.49 67.480.47 -7.54 76.950.32 82.630.28 -5.67
Qwen2-VL* 72B 65.380.46 74.080.44 -8.70 81.140.28 86.780.25 -5.64
Qwen2.5-VL* 7B 72.380.46 46.080.49 26.30 84.660.28 57.030.42 27.63
Qwen2.5-VL* 72B 75.820.41 72.120.43 3.70 86.930.25 83.400.28 3.54
Yi-VL 34B 0.00.0 0.00.0 0 4.440.01 1.80.01 2.64

Hard

Closed

Claude 3 Opus - 0.30.18 0.10.1 0.2 9.220.38 8.090.33 1.13
Claude 3.5 Sonnet - 0.20.15 0.00.0 0.2 4.00.33 2.370.23 1.63
Gemini 1.5 Pro - 0.70.26 0.50.23 0.2 11.820.51 11.750.44 0.07
GPT-4o - 2.20.47 1.80.4 0.4 22.720.67 22.890.65 -0.17
GPT-4 Turbo - 0.00.0 0.20.13 -0.2 8.580.3 6.870.28 1.72
Qwen-VL-Max - 0.890.06 1.380.1 -0.49 5.40.19 12.290.18 -6.89
Reka Core - 0.00.0 0.00.0 0 3.350.23 2.970.2 0.38

Open

CogVLM2-Chinese 19B 1 .340 .03 2 .670 .02 -1.32 17 .350 .03 19 .510 .03 -2.16
DeepSeek-VL 7B 0.00.0 0.00.0 0 5.110.01 7.210.01 -2.1
DeepSeek-VL2* 28B 0.080.03 0.140.04 -0.06 4.300.09 6.860.09 -2.55
DocOwl-1.5-Omni 8B 0.00.0 0.00.0 0 1.370.01 4.070.02 -2.7
InternLM-XComposer2-VL 7B 0.070.01 0.090.0 -0.02 8.970.02 8.510.01 0.46
InternLM-XComposer2-VL-4K 7B 0.050.02 0.050.02 0.00 7.670.10 7.720.10 -0.04
InternLM-XComposer2.5-VL* 7B 0.110.04 0.120.04 -0.01 10.950.11 11.430.12 -0.48
InternVL-V2* 40B 0.480.07 0.740.08 -0.26 12.570.14 13.310.15 -0.74
InternVL-V2* 76B 0.560.07 0.660.08 -0.10 15.310.14 14.580.15 0.73
MiniCPM-V2.5 8B 0.090.0 0.080.0 0.01 7.390.02 7.890.01 -0.5
Monkey 7B 0.120.01 0.070.0 0.05 6.360.01 6.680.03 -0.32
Ovis2* 34B 3.730.19 2.660.15 1.07 20.620.24 18.720.21 1.91
Qwen-VL 7B 0.010.0 0.010.0 0 1.170.01 0.120.0 1.06
Qwen2-VL* 7B 18.330.37 27.580.44 -9.26 43.550.34 54.240.34 -10.69
Qwen2-VL* 72B 15.300.36 27.350.44 -12.05 39.710.32 53.630.35 -13.91
Qwen2.5-VL* 7B 19.840.38 12.110.32 7.74 45.380.35 31.230.34 14.14
Qwen2.5-VL* 72B 31.530.47 29.470.44 2.06 56.690.35 54.410.34 2.27
Yi-VL 34B 0.00.0 0.00.0 0 4.120.0 1.810.01 2.31
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Figure 5: Exact Match performance on VCR before and after LoRA fine-tuning for selected models.
The results demonstrate varying degrees of improvement across different tasks and models, highlight-
ing the heterogeneous responses to fine-tuning.

4.5 HUMAN EVALUATION

We recruited 7 volunteers to perform human evaluation on a subset of the samples from our datasets.
Two out of the seven evaluators are native English speakers, while five are native Chinese speakers
who are also fluent in English4. All volunteers have earned postgraduate degrees, majoring in one
of the following fields: biology, statistics, computer science, and economics. The evaluations were
conducted on a voluntary basis, and participants received no rewards.

We gave the volunteers the following instructions: (1) We asked the volunteers to focus on the puzzles.
Each example in the hard collection may require 30 seconds to 2 minutes of focused attention, and
(2) we asked the volunteers to utilize the context rather than directly brute-force the puzzle.

Every sample is solved by at least 3 volunteers. In English, we release the exact match score in
2 splits: all errors counted (All), and only counting errors not related to dates and person names
(Filtered).

The human evaluation results are shown in Table 3. Although current SOTA models suffer from the
challenge, fluent speakers can easily achieve more than 90 percent accuracy across difficulties. Please
refer to Table 8 to compare all models with human evaluation results using the same test cases.

Table 3: Human evaluation results on the VCR task in terms of exact matches. N is the number of
puzzles in each language.

VCREN, EASY (N = 169) VCREN, HARD (N = 169) VCRZH, EASY (N = 188) VCRZH, HARD (N = 188)
Mean (%) SD (%) Mean (%) SD (%) Mean (%) SD (%) Mean (%) SD (%)

All 96.65 0.34 91.12 1.18 98.58 0.31 91.84 0.81
Filtered 98.62 0.34 97.63 2.13 99.47 0.00 96.63 1.11

5 RELATED WORK

Visual Question Answering (VQA). Several datasets have been proposed for visual question
answering VQA (Antol et al., 2015; Zhang et al., 2016; Goyal et al., 2017; Mishra et al., 2019b).
FVQA (Wang et al., 2018) and OK-VQA(Marino et al., 2019) are datasets about knowledge-based
visual question answering and contains questions that necessitate the usage of external knowledge
resources. CLEVR (Johnson et al., 2017) is a synthetic VQA dataset that mainly focuses on visual
reasoning abilities. Recognizing the need to develop VQA models that can understand text, Text-VQA
(Singh et al., 2019; Biten et al., 2019; Mishra et al., 2019a; Wang et al., 2020) aims to read and reason
about texts embedded within images in the context of image-question answering. Several datasets
(Singh et al., 2019; Biten et al., 2019; Mishra et al., 2019a) have been developed for the Text-VQA
task, such as the TextVQA dataset (Singh et al., 2019) and the ST-VQA dataset (Biten et al., 2019)

4The TOEFL scores of the non-native English-speaking participants range from 102/120 to 112/120.
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on natural images, the OCR-VQA dataset (Mishra et al., 2019b) on book or movie covers, the
InfographicVQA (Mathew et al., 2022) dataset on infographics, and the DocVQA dataset (Mathew
et al., 2021) on document images.

Vision Language Model. Vision-language models are designed for tasks that involve understanding
and generating content from images and text (Sun et al., 2023; Liu et al., 2023b; Laurençon et al.,
2023; 2024a). For example, models have been developed to combine Llama3 with advanced vision-
language processing capabilities to handle complex multimodal tasks (Yu et al., 2024; Xu et al.,
2024; Hu et al., 2023; Yu et al., 2023; Wang et al., 2023b; Dong et al., 2024a). Qwen-VL (Bai
et al., 2023) enhances visual-linguistic representations for more accurate contextual interpretations,
while OpenGVLab-InternVL-Chat (Chen et al., 2023; 2024c) merges the InternVL framework with
interactive chat capabilities. These studies typically employ a multimodal encoder (Radford et al.,
2021; Zhai et al., 2023; Wu et al., 2022) to process multimodal data, which is then mapped to
the same input space of the language model. General-purpose models such as the GPT-4 series
models (Ouyang et al., 2022; OpenAI et al., 2023), the Claude series models (Anthropic, 2024), the
Gemini series models (Team et al., 2024a) and the Reka series models (Team et al., 2024b) have
also been adapted for vision-language tasks, demonstrating strong performance in multimodal tasks.
Finally, DocLLM (Wang et al., 2023a) specializes in document understanding by integrating visual
and textual data to enhance the interpretation and generation of document-related content. These
models collectively represent significant advancements in vision-language integration, contributing
unique capabilities and enhancements to the understanding and generation of multimodal information.

Optical Character Recognition (OCR). OCR (Nagy, 2000) and its subproblems (Howe, 2013;
Smith, 1995; Shafait et al., 2008; Frinken et al., 2011) have been well-studied in the literature in the
constrained setting. However, classical OCR methods often cannot perform well on images captured
in the wild in an unconstrained setting. Many new methods have been developed for advancing scene-
text recognition on camera-captured images (Bissacco et al., 2013; Gupta et al., 2016; Huang et al.,
2014; Jaderberg et al., 2014; Wang et al., 2012; Shi et al., 2017; Zhou et al., 2017; Lee & Osindero,
2016). In addition to the detection and recognition of OCR tasks, visual question answering has
emerged as an important downstream task in the OCR literature. With the development of Text-VQA,
new methods for improving the reading abilities in VQA utilizing OCR have been proposed. For
example, LoRRA (Singh et al., 2019) extends a VQA model Pythia (Jiang et al., 2018) with an OCR
module to better handle Text-VQA tasks. TAP (Yang et al., 2021) incorporates scene texts that are
generated from OCR engines during pretraining to further improve Text-VQA capabilities.

6 CONCLUSION

In this work, we introduced the VCR task, a novel vision-language challenge aimed at promoting the
integration of visual and textual modalities, including text embedded in both natural language tokens
and image formats and highly obscured text embedded in the image. We developed a specialized
pipeline to create a dataset tailored to this task, utilizing correlated image-text pairs. This task stands
out from existing methods by requiring a more profound integration of visual cues and partially
obscured text, highlighting its uniqueness and importance in the field.

