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ABSTRACT
In image fusion tasks, images from different sources possess dis-
tinct characteristics. This has driven the development of numer-
ous methods to explore better ways of fusing them while preserv-
ing their respective characteristics. Mamba, as a state space model,
has emerged in the field of natural language processing. Recently,
many studies have attempted to extend Mamba to vision tasks.
However, due to the nature of images different from casual lan-
guage sequences, the limited state capacity of Mamba weakens
its ability to model image information. Additionally, the sequence
modeling ability of Mamba is only capable of spatial information
and cannot effectively capture the rich spectral information in im-
ages.Motivated by these challenges, we customize and improve the
vision Mamba network designed for the image fusion task. Specifi-
cally, we propose the local-enhanced vision Mamba block, dubbed
as LEVM. The LEVM block can improve local information percep-
tion of the network and simultaneously learn local and global spa-
tial information. Furthermore, we propose the state sharing tech-
nique to enhance spatial details and integrate spatial and spec-
tral information. Finally, the overall network is a multi-scale struc-
ture based on vision Mamba, called LE-Mamba. Extensive experi-
ments show the proposed methods achieve state-of-the-art results
on multispectral pansharpening and multispectral and hyperspec-
tral image fusion datasets, and demonstrate the effectiveness of the
proposed approach. Code will be made available.

CCS CONCEPTS
• Computing methodologies→ Reconstruction.

KEYWORDS
Multispectral Pansharpening, multispectral and hyperspectral im-
age fusion, Mamba, local-enhanced network

1 INTRODUCTION
In the field of image fusion, there are two flourishing tasks that
are applied in subsequent applications, i.e.,multispectral pansharp-
ening, and multispectral and hyperspectral image fusion. While
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Figure 1: Memory consumption and FLOPs using differ-
ent operators on the same U-Net architecture. Our LE-
Mamba has linear memory consumption compared with
quadratic consumption of self-attention (Attention) [10]
and lower FLOPs comparedwith the attention of SwinTrans-
former [25].

multispectral pansharpening aims to fuse high-resolution panchro-
matic images and low-resolutionmultispectral images to yield high-
resolution multispectral images (HRMS), multispectral and hyper-
spectral image fusion involves high-resolution RGB images with
low-resolution hyperspectral images to yield high-resolution hy-
perspectral images.

Many deep-learning methods have been widely proposed for
image fusion, such as convolution neural networks (CNNs) and vi-
sion Transformers. The CNN-based methods can extract and learn
local feature information in image fusion. More importantly, vi-
sion Transformers have achieved excellent performance in image
fusion [5, 38]. However, vision Transformers are limited by the
quadratic spatial complexity of the Attention mechanism, making
it challenging to process high-resolution images. Many works [14,
25, 40] aim to reduce the complexity of Transformers, but they
often come with performance degradation, increased parameter
count, and poor generalization capability.

Recently, an alternative approach has shown promising results
benefiting from efficientlymodeling dependencies of sequence data
based on the state space model (SSM). In recent work, [13, 28] in-
troduces the structured state space sequence model as a general
sequence model, called Mamba. Afterward, vision Mamba [24, 50]
further verifies that it has great potential to be the next-generation
backbone for vision foundationmodels. Comparedwith vision Trans-
formers [10], vision Mambas adopt sequential visual representa-
tion (i.e., image patches) and have subquadratic-time computation
and near-linear memory complexity. However, Mamba faces two
challenges: 1) needs for non-unidirectional modeling for 2D images
in contrast to language sequence. 2) the issue of information stored in
the state being lost when the sequence length increases, and 3) unable
to characterize the spatial and spectral information of images.

In addressing the first question, two pioneeringworks stand out:
Vim [50], which introduced a bi-directional vision Mamba block

1
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tailored for image processing, and VMamba [24], which proposed
a scanning mechanism for images to tackle the causality issue in-
herent in Mamba’s unsuitability for vision tasks. As for the rest of
the issues, there has been a lack of exploration of Mamba in the im-
age fusion field. In this paper, we propose two bespoke techniques
named local-enhanced vision Mamba (LEVM) block and state shar-
ing to address issues 2) and 3), as its conception shown in Fig. 2,
respectively enhancing Mamba’s perception of local information
and fully exploiting spatial and spectral information in the SSM’s
state.