We conducted extensive evaluations of state-of-the-art vision-language models (VLMs) in both
English and Chinese. The results demonstrated significant room for improvement, suggesting that
current models have not yet fully exploited the capabilities necessary for VCR. We selected models
representing both the highest and average performance tiers for additional fine-tuning with our dataset.
Although fine-tuning exhibited potential for enhancing VCR capabilities, it did not consistently result
in significant improvements, indicating the complexity and challenges of adapting models to this task.

By introducing the VCR task and its specialized dataset, we aim to advance research in vision-
language interaction. The unique challenges of VCR seek to improve model development and
training, extending the limits of multimodal AI. VCR provides a controllable testbed for fine-grained
analysis of model behavior across languages, difficulty levels, image inclusion, and fine-tuning
stages. We invite the community to utilize our dataset and develop innovative strategies to boost the
performance of vision-language models.
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A STATISTICS OF VCR-WIKI AND VCR-HIDDEN

This section provides a comprehensive statistical analysis of both our main dataset (VCR-WIKI)
and our hidden test set (VCR-HIDDEN). Table 4 presents key metrics including split sizes, image
dimensions, and text obscuration patterns across languages. Note that the English and Chinese
configurations maintain consistent statistical properties between their respective Easy and Hard
variants since the two difficulties keeps the exact same dataset splits and covered texts, and only
differs in covered area.

Table 4: Basic statistics of VCR-WIKI and VCR-HIDDEN. Note that each language’s Easy and
Hard configurations share the same statistics. We report the mean, standard deviation, and the 5th and
95th percentile (η.05 and η.95) for the stacked image height and the number of obscured text spans of
VCR-WIKI. Unit is in pixels. “Hidden Test” means the hidden test set (VCR-HIDDEN).

# Train # Val # Test # Hidden Test V I +TEI Image Height # Obscured Text Spans

Mean SD η.5 η.95 Mean SD η.5 η.95

English 2095733 5000 5000 100 375.52 106.01 253 564 1.62 0.63 1 3
Chinese 336448 5000 5000 100 360.44 102.76 239 562 2.06 0.94 1 4

B DETAILS ABOUT THE EVALUATED MODELS

This section provides comprehensive specifications of all vision-language models (VLMs) evaluated
in this study. We assess a diverse range of models spanning both proprietary and open-source
ecosystems, representing the state-of-the-art in VLM capabilities as of October 2024 for VCR-WIKI
and February 2025 for VCR-HIDDEN. Our evaluation includes models with varying parameter
sizes, architectural designs, and training paradigms to ensure a thorough assessment of frontier visual-
textual reasoning abilities. The models are categorized below as either closed-source (proprietary) or
open-source, with detailed specifications and links to the models provided in Table 5.

Closed-source Models. We evaluate several most advanced proprietary models with either their
official APIs or APIs provided by OpenRouter. The evaluated models include o1 (o1-2024-12-
17), GPT-4o (gpt-4o-2024-0513), GPT-4 Turbo (gpt-4-turbo-2024-04-09), GPT-4V (gpt-4-1106-
vision-preview) (Jaech et al., 2024; Ouyang et al., 2022; OpenAI et al., 2023), Claude 3 Opus
(claude-3-opus-20240229), Claude 3.5 Sonnet (claude-3-5-sonnet-20240620), Claude 3.7 Sonnet
(claude-3-7-sonnet-20250219) (Anthropic, 2024), Gemini 1.5 Flash (gemini-1.5-flash-8b), Gemini
1.5 Pro (gemini-1.5-pro-001), Gemini 2 Flash Lite (gemini-2.0-flash-lite), Gemini 2 Flash (gemini-2.0-
flash) (Team et al., 2024a), Reka Core (reka-core-20240501) (Team et al., 2024b), and Qwen-VL-Max
(tested in May 2024) (Bai et al., 2023).

Open-source Models. We evaluate open-source model families with the best performance on
the OpenVLM Leaderboard as of May 2024 and state-of-the-art Chinese VLM models. The
evaluated models include Cambrian-1 (Tong et al., 2024), CogVLM2-19B (Hong et al., 2024),
DeepSeek-VL-7B-Chat (Lu et al., 2024), DeepSeek-VL2 Series (Wu et al., 2024b), DocOwl-1.5-
Omni (Hu et al., 2024a), GLM-4v (GLM et al., 2024), Idefics2-8B (Laurençon et al., 2024b),
Idefics3-8B (Laurençon et al., 2024a), InternVL 1.5, InternVL 2, InternVL 2.5 (Chen et al.,
2024c;b), InternLM-XComposer2-VL-7B (Dong et al., 2024a), InternLM-XComposer2.5-VL (Zhang
et al., 2024), InternLM-XComposer2-VL-4K (Dong et al., 2024b), Llama-3.2 (Dubey et al., 2024),
MiniCPM-V2.5, MiniCPM-V2.6 (Hu et al., 2024b), MiniMax-VL-01 (MiniMax et al., 2025), Molmo
Series (Deitke et al., 2024), Monkey (Liu et al., 2024b; Li et al., 2023b), Phi 3.5-vision (Abdin
et al., 2024a), Phi-4-multimodal (Abdin et al., 2024b), Pixtral (Mistral, 2024), Qwen-VL-Chat (Bai
et al., 2023), QVQ-preview (Team, 2024), Qwen2-VL Series (Wang et al., 2024), Qwen2.5-VL
Series (Bai et al., 2025) and Yi-VL (01.AI et al., 2024). Out of these models, Cambrian-1, Idefics3
and Llama-3.2 are English-only models, and CogVLM2-Llama3-19B-Chat has its Chinese variant,
CogVLM2-Llama3-19B-Chinese-Chat.
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Table 5: Model specifications

Model name Model size Open-sourced

Claude 3 Opus, 3.5 Sonnet, 3.7 Sonnet -
Gemini 1.5 Flash, 1.5 Pro, 2.0 Flash, 2.0 Flash Lite -
GPT-4 Turbo, 4V, 4o, 4o-mini, o1 -
Qwen-VL-Max -
Reka Core -

Cambrian-1 Series 5 8B, 13B, 34B ✓
CogVLM2 English, Chinese 6 19B ✓
DeepSeek-VL Series 7 1.3B, 7B ✓
DeepSeek-VL2 Series 8 16B, 28B ✓
DocOwl-1.5-Omni9 8B ✓
GLM-4V 10, 9B ✓
Idefics 2 11, 3 12 8B, 8B ✓
InternLM-XComposer2-VL, 4KHD 13 7B, 7B ✓
InternLM-XComposer2.5-VL 14 7B ✓
InternVL-V1.5 15 26B ✓
InternVL-V2 Series 16 1B, 2B, 4B, 8B, 26B, 40B ✓
InternVL-V2.5 Series 17 1B, 2B, 4B, 8B, 26B, 38B ✓
Llama-3.2-Vision Series 18 11B, 90B ✓
MiniCPM-V2.5, V2.6 19 8B, 8B ✓
MiniMax-VL-01 20 456B ✓
Molmo Series21 1B, 7B, 7B, 72B ✓
Monkey22 7B ✓
Ovis1.6-Gemma2 Series 23 9B, 27B ✓
Ovis2 Series 24 1B, 2B, 4B, 8B, 16B, 34B ✓
Phi-3.5-vision 25 4B ✓
Phi-4-multimodal 26 6B ✓
Pixtral 27 12B ✓
Qwen-VL 28 7B ✓
Qwen2-VL Series 29 2B, 7B, 72B ✓
Qwen2.5-VL Series 30 3B, 7B, 72B ✓
QVQ 31 72B ✓
Yi-VL32 6B, 34B ✓

5https://huggingface.co/collections/nyu-visionx/cambrian-1-models-666fa7116d5420e514b0f23c
6https://huggingface.co/collections/THUDM/cogvlm2-6645f36a29948b67dc4eef75
7https://huggingface.co/collections/deepseek-ai/deepseek-vl-65f295948133d9cf92b706d3
8https://huggingface.co/collections/deepseek-ai/deepseek-vl2-675c22accc456d3beb4613ab
9https://huggingface.co/mPLUG/DocOwl1.5-Omni

10https://huggingface.co/THUDM/glm-4v-9b
11https://huggingface.co/HuggingFaceM4/idefics2-8b
12https://huggingface.co/HuggingFaceM4/Idefics3-8B
13https://huggingface.co/collections/internlm/internlm-xcomposer2-65b3706bf5d76208998e7477
14https://huggingface.co/internlm/internlm-xcomposer2d5-7b
15https://huggingface.co/OpenGVLab/InternVL-Chat-V1-5
16https://huggingface.co/collections/OpenGVLab/internvl20-667d3961ab5eb12c7ed1463e
17https://huggingface.co/collections/OpenGVLab/internvl25-673e1019b66e2218f68d7c1c
18https://huggingface.co/collections/meta-llama/llama-32-66f448ffc8c32f949b04c8cf
19https://huggingface.co/collections/openbmb/minicpm-65d48bf958302b9fd25b698f
20https://huggingface.co/MiniMaxAI/MiniMax-VL-01
21https://huggingface.co/collections/allenai/molmo-66f379e6fe3b8ef090a8ca19
22https://huggingface.co/echo840/Monkey-Chat
23https://huggingface.co/collections/AIDC-AI/ovis16-66eadbe52f79fb99cc122c08
24https://huggingface.co/collections/AIDC-AI/ovis2-67ab36c7e497429034874464
25https://huggingface.co/microsoft/Phi-3.5-vision-instruct
26https://huggingface.co/microsoft/Phi-4-multimodal-instruct
27https://huggingface.co/mistralai/Pixtral-12B-2409
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C HIDDEN TEST RESULTS ON VCR-HIDDEN

Table 6: Performance of vision language models on VCR-HIDDEN in English. We label the best
result for each setting and metric with bold fonts. A superscript of * marks that the model was
released after the initial public release of the VCR-WIKI dataset (June 10, 2024). Subscripts show
bootstrapped standard deviation.