The proposed method is more suitable for image fusion tasks
with two advantages to the proposed methods. The first advantage
is that the proposed LEVMblock can represent local and global spa-
tial information. Local information brings rich spatial details, while
global information injects long-range pixel dependencies, thus en-
hancing the detail recovery in the fusion process. The second ad-
vantage is that the state sharing method allows information to be
shared between layers in the adjacent flow and skip-connected
flow. Furthermore, we have also proposed the spatial-spectral learn-
ing (S2L) of SSM for the state sharing method.The S2L maps the in-
put image to the state space for spatial representation, and consid-
ers the state space as the basis for spectral representation, thereby
achieving interaction between spatial and spectral information. To
the best of our knowledge, there have been no improvements made
to vision Mamba from the perspective of spatial and spectral learn-
ing specifically for image fusion tasks. Finally, we propose the
LE-Mamba, which is constructed based on the U-Net [33] base-
line with the inclusion of the LEVM block and the state sharing
technique. The proposed LE-Mamba can achieve superior fusion
performance.

The contributions can be summarized as follows:

1) We propose a local-enhanced vision mamba (LEVM) block
for the existing vision Mamba architecture to address the
issue of spatial information representation.

2) The state sharing technique is designed for the proposed
LEVMblock, which customizes the image fusion tasks.Then,
the state sharing can reduce information loss and enable
simultaneous learning of spatial and spectral information
within the state space model (SSM).

3) The proposed LE-Mamba achieves state-of-the-art fusion
performance for image fusion on four widely-used mul-
tispectral pansharpening and hyperspectral multispectral
fusion datasets.

The rest of the paper will be organized as follows: In Sect. 2, we
review the related work on SSMs, then introduce deep learning-
based methods on multispectral pansharpening, as well as multi-
spectral and hyperspectral image fusion tasks. In Sect. 3, we re-
visit the background knowledge of SSM. Then, in Sect. 4, we elab-
orate the proposed method with the overall architecture, the local-
enhanced vision Mamba block, and the state sharing technique in
Sect. 4.1, Sect. 4.2 and Sect. 4.3, respectively. Afterward, Sect. 4.4
analyzes the computational complexity of various common neural
network operators. At last, we conduct extensive experiments and
ablation studies on the proposed architecture to validate its effec-
tiveness in Sect. 5.

2 RELATEDWORK
2.1 State Space Models
State space models (SSMs) were initially proposed for sequence-to-
sequence transformation tasks in natural language processing [12,
13, 28], adept at handling long-range dependencies. In recent years,
researchers have strived to address the computational andmemory
bottlenecks of SSMs in practice, enabling higher efficiency and sim-
plicity when processing long sequences, such as structured state
space (S4) [13] introduces parameterization for state space, while
Mamba [12] incorporates high-efficient selection mechanism into
the S4 based on hardware optimization.

In vision tasks, S4ND method [32] was the first work to intro-
duce SSMs into the vision field, demonstrating their potential to
achieve performance on parwithmodels like vision Transformer [10].
VMamba [24] and Vim [50] further applied the ideas of Mamba
models to generic vision tasks, proposingmechanisms like bi-directional
scanning to better capture image information. Due to the recent
explosive growth in research on vision Mamba, we systematically
summarize the most recent relevant works in the supplementary
for a detailed background.

2.2 Deep Learning Methods for Image Fusion
For the multispectral pansharpening task, many CNN-based meth-
ods have emerged and obtained promising fused images, including
DiCNN [15], PanNet [45], and FusionNet [4]. However, the local
feature representation obtained by CNNs hinders better fusion re-
sults. For the multispectral and hyperspectral image fusion, there
are alsomany outstandingDL-basedworks including InvFormer [49]
and MiMO-SST [11]. However, these methods bear a significant
computational burden due to the quadratic complexity of the Trans-
former. Despite many efforts to mitigate this issue [14, 25, 40],
these methods usually lead to a performance drop.

Recently, SSMs have emergedwith near-linearmemory consump-
tion and relatively low computational overhead, thus rapidly ex-
tending to various vision tasks. Most relative to our work, Pan-
Mamba [16] adapted the bidirectional vision Mamba block [50]
to the multispectral pansharpening task. However, it fails to real-
ize the issue of state information loss and does not tailor state space
representation to exploit the spatial and spectral domain, leading to
suboptimal fusion performance.

3 PRELIMINARY
State space models (SSMs) are a class of sequence models inspired
by linear systems, which aim to map a sequence 𝑥 (𝑡) ∈ R𝐿 to
𝑦 (𝑡) ∈ R𝐿 through the hidden space ℎ′ (𝑡), ℎ(𝑡) ∈ R𝑁 . A system
matrics 𝑨 ∈ R𝑁×𝑁 ,𝑩 ∈ R𝑁×1, and 𝑪 ∈ R𝑁×1 represents the
dynamics of the system:

ℎ′ (𝑡) = 𝑨ℎ(𝑡) + 𝑩𝑥 (𝑡),
𝑦 (𝑡) = 𝑪ℎ(𝑡). (1)