Open/closed
source Model name Model size Exact match (%) ↑ Jaccard index (%) ↑

V I + TEI TEI ∆ V I + TEI TEI ∆

Closed

Claude 3.5 Sonnet - 75.502.99 78.502.88 -3.00 85.121.96 86.632.08 -1.51
Claude 3.7 Sonnet* - 74.002.99 58.503.38 15.50 81.532.34 61.473.26 20.06
GPT-4o - 41.503.43 45.503.55 -4.00 48.093.39 51.513.30 -3.43
GPT-4o Mini - 60.503.48 69.003.23 -8.50 71.022.86 81.192.11 -10.17
o1* - 26.503.17 18.502.64 8.00 31.173.11 22.062.79 9.11
Gemini 2.0 Flash* - 48.503.55 42.003.55 6.50 66.352.76 61.162.76 5.20
Gemini 2.0 Flash Lite* - 39.003.33 32.003.27 7.00 51.922.97 45.293.18 6.63
Gemini 1.5 Flash 8B 37.003.35 44.003.52 -7.00 46.743.10 55.553.14 -8.81
Gemini 1.5 Pro - 37.503.43 47.003.51 -9.50 53.522.87 62.262.76 -8.75
Grok 2 Vision* - 16.502.43 26.003.15 -9.50 36.052.47 43.832.79 -7.78

Open

Cambrian-1* 13B 27.503.21 56.503.47 -29.00 41.342.74 71.412.64 -30.07
Cambrian-1* 34B 39.503.46 50.003.49 -10.50 57.152.86 68.262.63 -11.11
CogVLM2 19B 53.003.72 51.003.56 2.00 64.972.76 61.012.98 3.97
DeepSeek-VL2-Small* 16B 5.001.53 21.502.90 -16.50 6.561.62 31.302.96 -24.74
DeepSeek-VL2* 28B 23.502.93 32.003.31 -8.50 31.752.94 45.502.90 -13.75
GLM-4v 9B 44.503.48 52.503.63 -8.00 59.032.88 68.242.63 -9.21
Idefics2 8B 9.502.05 23.002.97 -13.50 20.452.12 38.452.81 -18.00
Idefics3* 8B 18.002.78 24.503.02 -6.50 33.962.49 38.472.84 -4.51
InternLM-XComposer2-VL 7B 9.502.11 7.501.86 2.00 23.492.14 23.312.06 0.17
InternLM-XComposer2-VL-4K 7B 18.502.78 19.002.78 -0.50 34.122.59 34.782.62 -0.66
InternLM-XComposer2.5-VL* 7B 14.502.54 12.502.25 2.00 29.932.55 28.322.31 1.61
InternVL1.5 26B 29.503.19 38.503.28 -9.00 46.582.79 49.693.06 -3.12
InternVL2* 1B 17.002.68 13.002.34 4.00 36.502.58 28.522.34 7.98
InternVL2* 2B 16.502.59 13.502.48 3.00 35.972.44 29.762.48 6.20
InternVL2* 4B 17.002.56 15.502.51 1.50 34.462.46 32.422.48 2.05
InternVL2* 8B 22.002.99 15.502.54 6.50 39.442.84 31.802.65 7.65
InternVL2* 26B 48.003.42 46.503.53 1.50 56.733.23 54.973.06 1.75
InternVL2* 40B 50.503.48 44.503.53 6.00 59.183.18 55.993.13 3.19
InternVL2* 76B 50.503.52 49.503.60 1.00 62.932.92 62.073.07 0.86
InternVL2.5* 1B 65.003.43 56.503.30 8.50 79.532.13 70.122.63 9.41
InternVL2.5* 2B 73.003.19 62.003.36 11.00 83.362.15 74.612.70 8.74
InternVL2.5* 4B 74.003.14 67.503.34 6.50 84.622.05 78.662.39 5.95
InternVL2.5* 8B 74.503.00 63.003.47 11.50 84.652.14 74.742.56 9.91
InternVL2.5* 26B 88.002.31 84.002.62 4.00 94.601.12 90.171.69 4.43
InternVL2.5* 38B 79.502.76 78.502.94 1.00 89.721.48 87.051.91 2.66
InternVL2.5* 78B 83.502.70 79.502.83 4.00 91.471.39 87.601.88 3.87
Llama-3.2-Vision* 11B 46.503.53 35.003.33 11.50 60.122.85 50.812.99 9.31
Llama-3.2-Vision* 90B 51.003.52 33.503.20 17.50 63.212.88 50.552.86 12.66
MiniCPM-V2.5 8B 15.002.42 12.502.34 2.50 27.652.60 25.052.33 2.60
MiniCPM-V2.6* 8B 42.503.52 41.003.47 1.50 53.303.12 53.093.11 0.21
MiniMax-VL-01* 456B 48.503.52 51.503.60 -3.00 62.202.74 63.082.93 -0.88
Molmo* 72B 27.003.18 32.503.22 -5.50 42.662.85 49.302.90 -6.64
MolmoE* 1B 0.000.00 0.000.00 0.00 5.830.46 9.950.71 -4.12
Molmo-D* 7B 22.502.94 16.002.62 6.50 40.032.78 34.522.49 5.51
Molmo-O* 7B 20.502.84 18.502.78 2.00 40.522.61 41.052.40 -0.53
Ovis1.6-Gemma2* 9B 41.003.42 37.503.34 3.50 54.673.11 51.103.11 3.58
Ovis1.6-Gemma2* 27B 38.003.38 42.503.67 -4.50 52.452.89 54.813.06 -2.36
Ovis2* 1B 53.503.60 56.003.61 -2.50 68.302.81 74.482.28 -6.17
Ovis2* 2B 55.003.62 51.503.47 3.50 69.132.71 68.802.63 0.33
Ovis2* 4B 71.503.05 65.003.44 6.50 80.372.35 76.492.52 3.88
Ovis2* 8B 59.503.38 61.503.75 -2.00 72.132.58 72.332.70 -0.20
Ovis2* 16B 47.003.62 49.003.48 -2.00 58.923.03 62.202.88 -3.28
Ovis2* 34B 62.003.52 60.503.43 1.50 73.302.70 71.342.85 1.97
Phi-3.5-Vision* 4B 12.002.34 15.002.64 -3.00 25.502.35 27.822.48 -2.32
Phi-4-Multimodal* 6B 6.001.67 16.002.67 -10.00 17.471.85 29.172.49 -11.69
Pixtral* 12B 27.503.10 19.002.74 8.50 40.982.89 36.502.67 4.48
QvQ-Preview* 72B 66.003.40 62.503.25 3.50 75.762.66 72.572.73 3.19
Qwen-VL 7B 15.502.44 12.502.36 3.00 33.742.35 28.272.33 5.47
Qwen2-VL* 2B 78.503.08 80.002.91 -1.50 86.282.04 87.031.90 -0.75
Qwen2-VL* 7B 80.502.78 83.502.57 -3.00 86.422.07 88.751.93 -2.32
Qwen2-VL* 72B 85.502.60 84.502.44 1.00 90.621.67 89.771.83 0.85
Qwen2.5-VL* 3B 65.503.47 66.003.27 -0.50 73.322.67 76.422.58 -3.10
Qwen2.5-VL* 7B 58.003.42 74.003.00 -16.00 65.753.10 83.902.07 -18.15
Qwen2.5-VL* 72B 86.502.43 79.502.88 7.00 92.281.52 86.432.01 5.86

28https://huggingface.co/Qwen/Qwen-VL-Chat
29https://huggingface.co/collections/Qwen/qwen2-vl-66cee7455501d7126940800d
30https://huggingface.co/collections/Qwen/qwen25-vl-6795ffac22b334a837c0f9a5
31https://huggingface.co/Qwen/QVQ-72B-Preview
32https://huggingface.co/collections/01-ai/yi-vl-663f557228538eae745769f3
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Table 7: Performance of vision language models on VCR-HIDDEN in Chinese. We label the best
result for each setting and metric with bold fonts. A superscript of * marks that the model was
released after the initial public release of the VCR-WIKI dataset (June 10, 2024). Subscripts show
bootstrapped standard deviation.