In practice, the above continuous system should be discretized us-
ing zero-order hold assumption, converting the matrics (𝑨,𝑩) to
the discretized forms by a timescale 𝚫 ∈ R > 0:

𝑨 = exp(𝚫𝑨)

𝑩 = (𝚫𝑨)−1 (𝑒𝚫𝑨 − 𝑰 ) · 𝚫𝑩.
(2)
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The discretized operator Δ maps 𝐴 and 𝐵 from Δ : R𝑁 → R𝐿×𝑁
(decretize continous system), where dimension 𝑁 is a higher di-
mensional latent state.This discretization forms a discretizedmodel
written as:

ℎ𝑡 = 𝑨 · ℎ𝑡−1 + 𝑩 · 𝑥𝑡 ,
𝑦𝑡 = 𝑪 · ℎ𝑡 .

(3)

Furthermore, in higher-dimensional state space, we can rewrite
the above variables, that is input data 𝑥 : R𝐿×𝐷 → R𝐿×𝐷×𝑁

with 𝐷 channel. A timestep 𝑡 depends on the size of the sequence
𝐿 (i.e., 𝑥𝑡 ∈ R𝐷×𝑁 ). Then, at each timestep 𝑡 , system matrices
𝑨 ∈ R𝐷×𝑁 , 𝑩 ∈ R𝐷×𝑁 are mapped into 𝑁 -dimension state space,
and 𝑪 ∈ R𝐷×𝑁 mapℎ𝑡 back the original space.Thus, a hidden state
is ℎ𝑡 ∈ R𝐷×𝑁 and the output feature is 𝑦𝑡 ∈ R𝐷 (i.e., 𝑦 ∈ R𝐷×𝐿).
According to the implementation of Mamba [12], for efficient com-
putation, the previous computation process can be formulated as
the parallel convolution:

𝒚 = 𝒙 ⃝∗ 𝑲

with 𝑲 = (𝑪𝑩, 𝑪𝑨𝑩, · · · , 𝑪𝑨𝐿−1
𝑩),

(4)

where ⃝∗ denotes convolution operation, and 𝐾 is the structured
convolutional kernel.

4 METHOD
In this section, we will first illustrate the overall network design of
LE-Mamba in Sect. 4.1, including the network’s input and output,
as well as its structure. Subsequently, each local-enhanced vision
Mamba (LEVM) block within the network will be delineated in de-
tail in Sect. 4.2. Finally, the implementation details of the proposed
state sharing technique are elucidated in Sect. 4.3. In Sect. 4.4, we
analyze the complexity of the LEVM block.

4.1 Overall Architecture
In some high-level tasks (e.g., classification [24, 50] and segmenta-
tion [22, 24, 29, 35]), architectures similar to Meta-formers [46] are
commonly used, where plain backbones can offer lower parame-
ter counts, smaller computational loads, and lower latency. How-
ever, for the image fusion task, we opted for a multi-scale architec-
ture akin to U-Net [34], which has been proven effective [2]. The
designed network is illustrated in Fig. 2(d), featuring an encoder-
decoder architecture. The input comprises LRMS and PAN images,
while the output is fused images.The encoder and decoder are com-
posed of multiple LEVM layers, with each LEVM layer comprising
several LEVM blocks.

For the LEVM block in the encoder, denoted as 𝑓𝑒𝑛𝑐 (·), the in-
put consists of the SSM hidden state 𝒉𝑙−1 from the previous block,
LRMS, and PAN:

𝒙𝑙 ,𝒉𝑙 = 𝑓𝑒𝑛𝑐 (𝒙𝑙−1, 𝑃𝐴𝑁,𝒉𝑙−1), (5)

where 𝑙 represents the 𝑙-th layer, and 𝒙0 denotes LRMS in the first
encoder layer (i.e., 𝑙 = 0), then outputs features and hidden states
into the next layer, denoted as 𝒙𝑙 and 𝒉𝑙 , respectively. Different
from the previous vision Mambas, the state 𝒉𝑙−1 is incorporated.
Its rationale will be explained in Sect. 4.3.

For the LEVMblocks in the decoder, their inputs are the concate-
nation of the output from the corresponding encoder at the same

resolution and the output from the previous decoder layer, denoted
as 𝑓𝑑𝑒𝑐 (·). Similar to the LEVM block in the encoder, by incorpo-
rating the corresponding encoder’s state 𝒉𝑙𝑒𝑛𝑐 , a better fusion per-
formance can be achieved, which is akin to the encoder-decoder
skip connections commonly employed in U-Nets. Our intuition is
that the encoder’s state contains abundant low-level information,
which can complement the semantic information in the decoder’s
state space. This process can be formulated as:

𝒙𝑙 ,𝒉𝑙 = 𝑓𝑑𝑒𝑐 (𝑐𝑜𝑛𝑐𝑎𝑡 (𝒙𝑙−1, 𝒙𝑙𝑒𝑛𝑐 ),𝒉𝑙−1,𝒉𝑙𝑒𝑛𝑐 ) . (6)

where 𝒙𝑙−1 and 𝒉𝑙−1 are input features and hidden states of the
(𝑙 − 1)-th layer in the decoder, respectively. Finally, the output of
the last LEVM block is mapped back to the pixel space by a linear
layer. Following the high-frequency learning strategy proposed in
[4], we add the LRMS to the network’s output to obtain the fused
image. To supervise training, we set the loss function as:

L = ∥𝒙𝐿 −𝐺𝑇 ∥1 + 𝜆L𝑠𝑠𝑖𝑚 (𝒙𝐿,𝐺𝑇 ), (7)

where𝐺𝑇 is the ground truth, 𝐿 denotes the total number of layers
of the network, and L𝑠𝑠𝑖𝑚 represents loss function based on the
SSIM [41]. In practice, we set 𝜆 = 0.1 to balance the two losses.

4.2 Local-enhanced Vision Mamba (LEVM)
Thecurrent visionMambamodels [24, 50] directly extend theMamba [12],
originally designed for language sequences, to 2D images by patchi-
fying the images into image tokens. According to Eq. (3), each in-
put 𝑥𝑡 shares the same system matrices 𝑨,𝑩, 𝑪 to extract global
information. This inspires us to study the representation ability of
theMambamodel. As shown in Fig. 2(c), we design a local enhance-
ment vision Mamba (LEVM) block to cope with local and global in-
formation.The LEVM block has a local and a global VMamba block
(i.e., VMambaBlock function, see Fig. 2(b)).

In the local information representation, inspired by Swin Trans-
former, we partition the image intowindows𝑾 ∈ R𝑝ℎ×𝑝𝑤×ℎ×𝑤×𝐷 ,
then feed them into the local VMamba block to extract local in-
formation, where ℎ,𝑤 denote the window size and there exists
𝑝ℎ = 𝐻/ℎ, 𝑝𝑤 =𝑊 /𝑤 , which can be formulated as:

𝑾𝑙−1 =𝑊𝑖𝑛𝑑𝑜𝑤𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛(𝒙𝑙−1, (ℎ,𝑤)), (8)

𝑾𝑙−1,𝒉𝑙𝑙𝑜𝑐𝑎𝑙 = 𝑉𝑀𝑎𝑚𝑏𝑎𝐵𝑙𝑜𝑐𝑘 (𝑾
𝑙−1,𝒉𝑙−1𝑙𝑜𝑐𝑎𝑙 ). (9)

In the global information representation, we can gather the lo-
cal windows to further represent features from the local VMamba
block. Specifically, we utilize theWindowMerge function thatmerges
thesewindows, yielding the entire images, i.e., 𝒙𝑙−1 = [𝑾𝑙−1

1 ,𝑾𝑙−1
2 ,

· · · ,𝑾𝑙−1
𝑝ℎ×𝑝𝑤 ] ∈ R

(𝑝ℎ×𝑝𝑤 )×ℎ×𝑤×𝐷 . For the 𝑙-th layer, the global
VMamba block can be formulated as follows:

𝒙𝑙−1 =𝑊𝑖𝑛𝑑𝑜𝑤𝑀𝑒𝑟𝑔𝑒 (𝑾𝑙−1, (ℎ,𝑤)) + 𝒙𝑙−1, (10)

𝒙𝑙 ,𝒉𝑙𝑔𝑙𝑜𝑏𝑎𝑙 = 𝑉𝑀𝑎𝑚𝑏𝑎𝐵𝑙𝑜𝑐𝑘 (𝒙
𝑙−1,𝒉𝑙−1𝑔𝑙𝑜𝑏𝑎𝑙 ) . (11)

The overall LEVM block can generate local and global state space.
The local VMamba block learns local information using SSM and
then outputs local windows into the global VMamba block. The
global VMamba block combines local information and global infor-
mation to improve the local representation ability of the original
VMamba block.

3
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Figure 2: Illustration of (a) the main conception of the proposed LEVM block, (b) the composition of the vision Mamba block,
(c) the proposed LEVM block, and (d) the overall architecture of LE-Mamba. “SS2D” in (b) indicates 2D selective scan in [24].

However, due to the computation limitations of the VMamba
block, these SSMs are unable to extract spatial and spectral in-
formation separately, resulting in insufficient information fusion.
Therefore, we introduce the state sharing technique to achieve in-
teraction between spatial and spectral information. The state shar-
ing technique will be stated in the next section.