Open/closed
source Model name Model size Exact match (%) ↑ Jaccard index (%) ↑

V I + TEI TEI ∆ V I + TEI TEI ∆

Closed

Claude 3.5 Sonnet - 1.500.82 1.000.67 0.50 14.171.16 13.931.20 0.24
Claude 3.7 Sonnet* - 3.001.16 0.500.50 2.50 9.931.44 0.920.52 9.02
GPT-4o - 1.500.89 0.500.50 1.00 3.781.01 2.220.66 1.56
o1* - 0.000.00 0.000.00 0.00 0.000.00 0.000.00 0.00
Gemini 2.0 Flash* - 1.000.70 1.000.69 0.00 12.361.11 11.771.09 0.59
Gemini 2.0 Flash Lite* - 0.500.52 0.500.49 0.00 7.470.75 6.970.88 0.50
Gemini 1.5 Flash 8B 0.500.52 0.500.51 0.00 8.510.94 9.900.93 -1.39
Gemini 1.5 Pro - 1.000.70 1.000.70 0.00 12.151.12 10.951.04 1.21
Grok 2 Vision* - 0.000.00 0.000.00 0.00 6.270.52 5.330.43 0.94

Open

Cambrian-1* 13B 0.000.00 0.000.00 0.00 4.060.47 6.830.49 -2.76
Cambrian-1* 34B 0.000.00 0.000.00 0.00 1.290.27 4.910.44 -3.62
CogVLM2-Chinese 19B 3.001.17 1.500.82 1.50 16.051.47 13.151.21 2.90
DeepSeek-VL2-Small* 16B 0.000.00 0.000.00 0.00 1.300.39 2.590.54 -1.28
DeepSeek-VL2* 28B 0.000.00 0.000.00 0.00 6.820.64 7.090.73 -0.26
GLM-4v 9B 1.500.84 2.000.98 -0.50 14.651.38 9.781.12 4.88
Idefics2 8B 0.000.00 0.000.00 0.00 1.540.33 2.380.37 -0.83
Idefics3* 8B 0.000.00 0.000.00 0.00 3.680.47 3.040.41 0.64
InternLM-XComposer2-VL 7B 0.000.00 0.000.00 0.00 8.340.73 8.040.62 0.30
InternLM-XComposer2-VL-4K 7B 1.000.72 1.000.70 0.00 8.970.99 8.370.93 0.59
InternLM-XComposer2.5-VL* 7B 0.500.50 1.500.84 -1.00 9.530.83 11.351.07 -1.81
InternVL1.5 26B 0.500.51 1.000.71 -0.50 10.510.92 9.931.08 0.58
InternVL2* 1B 0.500.50 0.000.00 0.50 10.400.84 8.350.74 2.06
InternVL2* 2B 2.000.97 0.500.48 1.50 11.291.16 7.980.93 3.31
InternVL2* 4B 1.000.69 0.500.50 0.50 10.110.95 9.090.87 1.02
InternVL2* 8B 1.500.83 1.000.69 0.50 10.271.04 8.491.02 1.78
InternVL2* 26B 0.500.50 0.500.48 0.00 10.920.95 9.090.94 1.83
InternVL2* 40B 2.000.98 0.000.00 2.00 13.121.23 11.300.95 1.82
InternVL2* 76B 0.500.50 1.000.69 -0.50 12.661.04 11.881.02 0.78
InternVL2.5* 1B 30.503.29 20.502.93 10.00 54.102.63 42.892.54 11.21
InternVL2.5* 2B 34.503.40 16.002.64 18.50 57.252.57 39.812.35 17.44
InternVL2.5* 4B 35.503.31 17.002.65 18.50 59.252.65 41.382.44 17.87
InternVL2.5* 8B 29.503.29 19.002.77 10.50 55.192.43 40.272.35 14.93
InternVL2.5* 26B 31.003.33 19.502.76 11.50 54.712.54 42.132.46 12.58
InternVL2.5* 38B 12.502.36 7.001.77 5.50 36.772.20 28.401.91 8.37
InternVL2.5* 78B 21.002.91 11.502.30 9.50 46.232.52 34.802.12 11.43
Llama-3.2-Vision* 11B 0.000.00 0.000.00 0.00 4.820.50 7.230.55 -2.41
Llama-3.2-Vision* 90B 0.000.00 0.000.00 0.00 11.380.81 9.770.71 1.61
MiniCPM-V2.5 8B 0.000.00 0.500.50 -0.50 7.620.62 5.000.76 2.61
MiniCPM-V2.6* 8B 1.500.85 1.500.85 0.00 9.201.13 9.971.06 -0.77
MiniMax-VL-01* 456B 2.000.97 0.500.50 1.50 16.121.30 13.401.04 2.72
Molmo* 72B 0.000.00 0.000.00 0.00 5.650.54 4.520.43 1.13
MolmoE* 1B 0.000.00 0.000.00 0.00 5.140.45 4.130.45 1.01
Molmo-D* 7B 0.000.00 0.000.00 0.00 3.020.35 4.870.41 -1.85
Molmo-O* 7B 0.000.00 0.000.00 0.00 4.250.44 4.090.40 0.15
Ovis1.6-Gemma2* 9B 1.000.72 0.500.49 0.50 6.500.90 8.950.82 -2.45
Ovis1.6-Gemma2* 27B 1.500.87 1.000.70 0.50 10.371.08 9.510.96 0.86
Ovis2* 1B 19.002.88 15.002.53 4.00 41.792.50 35.212.43 6.59
Ovis2* 2B 24.002.98 15.002.45 9.00 44.652.63 36.372.26 8.27
Ovis2* 4B 6.001.66 4.501.47 1.50 24.701.90 20.471.70 4.23
Ovis2* 8B 2.501.07 0.500.49 2.00 17.651.51 13.041.01 4.61
Ovis2* 16B 1.000.70 1.000.68 0.00 12.721.11 12.241.05 0.48
Ovis2* 34B 2.001.00 1.000.73 1.00 14.121.39 13.491.28 0.62
Phi-3.5-Vision* 4B 0.000.00 0.000.00 0.00 0.000.00 0.110.08 -0.11
Phi-4-Multimodal* 6B 0.000.00 0.000.00 0.00 0.060.06 0.360.19 -0.30
Pixtral* 12B 0.000.00 0.000.00 0.00 5.470.44 5.650.45 -0.18
QvQ-Preview* 72B 18.502.75 23.503.01 -5.00 24.712.73 34.852.90 -10.13
Qwen-VL 7B 0.000.00 0.000.00 0.00 0.000.00 0.000.00 0.00
Qwen2-VL* 2B 30.003.13 37.503.41 -7.50 47.722.73 55.752.78 -8.04
Qwen2-VL* 7B 42.503.29 45.503.52 -3.00 60.552.80 68.092.42 -7.54
Qwen2-VL* 72B 38.003.48 41.503.46 -3.50 58.812.66 61.932.60 -3.12
Qwen2.5-VL* 3B 8.502.00 10.002.12 -1.50 24.242.17 30.772.27 -6.53
Qwen2.5-VL* 7B 17.002.63 21.502.88 -4.50 32.482.69 42.542.63 -10.06
Qwen2.5-VL* 72B 33.503.35 28.003.21 5.50 52.652.78 46.832.72 5.82
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D ADDITIONAL EVALUATION RESULTS ON FIRST 100 AND 500 TEST CASES
Table 8: Results of various open-source and closed-source vision language models on the VCR task
using the first 100 test cases. FT = fine-tuned on 16,000 samples from the VCR-WIKI training set.
We label the best result of each setting and metric with bold fonts, and the best open-souce model
with underline. Subscripts are standard deviations obtained from Bootstrap. For more latest models’
results, please visit our GitHub repository.

Language Mode Open/closed
source Model name Model size Exact match (%) ↑ Jaccard index (%) ↑

V I + TEI TEI ∆ V I + TEI TEI ∆

English

Easy

Closed

Claude 3 Opus - 62.00.76 82.00.63 -20 78.060.24 91.120.13 -13.06
Claude 3.5 Sonnet - 70.413.46 75.153.36 -4.73 78.12.85 86.52.18 -8.4
Gemini 1.5 Pro - 71.013.4 86.982.67 -15.98 82.892.27 94.211.32 -11.32
GPT-4 Turbo - 78.470.22 86.60.79 -8.13 88.080.25 94.150.2 -6.07
GPT-4o - 90.910.36 95.690.23 -4.78 96.770.16 98.450.06 -1.68
GPT-4V - 25.360.5 18.180.54 7.18 35.640.22 28.490.23 7.15
Qwen-VL-Max - 82.30.19 88.040.43 -5.74 89.730.32 92.550.17 -2.82
Reka Core - 65.683.78 78.113.19 -12.43 83.142.04 90.431.49 -7.29

Open

Cambrian-1 34B 78.113.16 82.842.86 -4.73 87.881.97 93.121.26 -5.24
CogVLM2 19B 86.390.66 84.620.92 1.78 91.390.11 91.630.11 -0.24
CogVLM2-FT 19B 94.080.2 94.670.26 -0.59 98.030.07 98.220.03 -0.2
DeepSeek-VL 7B 36.091.36 44.970.79 -8.88 57.810.18 61.830.33 -4.01
DeepSeek-VL2 28B 56.213.84 69.233.58 -13.02 68.353.07 79.822.55 -11.46
DocOwl-1.5-Omni 8B 0.590.14 1.180.14 -0.59 12.690.04 13.30.06 -0.61
Idefics3 8B 26.633.35 32.543.63 -5.92 48.832.95 55.112.78 -6.29
InternLM-XComposer2-VL 7B 47.930.69 47.340.57 0.59 73.880.22 74.580.16 -0.7
InternLM-XComposer2-VL-4K 7B 4.141.54 3.551.49 0.59 21.911.81 21.851.86 0.06
InternLM-XComposer2.5-VL 7B 45.563.83 28.993.50 16.57 67.702.79 54.252.70 13.45
InternVL-V2 40B 86.392.56 86.982.60 -0.59 93.511.40 94.351.24 -0.84
InternVL-V2 76B 88.172.48 92.312.05 -4.14 94.221.37 97.040.89 -2.82
Llama-3.2 11B 79.882.96 68.643.75 11.24 90.881.56 82.912.11 7.97
Llama-3.2 90B 79.293.14 71.013.36 8.28 87.812.00 83.172.30 4.64
MiniCPM-V2.5 8B 30.180.66 36.090.34 -5.92 53.10.18 59.060.14 -5.96
MiniCPM-V2.5-FT 8B 39.050.69 46.750.59 -7.69 63.050.28 69.890.33 -6.84
Monkey 7B 46.750.44 48.520.41 -1.78 67.820.22 68.590.13 -0.76
Ovis2 34B 75.743.35 71.013.36 4.73 83.912.39 86.461.83 -2.54
Pixtral 34B 14.792.65 13.022.62 1.78 39.002.49 33.162.53 5.84
Qwen-VL 7B 47.340.44 46.750.57 0.59 69.020.35 69.190.37 -0.17
Qwen2-VL 7B 90.532.25 96.451.39 -5.92 94.281.54 98.820.49 -4.54
Qwen2-VL 72B 94.081.80 95.271.67 -1.18 96.371.23 97.490.98 -1.12
Qwen2.5-VL 7B 95.861.53 94.671.76 1.18 98.520.55 96.511.25 2.01
Qwen2.5-VL 72B 93.491.91 90.532.27 2.96 95.541.41 91.802.05 3.74
Yi-VL 34B 1.780.16 1.180.11 0.59 6.210.06 7.50.08 -1.3

Hard

Closed

Claude 3 Opus - 34.01.12 51.00.5 -17 57.020.24 70.320.15 -13.31
Claude 3.5 Sonnet - 46.753.58 43.23.83 3.55 57.743.33 54.133.51 3.61
Gemini 1.5 Pro - 33.733.69 43.793.74 -10.06 57.092.67 62.342.76 -5.25
GPT-4 Turbo - 53.110.46 57.420.5 -4.31 71.750.19 73.820.24 -2.07
GPT-4o - 74.160.31 84.690.31 -10.53 86.990.09 93.190.07 -6.21
GPT-4V - 28.710.49 16.270.73 12.44 49.890.15 33.640.16 16.25
Qwen-VL-Max - 40.670.38 55.020.46 -14.35 61.80.19 72.460.15 -10.66
Reka Core - 7.12.01 10.652.38 -3.55 25.491.99 36.782.19 -11.29

Open

Cambrian-1 34B 27.813.29 29.593.54 -1.78 51.392.79 54.002.76 -2.61
CogVLM2 19B 44.970.83 21.30.47 23.67 65.390.2 43.860.27 21.53
CogVLM2-FT 19B 75.740.72 67.460.64 8.28 90.60.13 84.260.08 6.34
DeepSeek-VL 7B 0.590.09 1.780.17 -1.18 16.710.11 18.090.13 -1.38
DeepSeek-VL2 28B 32.543.57 42.603.80 -10.06 50.823.04 58.423.06 -7.60
DocOwl-1.5-Omni 8B 0.00.0 0.00.0 0 7.890.05 8.280.05 -0.4
Idefics3 8B 1.180.87 0.590.61 0.59 11.621.20 10.281.00 1.34
InternLM-XComposer2-VL 7B 0.00.0 0.590.09 -0.59 12.690.08 14.050.11 -1.35
InternLM-XComposer2-VL-4K 7B 0.000.00 0.590.59 -0.59 9.670.90 8.830.95 0.84
InternLM-XComposer2.5-VL 7B 0.590.58 1.781.01 -1.18 14.091.04 16.571.25 -2.48
InternVL-V2 40B 12.432.54 16.572.89 -4.14 33.742.40 39.512.69 -5.76
InternVL-V2 76B 22.343.10 23.943.19 -1.60 46.642.46 48.012.51 -1.36
Llama-3.2 11B 10.652.33 7.692.04 2.96 33.502.28 26.802.03 6.70
Llama-3.2 90B 13.022.59 15.382.75 -2.37 36.802.36 39.852.52 -3.06
MiniCPM-V2.5 8B 1.180.12 1.780.12 -0.59 12.020.12 12.410.07 -0.39
MiniCPM-V2.5-FT 8B 10.060.43 13.020.54 -2.96 34.670.2 36.430.19 -1.76
Monkey 7B 1.180.22 3.550.18 -2.37 12.660.21 15.970.08 -3.31
Ovis2 34B 74.563.32 73.963.30 0.59 86.862.00 90.121.38 -3.25
Pixtral 12B 0.000.00 0.590.61 -0.59 9.900.79 12.561.09 -2.66
Qwen-VL 7B 1.780.21 2.960.12 -1.18 15.70.14 15.060.19 0.63
Qwen2-VL 7B 75.743.32 73.963.55 1.78 85.912.17 85.832.04 0.08
Qwen2-VL 72B 71.603.61 72.193.60 -0.59 84.522.18 86.171.89 -1.64
Qwen2.5-VL 7B 82.842.91 75.743.30 7.10 93.381.21 88.751.73 4.64
Qwen2.5-VL 72B 81.072.98 74.563.29 6.51 89.032.01 83.212.52 5.82
Yi-VL 34B 0.590.09 0.00.0 0.59 4.390.07 5.490.08 -1.1

Chinese

Easy

Closed

Claude 3 Opus - 0.530.51 0.530.55 0 11.341.07 9.140.93 2.2
Claude 3.5 Sonnet - 1.60.91 2.131.05 -0.53 8.071.29 9.91.48 -1.84
Gemini 1.5 Pro - 0.530.56 0.00.0 0.53 12.941.26 12.771.17 0.16
GPT-4o - 14.892.51 21.812.98 -6.91 38.572.46 48.292.43 -9.72
GPT-4 Turbo - 0.530.55 0.00.0 0.53 11.091.05 7.510.65 3.58
Qwen-VL-Max - 5.930.19 8.70.37 -2.77 13.530.11 18.50.1 -4.97
Reka Core - 0.00.0 0.00.0 0 3.040.53 2.420.45 0.61

Open

CogVLM2-Chinese 19B 34.570.66 34.041.01 0.53 58.780.13 57.260.12 1.52
CogVLM2-Chinese-FT 19B 66.490.74 67.550.73 -1.06 79.480.17 81.780.09 -2.3
DeepSeek-VL 7B 0.00.0 0.00.0 0 3.990.07 6.710.02 -2.72
DeepSeek-VL2 28B 5.851.71 3.721.37 2.13 12.571.86 11.371.59 1.19
DocOwl-1.5-Omni 8B 0.00.0 0.00.0 0 1.230.04 2.970.02 -1.75
InternLM-XComposer2-VL 7B 1.060.09 0.530.07 0.53 13.10.03 13.260.03 -0.16
InternLM-XComposer2-VL-4K 7B 0.000.00 0.000.00 0.00 13.491.01 14.560.98 -1.08
InternLM-XComposer2.5-VL 7B 0.000.00 1.600.91 -1.60 11.940.88 16.121.24 -4.18
InternVL-V2 40B 26.063.17 19.152.88 6.91 48.982.61 41.252.57 7.72
InternVL-V2 76B 17.162.80 19.533.13 -2.37 40.712.47 44.862.60 -4.15
MiniCPM-V2.5 8B 4.790.16 7.450.35 -2.66 20.580.11 25.380.13 -4.81
MiniCPM-V2.5-FT 8B 6.910.33 7.980.4 -1.06 30.80.07 31.460.52 -0.66
Monkey 7B 1.060.12 0.530.06 0.53 9.230.08 12.290.13 -3.06
Ovis2 34B 23.403.13 17.552.72 5.85 41.172.84 36.412.62 4.76
Qwen-VL 7B 0.00.0 0.00.0 0 1.410.02 0.660.03 0.76
Qwen2-VL 7B 67.553.34 73.403.21 -5.85 84.631.80 87.121.76 -2.49
Qwen2-VL 72B 70.743.46 78.723.00 -7.98 85.141.87 90.401.40 -5.26
Qwen2.5-VL 7B 73.403.32 53.193.60 20.21 86.141.81 62.553.20 23.58
Qwen2.5-VL 72B 77.133.02 81.912.87 -4.79 88.811.65 90.671.54 -1.87
Yi-VL 34B 0.00.0 0.00.0 0 4.530.03 1.840.05 2.69

Hard

Closed

Claude 3 Opus - 1.060.77 0.530.54 0.53 9.231.04 7.770.83 1.45
Claude 3.5 Sonnet - 0.530.51 0.00.0 0.53 4.110.84 3.320.71 0.79
Gemini 1.5 Pro - 1.060.71 1.060.77 0 11.581.14 13.341.2 -1.76
GPT-4o - 2.661.16 1.60.92 1.06 23.691.65 23.691.48 0
GPT-4 Turbo - 0.00.0 0.530.53 -0.53 8.510.7 8.020.78 0.49
Qwen-VL-Max - 1.190.12 1.980.09 -0.79 6.190.1 11.090.11 -4.9
Reka Core - 0.00.0 0.00.0 0 3.220.51 3.620.57 -0.4