4.3 State Sharing Technique
In this section, the state sharing technique considers layer-wise
information representation and spatial-spectral learning (S2L) of
SSM. Specifically, our LE-Mamba uses efficient SSM based on con-
volution representation to compute image tokens. Then, in a layer
of SSM, 𝑨 and 𝑩 are linear transformations, and 𝑪 sums these
states to generate output features. Therefore, the state has a layer-
wise information representation. Also, the layer-wise information
becomes increasingly semantic from shallow to deep layers.

Inspired by RevCol [1], we aim to retain low-level information
across LEVM layers. In contrast to RevCol, which employs deep su-
pervision for each column, we leverage the hidden state of SSM for
two information flows propagated across layers, which is a direct
and convenient approach. As shown in Fig. 2(d), we build an adja-
cent flow (denoted as a blue dotted line) and a skip-connected flow
(denoted as a green dotted line) to transfer the current state into
the next layer and the corresponding decoder layer, respectively.
These two information flows are summarized as follows:

(1) The adjacent flow: We can get the local and global hidden
states from the LEVM at the (𝑙 − 1)-th layer, i.e., 𝒉𝑙−1

𝑙𝑜𝑐𝑎𝑙
and

𝒉𝑙−1
𝑔𝑙𝑜𝑏𝑎𝑙

. Then 𝒉𝑙−1
𝑙𝑜𝑐𝑎𝑙

and 𝒉𝑙−1
𝑔𝑙𝑜𝑏𝑎𝑙

are fed into the next layer.
(2) The skip-connected flow: Instead of the skip-connectedmethod

of U-Net, the (𝑙 − 1)-th layer’s global hidden state 𝒉𝑙−1
𝑔𝑙𝑜𝑏𝑎𝑙

is fed into the corresponding decoder layer.
In Fig. 3, we further show feature maps of two information flows
containing semantic information and low-level details, respectively.

Input feature State shared feature

Adjacent flow Skip-connected flow

State shared featureInput feature

Figure 3: Illustration of input feature and corresponding
state share feature as Eq. (14). Adjacent flow helps to learn
more semantic information and skip-connected flow main-
tains more low-level details and helps fusion. More exam-
ples are shown in the supplementary.

Also, there are some ablation studies (see Tab. 4) to demonstrate
the information of adjacent flow and skip-connected can improve
fusion performance.

Now, we improve the LEVM block with state sharing. Specifi-
cally, we perform a residual connection between the current input
features and spatial-spectral learning of SSM (S2L). In S2L, two dif-
ferent linear blocks are conducted to project state space and input
features, which can be formulated as follows:

𝒉𝑙−1 = 𝐿𝑖𝑛𝑒𝑎𝑟 (𝒉𝑙−1), (12)

𝒈 = 𝐿𝑖𝑛𝑒𝑎𝑟 (𝒙𝑙−1), (13)

where the first linear projects 𝒉𝑙−1 along the channel dimension,
and the second linear projects 𝒙𝑙−1 : R𝐷×𝐿 → R𝑁×𝐿 .

Although the VMamba block is capable of capturing pixel de-
pendencies well to achieve spatial fidelity, it does not fully exploit
spectral information and overlooks the interaction between spa-
tial and spectral information. Based on this, for the 𝑙-th layer, our
S2L decomposes 𝒙𝑙−1 ∈ R𝐷×𝐿 into state space 𝒉𝑙−1 ∈ R𝐷×𝑁 and
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Table 1: Complexity of various visionmodels.The input image has batch size (𝐵), pixel count (𝐿), and input channel (𝐷) (window-
based pixel count 𝐿′ with 𝑃 windows), and the hidden dimension is 𝑁 (that is, the output channel). According to [13], we show
parameter counts (Params) and FLOPs, space requirements (Space) for the image fusion task.

𝑘 × 𝑘 Conv Attention Swin VMamba LEVM

Params 𝑘2𝐷𝑁 5𝐷𝑁 5𝐷𝑁 5𝐷𝑁 10𝐷𝑁 + 𝐷2 + 𝐷𝑁
FLOPs 𝐵𝐿𝑘2𝐷𝑁 𝐵(𝐿2 + 5𝐿𝐷𝑁 ) 𝐵𝑃 (𝐿′2 + 5𝐿′𝐷𝑁 ) 4𝐵𝐿𝐷𝑁 + 2𝐿𝐷𝑁 10𝐵𝐿𝑁 + 2𝐿𝐷 + 2𝐷𝑁
Space 𝐵𝐿𝐷 𝐵(𝐿2 + 𝐿𝐷) 𝐵𝑃 (𝐿′2 + 𝐿′𝐷) 𝐵𝐿𝐷 𝐵𝐿𝐷

feature space 𝒈 ∈ R𝑁×𝐿 . The proposed state sharing can be formu-
lated as:

𝒙𝑙−1 = 𝒙𝑙−1 + 𝛼𝒉𝑙−1𝒈, (14)
where the learnable parameter 𝛼 ∈ R𝐷 is used to balance the infor-
mation between the S2L and input features. In S2L, the state space
is regarded as the basis for spectral representation, and the input
image is mapped into the feature space with rich spatial informa-
tion.Then, we usematrixmultiplication to establish the interaction
between spectral information and spatial information in the state
space. In contrast to the SSM which focuses on processing spatial
information, the S2L method takes into account the representation
of hidden state in the spectral domain and the spatial characteris-
tics of the image. This allows for extracting and learning two fea-
tures that simultaneously possess spatial and spectral properties,
making it more suitable for image fusion tasks.

Finally, our state sharing technique is summarized inAlgorithms 1
and 2. To the best of our knowledge, there haven’t been improve-
ments made to the vision Mamba that specifically addresses image
fusion tasks. The proposed state sharing technique can be viewed
as an independent contribution as it can adapted to any SSMs.

4.4 Complexity Analysis
In this section, we analyze the parameter counts and computa-
tional complexity of the proposed LEVM with the state sharing
method.The parameter count of the local VMamba block and global
VMamba block is both 𝑂 (5𝐷𝑁 ), respectively. The floating point
operations (FLOPs) of these two blocks are 𝑂 (5𝐵𝐿′𝑁 + 2𝐿′𝐷) and
𝑂 (5𝐵𝐿𝑁 + 2𝐿𝐷), respectively. For the state sharing method, the
parameter count is 𝑂 (𝐷2 + 𝐷𝑁 ) and the FLOPs is 𝑂 (𝐷𝐿𝑁 ). The
total parameter count is 𝑂 (10𝐷𝑁 + 𝐷2 + 𝐷𝑁 ). The total FLOPs is
𝑂 (10𝐵𝐿𝑁 + 2𝐿𝐷 + 2𝐷𝑁 ). Then, the space requirement is 𝑂 (𝐵𝐿𝐷).
Furthermore, we list these complexitymetrics in Tab. 1. In addition,
Fig. 1 illustrates that although our LE-Mamba has some increasing
parameters and FLOPs than classical methods, we have near-linear
memory consumption compared with convolution, self-attention,
and attention of Swin Transformer.

5 EXPERIMENTS
This section presents extensive experiments on the proposed LE-
Mamba, describing the used datasets, and implementation details,
and comparing it with previous methods. We analyze the reduced-
resolution and full-resolution performances in the multispectral
pansharpening task, as well as the performances in the multispec-
tral and hyperspectral image fusion task. Ablation studies are con-
ducted on the proposed LEVM and the state sharing technique to
validate their effectiveness.

Algorithm 1:Mamba parametrization function (ParamFn)
Input: Input feature tokens 𝒙 : (B, D, L), parameters for

Param𝑨: (K, D, N) and Param𝚫: (K, D).
Output: Output parameters 𝑨: (K, D, N), 𝑩: (B, D, N),

𝑪 : (B, D, N), 𝚫: (B, D, L)
1 𝑩 ← Linear𝑩 (𝒙);
2 𝑪 ← Linear𝑪 (𝒙);
3 𝚫← log(1 + exp(Linear𝚫 (𝒙) + Param𝚫));
4 𝑨← − exp(Param𝑨);
5 return 𝑨,𝑩, 𝑪,𝚫

Algorithm 2: LEVM block with state sharing.
Input: Last SSM block state 𝒉𝑙−1: (B, D, N), input feature

𝒙𝑙−1: (B, D, L).
Output:Mamba block output 𝒙𝑙 , SSM state 𝒉𝑙 : (B, D, N).
⊲ Init Param𝑨, Param𝚫 and 𝑫 .

1 Param𝑨: (K, D, N), Param𝚫: (L, D)← init𝐴,Δ();
2 def forwardFunction(𝒙𝑙−1,𝒉𝑙−1):
3 𝐾 ← 4;

⊲ “CrossScan” refers to [24].
4 𝒙𝑙−1: (B, K, D, L)← CrossScan(𝒙𝑙−1);

⊲ State sharing. “groups” is the group of convolution.
5 𝒉𝑙−1: (B, K, D, N)←Linear(𝒉𝑙−1, groups=𝐾 );
6 𝒈: (B, K, N, L)← Linear(𝒙𝑙−1, groups=𝐾 );

⊲ Spatial-spectral learning (S2L) of SSM.
7 𝒙𝑙−1 ← 𝒙𝑙−1+ einsum(‘BKDN,BKNL→BKDL’,𝒉𝑙−1,𝒈);