Open

CogVLM2-Chinese 19B 3.190.19 3.190.32 0 18.330.14 21.380.09 -3.05
CogVLM2-Chinese-FT 19B 46.810.32 46.280.49 0.53 66.850.39 69.790.12 -2.95
DeepSeek-VL 7B 0.00.0 0.00.0 0 5.220.04 7.450.06 -2.23
DeepSeek-VL2 28B 0.000.00 0.530.52 -0.53 4.780.68 7.670.82 -2.89
DocOwl-1.5-Omni 8B 0.00.0 0.00.0 0 1.350.02 3.570.04 -2.23
InternLM-XComposer2-VL 7B 0.00.0 0.00.0 0 8.170.03 7.990.03 0.18
InternLM-XComposer2-VL-4K 7B 0.000.00 0.000.00 0.00 7.730.68 8.120.79 -0.39
InternLM-XComposer2.5-VL 7B 0.000.00 0.000.00 0.00 10.870.82 10.540.84 0.32
InternVL-V2 40B 0.530.50 1.060.72 -0.53 12.261.01 13.581.20 -1.32
InternVL-V2 76B 0.530.53 0.530.53 0.00 14.580.96 14.321.12 0.26
MiniCPM-V2.5 8B 0.530.07 0.530.07 0 7.280.06 7.710.06 -0.43
MiniCPM-V2.5-FT 8B 1.060.08 2.130.19 -1.06 18.460.1 16.420.22 2.03
Monkey 7B 0.00.0 0.00.0 0 6.150.11 6.620.11 -0.47
Ovis2 34B 4.791.54 3.721.39 1.06 23.021.93 21.141.83 1.88
Qwen-VL 7B 0.00.0 0.00.0 0 1.10.04 0.060.01 1.04
Qwen2-VL 7B 17.552.81 27.663.21 -10.11 43.872.48 51.992.61 -8.12
Qwen2-VL 72B 15.962.69 25.003.29 -9.04 39.422.38 52.402.49 -12.98
Qwen2.5-VL 7B 19.152.90 13.302.37 5.85 44.062.52 30.952.59 13.10
Qwen2.5-VL 72B 30.853.32 30.853.46 0.00 57.642.52 57.582.52 0.07
Yi-VL 34B 0.00.0 0.00.0 0 4.170.04 2.020.04 2.15
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Table 9: Results of various open-source and closed-source vision language models on the VCR task
using the first 500 test cases. FT = fine-tuned on 16,000 samples from the VCR-WIKI training set.
We label the best result of each setting and metric with bold fonts, and the best open-souce model
with underline. Subscripts are standard deviations obtained from Bootstrap. For more latest models’
results, please visit our GitHub repository.

Language Mode Open/closed
source Model name Model size Exact match (%) ↑ Jaccard index (%) ↑

V I + TEI TEI ∆ V I + TEI TEI ∆

English

Easy

Closed

Claude 3 Opus - 62.00.13 77.00.5 -15 77.670.32 88.410.39 -10.74
Claude 3.5 Sonnet - 63.851.71 72.81.56 -8.94 74.651.33 83.481.14 -8.83
Gemini 1.5 Pro - 62.731.66 82.981.3 -20.25 77.711.21 91.560.76 -13.85
GPT-4 Turbo - 78.740.13 81.940.25 -3.2 88.540.24 92.180.3 -3.65
GPT-4o - 91.550.29 94.560.13 -3.01 96.440.11 97.760.06 -1.32
GPT-4V - 52.040.24 37.860.22 14.17 65.360.39 54.130.41 11.23
Qwen-VL-Max - 76.80.5 85.530.19 -8.74 85.710.28 91.450.29 -5.74
Reka Core - 66.461.64 78.511.42 -12.05 84.230.86 90.450.7 -6.22

Open

Cambrian-1 34B 76.891.52 80.251.36 -3.35 87.660.90 92.420.60 -4.76
CogVLM2 19B 83.110.28 79.630.33 3.48 89.430.27 88.650.26 0.79
CogVLM2-FT 19B 92.80.06 92.670.13 0.12 97.510.24 97.450.07 0.06
DeepSeek-VL 7B 37.760.42 45.470.21 -7.7 59.070.43 64.260.57 -5.2
DeepSeek-VL2 28B 41.371.73 52.921.72 -11.55 51.291.59 60.741.65 -9.44
DocOwl-1.5-Omni 8B 0.620.06 1.860.06 -1.24 12.650.3 14.090.12 -1.44
Idefics3 8B 26.711.57 29.811.55 -3.11 46.911.40 51.841.30 -4.93
InternLM-XComposer2-VL 7B 46.090.35 46.340.25 -0.25 71.110.2 71.760.67 -0.65
InternLM-XComposer2-VL-4K 7B 5.220.80 3.230.63 1.99 22.700.89 18.670.79 4.03
InternLM-XComposer2.5-VL 7B 42.481.73 25.841.53 16.65 63.031.32 50.751.21 12.28
InternVL-V2 40B 84.841.21 87.081.19 -2.24 93.130.69 94.830.50 -1.71
InternVL-V2 76B 81.241.40 90.061.06 -8.82 90.640.77 96.060.46 -5.42
Llama-3.2 11B 79.251.40 66.461.63 12.80 89.980.77 80.911.06 9.08
Llama-3.2 90B 80.871.37 71.551.54 9.32 89.630.85 84.340.98 5.29
MiniCPM-V2.5 8B 32.80.16 36.770.25 -3.98 52.560.25 60.890.19 -8.32
MiniCPM-V2.5-FT 8B 42.360.3 45.340.35 -2.98 65.390.6 67.850.43 -2.46
Monkey 7B 47.20.2 54.160.41 -6.96 65.70.4 71.170.72 -5.47
Ovis2 34B 73.911.52 69.941.59 3.98 83.411.08 84.990.95 -1.58
Pixtral 12B 16.651.31 11.801.13 4.84 39.811.16 31.471.11 8.34
Qwen-VL 7B 45.470.35 52.170.33 -6.71 66.810.74 71.730.59 -4.93
Qwen2-VL 7B 90.061.07 94.530.82 -4.47 93.770.76 97.800.34 -4.03
Qwen2-VL 72B 92.420.92 94.660.78 -2.24 94.770.72 97.480.42 -2.71
Qwen2.5-VL 7B 94.910.79 93.790.85 1.12 98.170.29 96.950.47 1.22
Qwen2.5-VL 72B 92.670.91 90.191.08 2.48 95.550.65 92.520.86 3.02
Yi-VL 34B 0.870.06 1.240.04 -0.37 5.610.28 7.630.42 -2.02

Hard

Closed

Claude 3 Opus - 37.80.28 50.00.33 -12.2 57.680.8 70.160.64 -12.48
Claude 3.5 Sonnet - 41.741.69 44.721.78 -2.98 56.151.46 58.541.6 -2.4
Gemini 1.5 Pro - 28.071.58 38.761.68 -10.68 51.91.22 59.621.27 -7.72
GPT-4 Turbo - 45.150.28 48.640.57 -3.5 65.720.25 67.860.2 -2.14
GPT-4o - 73.20.16 82.430.17 -9.22 86.170.21 92.010.2 -5.84
GPT-4V - 25.830.44 14.950.3 10.87 44.630.48 30.080.67 14.56
Qwen-VL-Max - 41.650.32 52.720.2 -11.07 61.180.35 70.190.37 -9.01
Reka Core - 6.710.89 11.181.15 -4.47 25.840.95 35.831.05 -9.99

Open

Cambrian-1 34B 27.201.59 30.191.55 -2.98 49.961.36 55.931.23 -5.97
CogVLM2 19B 41.740.25 16.770.22 24.97 62.560.33 38.410.44 24.15
CogVLM2-FT 19B 75.90.13 65.220.18 10.68 89.750.14 82.710.27 7.04
DeepSeek-VL 7B 0.750.02 1.610.1 -0.87 15.80.29 17.180.41 -1.38
DeepSeek-VL2 28B 26.961.58 36.021.70 -9.07 47.491.42 56.791.32 -9.30
DocOwl-1.5-Omni 8B 0.00.0 0.00.0 0 7.340.06 7.610.16 -0.27
Idefics3 8B 0.750.30 0.500.25 0.25 10.440.49 9.170.43 1.27
InternLM-XComposer2-VL 7B 0.50.04 0.370.05 0.12 12.380.13 13.220.11 -0.83
InternLM-XComposer2-VL-4K 7B 0.000.00 0.120.12 -0.12 9.550.38 9.180.38 0.37
InternLM-XComposer2.5-VL 7B 0.750.31 1.240.39 -0.50 13.670.51 14.920.56 -1.25
InternVL-V2 40B 14.161.22 18.511.36 -4.35 35.011.18 41.021.22 -6.02
InternVL-V2 76B 20.761.29 19.361.24 1.40 45.411.14 43.651.10 1.76
Llama-3.2 11B 13.911.25 7.330.94 6.58 35.781.14 26.140.94 9.64
Llama-3.2 90B 15.161.28 12.171.13 2.98 37.571.13 35.141.04 2.43
MiniCPM-V2.5 8B 1.740.08 1.610.08 0.12 11.550.24 11.690.38 -0.15
MiniCPM-V2.5-FT 8B 11.430.11 14.290.16 -2.86 35.130.19 36.650.68 -1.52
Monkey 7B 1.370.05 2.240.15 -0.87 13.160.18 14.450.24 -1.29
Ovis2 34B 77.141.44 70.311.65 6.83 87.970.92 87.800.75 0.17
Pixtral 12B 0.250.19 0.620.28 -0.37 10.040.41 11.210.45 -1.17
Qwen-VL 7B 1.610.03 1.740.03 -0.12 15.280.13 14.430.54 0.85
Qwen2-VL 7B 76.271.49 75.651.45 0.62 86.561.00 86.770.93 -0.22
Qwen2-VL 72B 70.561.68 73.421.53 -2.86 82.941.04 86.690.87 -3.74
Qwen2.5-VL 7B 80.121.38 74.041.51 6.09 91.680.66 87.850.81 3.83
Qwen2.5-VL 72B 80.501.41 70.061.62 10.43 88.910.88 79.051.25 9.86
Yi-VL 34B 0.120.01 0.00.0 0.12 4.310.08 5.450.13 -1.14