⊲ Parameterize 𝑨, 𝑩, 𝑪 and 𝚫. See Algo. 1.
8 𝑨, 𝑩, 𝑪,𝚫← ParamFn(𝒙𝑙−1, Param𝑨, Param𝚫);

⊲ 2D selective scan. Ref to [24].
9 𝒙𝑙 ,𝒉𝑙 ← SS2D(𝒙𝑙−1,𝑨, 𝑩, 𝑪,𝚫);

⊲ “CrossMerge” refers to [24].
10 𝒙𝑙 ← CrossMerge(𝒙𝑙 );

⊲ Feed forward network with residual connection.
11 𝒙𝑙 ← FFN(𝒙𝑙 ) +𝒙𝑙−1;
12 return 𝒙𝑙 ,𝒉𝑙 ;
13 end
14 return forwardFunction(𝒙𝑙−1,𝒉𝑙−1);

5.1 Dataset and Implementation Details
To evaluate the proposed LE-Mamba, we conduct experiments on
two remote sensing multispectral pansharpening datasets: WV3
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Table 2:Quantitative results of all competingmethods.The best results are in red and the second best results are in blue. Upper
panel indicates WV3 (8 bands) dataset and lower panel is GF2 (4 bands) dataset.

Methods Reduced-Resolution (RR): Avg±std Full-Resolution (FR): Avg±std #Params #FLOPsSAM (↓) ERGAS (↓) Q2n (↑) SCC (↑) 𝐷𝜆 (↓) 𝐷𝑠 (↓) HQNR (↑)
MTF-GLP-FS [39] 5.32±1.65 4.65±1.44 0.818±0.101 0.898±0.047 0.021±0.008 0.063±0.028 0.918±0.035 — —
BT-H [26] 4.90±1.30 4.52±1.33 0.818±0.102 0.924±0.024 0.057±0.023 0.081±0.037 0.867±0.054 — —
LRTCFPan [43] 4.74±1.41 4.32±1.44 0.846±0.091 0.927±0.023 0.018±0.007 0.053±0.026 0.931±0.031 — —
DiCNN [15] 3.59±0.76 2.67±0.66 0.900±0.087 0.976±0.007 0.036±0.011 0.046±0.018 0.920±0.026 0.23M 0.19G
FusionNet [4] 3.33±0.70 2.47±0.64 0.904±0.090 0.981±0.007 0.024±0.009 0.036±0.014 0.941±0.020 0.047M 0.32G
LAGConv [20] 3.10±0.56 2.30±0.61 0.910±0.091 0.984±0.007 0.037±0.015 0.042±0.015 0.923±0.025 0.15M 0.54G
Invformer [48] 3.25±0.64 2.39±0.52 0.906±0.084 0.983±0.005 0.055±0.029 0.068±0.031 0.882±0.049 0.14M 3.89G
DCFNet [42] 3.03±0.74 2.16±0.46 0.905±0.088 0.986±0.004 0.078±0.081 0.051±0.034 0.877±0.101 2.77M 3.46G
HMPNet [37] 3.06±0.58 2.23±0.55 0.916±0.087 0.986±0.005 0.018±0.007 0.053±0.006 0.929±0.011 1.09M 2.00G
PanDiff [31] 3.30±0.60 2.47±0.58 0.898±0.088 0.980±0.006 0.027±0.012 0.054±0.026 0.920±0.036 45.33M 14.83G
PanMamba [16] 2.94±0.54 2.24±0.51 0.916±0.090 0.985±0.006 0.020±0.007 0.042±0.014 0.939±0.020 0.48M 1.31G
Proposed 2.76±0.52 2.02±0.43 0.921±0.080 0.988±0.003 0.016±0.006 0.031±0.003 0.954±0.007 0.74M 3.58G
MTF-GLP-FS [39] 1.68±0.35 1.60±0.35 0.891±0.026 0.939±0.020 0.035±0.014 0.143±0.028 0.823±0.035 — —
BT-H [26] 1.68±0.32 1.55±0.36 0.909±0.029 0.951±0.015 0.060±0.025 0.131±0.019 0.817±0.031 — —
LRTCFPan [43] 1.30±0.31 1.27±0.34 0.935±0.030 0.964±0.012 0.033±0.027 0.090±0.014 0.881±0.023 — —
DiCNN [15] 1.05±0.23 1.08±0.25 0.959±0.010 0.977±0.006 0.041±0.012 0.099±0.013 0.864±0.017 0.23M 0.19G
FusionNet [4] 0.97±0.21 0.99±0.22 0.964±0.009 0.981±0.005 0.040±0.013 0.101±0.013 0.863±0.018 0.047M 0.32G
LAGConv [20] 0.78±0.15 0.69±0.11 0.980±0.009 0.991±0.002 0.032±0.013 0.079±0.014 0.891±0.020 0.15M 0.54G
Invformer [48] 0.83±0.14 0.70±0.11 0.977±0.012 0.980±0.002 0.059±0.026 0.110±0.015 0.838±0.024 2.77M 3.46G
DCFNet [42] 0.89±0.16 0.81±0.14 0.973±0.010 0.985±0.002 0.023±0.012 0.066±0.010 0.912±0.012 2.77M 3.46G
HMPNet [37] 0.80±0.14 0.56±0.10 0.981±0.030 0.993±0.003 0.080±0.050 0.115±0.012 0.815±0.049 1.09M 2.00G
PanDiff [31] 0.89±0.12 0.75±0.10 0.979±0.010 0.989±0.002 0.027±0.020 0.073±0.010 0.903±0.021 45.33M 14.83G
PanMamba [16] 0.68±0.12 0.64±0.10 0.982±0.008 0.985±0.006 0.016±0.008 0.045±0.009 0.939±0.010 0.48M 1.31G
Proposed 0.60±0.11 0.52±0.09 0.987±0.007 0.994±0.001 0.018±0.009 0.027±0.008 0.955±0.011 0.74M 3.58G