Chinese

Easy

Closed

Claude 3 Opus - 0.90.3 1.00.31 -0.1 11.50.48 10.00.49 1.49
Claude 3.5 Sonnet - 1.00.31 0.80.28 0.2 7.540.54 7.50.51 0.03
Gemini 1.5 Pro - 1.10.32 0.50.22 0.6 11.10.56 11.470.48 -0.37
GPT-4o - 14.871.14 22.461.35 -7.58 39.050.99 48.241.09 -9.19
GPT-4 Turbo - 0.20.14 0.10.1 0.1 8.420.36 6.970.29 1.45
Qwen-VL-Max - 6.340.08 9.920.09 -3.58 13.450.41 22.860.46 -9.42
Reka Core - 0.00.0 0.00.0 0 3.430.26 3.150.2 0.28

Open

CogVLM2-Chinese 19B 33.630.15 31.440.19 2.2 57.970.56 54.050.54 3.92
CogVLM2-Chinese-FT 19B 63.970.55 62.670.17 1.3 79.710.41 79.220.47 0.49
DeepSeek-VL 7B 0.00.0 0.00.0 0 4.280.07 7.30.05 -3.02
DeepSeek-VL2 28B 3.790.59 2.200.46 1.60 10.130.67 10.270.61 -0.14
DocOwl-1.5-Omni 8B 0.00.0 0.00.0 0 1.190.05 3.830.06 -2.63
InternLM-XComposer2-VL 7B 0.60.05 0.20.04 0.4 12.340.25 12.520.14 -0.18
InternLM-XComposer2-VL-4K 7B 0.200.14 0.100.10 0.10 11.930.42 13.680.41 -1.74
InternLM-XComposer2.5-VL 7B 0.300.17 0.400.20 -0.10 12.760.42 14.990.43 -2.23
InternVL-V2 40B 22.751.36 16.671.14 6.09 49.511.06 39.461.10 10.05
InternVL-V2 76B 19.501.37 22.481.44 -2.98 42.211.15 45.741.21 -3.53
MiniCPM-V2.5 8B 4.590.11 4.890.09 -0.3 18.120.33 22.280.18 -4.17
MiniCPM-V2.5-FT 8B 7.290.14 7.090.12 0.2 29.360.39 30.670.38 -1.31
Monkey 7B 0.20.01 1.40.05 -1.2 7.890.3 10.260.24 -2.37
Ovis2 34B 23.351.30 15.571.19 7.78 41.311.19 35.791.14 5.51
Qwen-VL 7B 0.00.0 0.00.0 0 1.250.03 0.430.06 0.82
Qwen2-VL 7B 61.081.52 68.161.46 -7.09 78.380.96 83.480.84 -5.10
Qwen2-VL 72B 66.471.50 74.751.40 -8.28 81.700.88 87.350.75 -5.66
Qwen2.5-VL 7B 72.161.44 47.211.59 24.95 84.400.83 57.991.34 26.41
Qwen2.5-VL 72B 75.151.41 74.051.37 1.10 86.540.82 84.290.94 2.25
Yi-VL 34B 0.00.0 0.00.0 0 4.690.09 1.710.06 2.98

Hard

Closed

Claude 3 Opus - 0.30.18 0.10.1 0.2 9.220.38 8.090.33 1.13
Claude 3.5 Sonnet - 0.20.15 0.00.0 0.2 4.00.33 2.370.23 1.63
Gemini 1.5 Pro - 0.70.26 0.50.23 0.2 11.820.51 11.750.44 0.07
GPT-4o - 2.20.47 1.80.4 0.4 22.720.67 22.890.65 -0.17
GPT-4 Turbo - 0.00.0 0.20.13 -0.2 8.580.3 6.870.28 1.72
Qwen-VL-Max - 0.890.06 1.380.1 -0.49 5.40.19 12.290.18 -6.89
Reka Core - 0.00.0 0.00.0 0 3.350.23 2.970.2 0.38

Open

CogVLM2-Chinese 19B 1.20.07 2.30.09 -1.1 16.830.22 19.860.23 -3.04
CogVLM2-Chinese-FT 19B 42.510.32 45.910.23 -3.39 65.790.24 69.460.46 -3.68
DeepSeek-VL 7B 0.00.0 0.00.0 0 5.490.07 7.570.05 -2.08
DeepSeek-VL2 28B 0.000.00 0.200.14 -0.20 4.450.27 6.510.29 -2.06
DocOwl-1.5-Omni 8B 0.00.0 0.00.0 0 1.680.04 4.420.07 -2.73
InternLM-XComposer2-VL 7B 0.00.0 0.00.0 0 8.360.09 7.920.09 0.44
InternLM-XComposer2-VL-4K 7B 0.000.00 0.000.00 0.00 7.490.31 7.250.30 0.25
InternLM-XComposer2.5-VL 7B 0.000.00 0.000.00 0.00 10.830.31 10.810.31 0.02
InternVL-V2 40B 0.400.20 0.900.29 -0.50 12.300.42 13.800.48 -1.50
InternVL-V2 76B 0.200.15 0.400.20 -0.20 14.960.46 14.110.46 0.85
MiniCPM-V2.5 8B 0.20.03 0.20.01 0 7.230.18 7.60.13 -0.37
MiniCPM-V2.5-FT 8B 1.20.03 1.40.06 -0.2 18.010.35 15.250.25 2.76
Monkey 7B 0.00.0 0.00.0 0 5.690.15 6.30.13 -0.61
Ovis2 34B 4.390.61 2.690.52 1.70 21.230.78 18.850.68 2.38
Qwen-VL 7B 0.00.0 0.00.0 0 1.10.07 0.150.01 0.94
Qwen2-VL 7B 18.761.22 26.751.40 -7.98 43.841.10 53.561.09 -9.72
Qwen2-VL 72B 15.871.13 27.541.43 -11.68 40.380.99 53.951.03 -13.57
Qwen2.5-VL 7B 18.261.21 12.671.07 5.59 44.551.04 31.331.06 13.22
Qwen2.5-VL 72B 31.041.40 29.641.40 1.40 56.591.09 54.071.10 2.52
Yi-VL 34B 0.00.0 0.00.0 0 4.490.09 1.730.1 2.76
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E MORE RELATIONSHIP BETWEEN VCR AND OTHER BENCHMARKS

The heatmap shown in Figure 6 provides a detailed view of the pairwise correlation between 23
different benchmarks used to evaluate 38 VLMs. The scores of these models on each benchmark were
utilized to compute this correlation matrix. The color intensity and numerical values represent the
degree of correlation, ranging from -1 (perfect negative correlation) to 1 (perfect positive correlation),
with warmer colors indicating higher positive correlations and cooler colors indicating weaker or
negative correlations.

We observe that VCREN, HARD is markedly different from other benchmarks in the evaluation set.
It demonstrates minimal and even sometimes negative correlation with other benchmarks. This
suggests that the skill set required for VCREN, HARD is largely unrelated to those tested by other
popular tasks emphasizing more straightforward image-to-text associations or OCR capabilities.
Specifically, VCREN, HARD challenges models with tasks that involve high-level reasoning and mini-
mal reliance on pixel-level information, focusing instead on understanding context, commonsense
reasoning, and visual narrative interpretation. These features are less critical in other benchmarks,
which explains the weak correlation across tasks. VCREN, EASY exhibits a slightly stronger correlation
with a few other benchmarks but remains moderately independent of most others. Like VCREN, HARD,
VCREN, EASY also evaluates visual commonsense reasoning, but with less stringent requirements,
offering models more cues and simpler connections between visual elements and textual understand-
ing. This leads to moderate overlap with benchmarks like TextVQA, which similarly focus on text
understanding in a visual context, but VCREN, EASY still emphasizes a higher level of interpretative
reasoning than standard text-based vision benchmarks.

Figure 6: The heat map of benchmarks displays the correlation between the metric scores of 38
models for each benchmark pair.
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F POTENTIAL QA

What could be the possible reason that CogVLM performs well in VCR-WIKI series bench-
marks? Many models we tested (DocOwl-1.5, Monkey, MiniCPM-V2.5, InternLM series, InternVL
series) follow a similar inference pipeline to adapt to high-resolution application scenarios:

1. An algorithm divides the input image into segments.

2. Each segment is encoded into tokens using a CILP-based image encoder.

3. A filtering mechanism (algorithm/resampler/abstractor) processes the visual tokens.

4. The filtered tokens are concatenated with language tokens and input to the LLM.

If, in step 3, pixel-level hints embedded in text within the image (TEL) are disregarded, the model
cannot correctly answer the question. Consequently, some of these models may perform better
on benchmarks emphasizing global features but struggle on the VCR-WIKI series benchmarks,
particularly in the hard partitions. For example, while InternVL2-40B performs best on VCREN, EASY,
it does not perform well on VCREN, HARD. As noted in the paper, the easy partition of the benchmark
primarily verifies that the VCR task is feasible for the models. In contrast, the hard partition explores
the boundaries of VCR capability for both models and human test-takers (who require more time and
focus to solve the puzzles in the hard partition).

The CogVLM2 and Cambrian-1 series, by contrast, do not include step 3 in their inference pipelines.
Instead, their image encoders operate at mid-to-high resolutions (1K level), and they resize the input
image to match the supported resolution rather than dividing it into segments. The image encoder
resolution for CogVLM2 is 1344×1344, while Cambrian-1 employs four image encoders, the largest
supporting a resolution of 1024 × 1024. This approach may encounter challenges with extremely
shaped input images (e.g., 8192×1024), but for VCR-WIKI, where images are mostly near-square (on
average 300 × 360 for VCRZH, EASY/VCRZH, HARD and 300 × 375 for VCREN, EASY/VCREN, HARD),
high-resolution support is not necessary. For instance, InternLM-XComposer2-VL outperforms
InternLM-XComposer2-VL-4KHD on this benchmark.

What could be the potential way to improve models’ capability on VCR? To suggest potential
avenues for improving VLM performance on VCR, we propose the following:

1. Include VCR in VLM Pretraining: Just as OCR parsing tasks are often included in pre-
training to improve OCR performance, researchers could consider incorporating VCR tasks
during pretraining. We will codebase to facilitate this process, making it as straightforward
as data augmentation.

2. Architectural Exploration: CogVLM2 is the best-performing model on average across
the four partitions, and we believe this is largely due to its vision expert architecture.
We contacted the CogVLM2 team and learned that GLM-4 and CogVLM2 share the
same training data, yet there is a significant performance gap between them on the VCR
benchmarks.

3. Chain-of-Thought (CoT) Methods: Researchers could explore multi-modality pipelines
based on CoT techniques to improve existing VLMs on VCR tasks (Chen et al., 2024a;
Zhang et al., 2023). Although a model might not initially focus on the correct visual area
(e.g., pixel-level hints in the TEI), CoT-based techniques could help refine its focus over
successive rounds.

How is the Transferability of VCR-WIKI Finetuning? In Table 10, we show the transferability of
VCR-WIKI by finetuning multiple models on different finetuning datasets’ training sets and testing
their performance on a series of benchmarks.

The analysis of our experimental results highlights the strong transferability of the proposed VCR-
WIKI dataset across various benchmarks. Notably, models fine-tuned on VCR-WIKI demonstrate
significant performance improvements not only within the VCR-WIKI benchmarks themselves, but
also across different language settings. For example, fine-tuning CogVLM2 on VCREN, HARD leads
to a substantial increase in performance on the VCRZH, EASY benchmark, elevating the score from
9.15 to 42.55. Similarly, fine-tuning the Chinese version of CogVLM2 on VCRZH, HARD enhances its
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performance on both the VCREN, EASY and VCREN, HARD benchmarks, with scores rising from 79.9 to
87.57 and from 25.13 to 44.97, respectively. These enhancements indicate that the VCR-wiki dataset
facilitates the learning of effective transferable features even when the fine-tuning and evaluation
involve different languages.

Additionally, the consistent achievement of the highest scores within each model’s finetuning vari-
ations underscores the robustness of VCR-WIKI in improving model performance across diverse
evaluation metrics. This evidence collectively demonstrates that VCR-WIKI serves as a versatile and
powerful resource for enhancing model generalization and performance across multiple tasks and
linguistic contexts.

Table 10: Performance Comparison of Base Models.

Base Model MiniCPM-V2.5 MiniCPM-V2.5 MiniCPM-V2.5 MiniCPM-V2.5 CogVLM2 CogVLM2 CogVLM2 CogVLM2-Ch. CogVLM2-Ch. CogVLM2-Ch.

Finetuning dataset None OKVQA-Train VCREN, HARD VCRZH, HARD None OKVQA-Train VCREN, HARD None OKVQA-Train VCRZH, HARD

OKVQA 77.43 72.20 77.09 76.38 75.35 71.86 75.45 74.16 70.57 74.14
VCREN, EASY 31.81 19.53 40.96 28.40 83.25 79.29 93.27 79.90 30.18 87.57
VCREN, HARD 1.41 0.00 13.86 5.33 37.98 27.22 77.44 25.13 3.55 44.97
VCRZH, EASY 4.10 2.12 2.66 7.44 9.15 16.49 42.55 33.24 16.49 61.69
VCRZH, HARD 0.09 0.53 1.06 1.53 0.08 0.00 1.60 1.34 0.00 42.11

MMstar 50.20 51.73 50.40 50.27 50.50 51.07 50.20 52.73 50.87 54.33
MMBench DEV EN 74.54 74.46 74.54 74.30 72.70 73.53 72.60 77.32 77.09 76.78

MME 2024.6 1996.7 1923.65 1977.13 1869.5 1860.56 1882.21 2040.7 1898.42 1939.8
MMMU VAL 45.89 47.78 46.11 46.56 42.60 38.67 38.67 42.44 41.56 45.00

AI2D test 78.04 77.85 77.62 77.91 73.40 74.97 73.61 72.64 70.98 71.31
OCR BENCH 71.70 71.60 71.50 71.30 75.40 72.80 79.80 77.30 75.20 79.60

MMVet 53.12 45.78 51.10 52.66 57.80 45.00 59.31 56.38 39.77 56.88
MathVista MINI 54.50 53.70 52.80 52.70 38.60 38.30 35.40 37.80 37.60 40.20

ChartQA 71.80 72.12 71.92 72.52 72.80 80.40 79.56 63.16 58.92 65.84
OCRVQA 61.85 62.70 61.36 61.59 64.90 65.56 66.11 32.65 34.41 33.24
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G REAL-WORLD CASE STUDY OF MODELS FINE-TUNED ON VCR-WIKI

This case study aims to assess the real-world applicability of models fine-tuned on VCR-WIKI for
recognizing occluded text, a challenging task with significant practical implications. The setting
involves evaluating the performance of three state-of-the-art models, namely MiniCPM-V2.5 8B,
CogVLM2 19B, and Qwen2-VL 7B, on a curated dataset of eleven photographs featuring occluded
text from real-world scenarios, such as street maps and collected images. Since no standard benchmark
exists for real-world occluded text recognition, this dataset serves as a proxy to measure the efficacy
of VCR fine-tuning in improving performance. We show whether the model completely recovers
the occluded or distorted texts in the image with ✓ (correct) or (partially correct or incorrect).
This evaluation provides insight into how VCR fine-tuning translates to practical challenges and
complements the quantitative analyses presented in the main paper.

Figure 7: Ground-truth:
BANK OF AMERICA TWO

BRYANT PARK

• MiniCPM: ✓
• MiniCPM-ft: ✓
• CogVLM2: ✓
• CogVLM2-ft: ✓
• Qwen2-VL-7B: ✓
• Qwen2-VL-7B-ft: ✓

Figure 8: Ground-truth:
METROPOLITAN

• MiniCPM: ✓
• MiniCPM-ft: ✓
• CogVLM2: ✓
• CogVLM2-ft: ✓
• Qwen2-VL-7B: ✓
• Qwen2-VL-7B-ft: ✓

Figure 9: Ground-truth:
NOT IN SERVICE

• MiniCPM:
• MiniCPM-ft: ✓
• CogVLM2: ✓
• CogVLM2-ft: ✓
• Qwen2-VL-7B: ✓
• Qwen2-VL-7B-ft: ✓

Figure 10: Ground-truth:
NO CYCLING

• MiniCPM:
• MiniCPM-ft:
• CogVLM2: ✓
• CogVLM2-ft: ✓
• Qwen2-VL-7B:
• Qwen2-VL-7B-ft: ✓

Figure 11: Ground-truth:
SHIPPING FAX SERVICE

PASSPORT PHOTOS
COMPUTER RENTALS

• MiniCPM:
• MiniCPM-ft:
• CogVLM2: ✓
• CogVLM2-ft: ✓
• Qwen2-VL-7B: ✓
• Qwen2-VL-7B-ft: ✓

Figure 12: Ground-truth:
Home of Peapack Private

• MiniCPM: ✓
• MiniCPM-ft: ✓
• CogVLM2: ✓
• CogVLM2-ft: ✓
• Qwen2-VL-7B: ✓
• Qwen2-VL-7B-ft: ✓
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Figure 13: Ground-truth:
DELICACY BREAKFAST LUNCH

CATERING

• MiniCPM: ✓
• MiniCPM-ft: ✓
• CogVLM2: ✓
• CogVLM2-ft: ✓
• Qwen2-VL-7B: ✓
• Qwen2-VL-7B-ft: ✓

Figure 14: Ground-truth:
INSPECT UPON RECEIPT...

DO NOT SIGN...
VISIBLE DAMAGE?

• MiniCPM:
• MiniCPM-ft:
• CogVLM2: ✓
• CogVLM2-ft: ✓
• Qwen2-VL-7B: ✓
• Qwen2-VL-7B-ft: ✓

Figure 15: Ground-truth:
AMOUNT TIP TOTAL APPROVED

AMERICAN EXPRESS AID
THANK YOU / MERCI

CUSTOMER COPY

• MiniCPM:
• MiniCPM-ft: ✓
• CogVLM2: ✓
• CogVLM2-ft: ✓
• Qwen2-VL-7B: ✓
• Qwen2-VL-7B-ft: ✓

Figure 16: Ground-truth:
INSPECT UPON RECEIPT...

DO NOT SIGN...
VISIBLE DAMAGE?

• MiniCPM:
• MiniCPM-ft:
• CogVLM2: ✓
• CogVLM2-ft: ✓
• Qwen2-VL-7B: ✓
• Qwen2-VL-7B-ft: ✓

Figure 17: Ground-truth:
AMOUNT TIP TOTAL APPROVED

AMERICAN EXPRESS AID
THANK YOU / MERCI

CUSTOMER COPY

• MiniCPM:
• MiniCPM-ft: ✓
• CogVLM2: ✓
• CogVLM2-ft: ✓
• Qwen2-VL-7B: ✓
• Qwen2-VL-7B-ft: ✓
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