and GF2 datasets with super-resolved scale 4, and further on in-
door hyperspectral-multispectral fusion datasets: CAVE and Har-
vard datasets with scale 8. More details on the datasets can be
found in the supplementary.

During the training process, we use the AdamW [27] optimizer
and set the base learning rate to 1e-3, which is decreased to 1e-4 at
300 epochs, and further decreased to 1e-5 at 600 epochs. After that,
the training continues till 1000 epochs for WV3 and GF2 datasets
and 1600 epochs for CAVE and Harvard datasets. The weight de-
cay is set to 1e-6. All experiments are conducted on two RTX 3090
GPUs. Network configurations on different datasets can be found
in the supplementary.

5.2 Benchmark
For the multispectral pansharpening datasets, we compare the pro-
posed method with the recently SOTA traditional methods: MTF-
GLP-FS [39], BT-H [26] and LRTCFPan [43], and DL-based meth-
ods: DiCNN [15], LAGConv [20], DCFNet [42], HMPNet [37], Pan-
Diff [31] and PanMamba [16]. For the multispectral and hyperspec-
tral datasets, we also choose some recent traditional methods in-
cluding CSTF-FUS [21], LTTR [8], LTMR [7] and IR-TenSR [44].
Moreover, most competitive DL-based methods are compared:
ResTFNet [23], SSRNet [47], HSRNet [18],MogDCN [9], Fusformer [17],
DHIF [19], PSRT [6], 3DT-Net [30], DSPNet [36], andMIMO-SST [11].

5.3 Main Results
The fusion performance of LE-Mamba on theWV3 andGF2 datasets
is provided in Tab. 2, indicating the SOTA performance of our
method in reduced-resolution metrics. Traditional approaches lag
significantly behindDL-basedmethods in terms of reduced-resolution
metrics. Among DL-based methods, our approach demonstrates
good fidelity for both spectral modality (i.e., SAM metric) and spa-
tial modality (i.e., ERGAS metric). In terms of full-resolution met-
rics, LE-Mamba exhibits SOTA performance on the GF2 test set,
indicating its good generalization capability. We present fusion im-
ages on the WV3 test set in Fig. 4, showcasing LE-Mamba’s min-
imal errors, particularly evident in the fusion of high-frequency
components such as the edges of buildings and roads.

Tab. 3 provides widely used numerical fusion metrics on CAVE
and Harvard datasets. Our LE-Mamba outperforms all previous
traditional and DL-based methods contributed by the multi-scale
backbone and proposed LEVM equipped with state sharing tech-
nique. Errormaps are depicted in Fig. 5which shows that LE-Mamba
owns fewer errors and better fusion performances. More visual re-
sults can be found in the supplementary.

5.4 Ablation Study
5.4.1 LEVM and State Sharing Technique can Boost Fusion Perfor-
mance. Weconduct ablation studies on the proposed local-enhanced
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Table 3:The average and standard deviation calculated for all the compared approaches on 11 CAVE examples and 10 Harvard
examples simulating a scaling factor of 8. The best results are in red and the second best results are in blue.

Methods CAVE ×8 Harvard ×8
#Params #FLOPsPSNR (↑) SAM (↓) ERGAS (↓) SSIM (↑) PSNR (↑) SAM (↓) ERGAS (↓) SSIM (↑)

Bicubic 29.96±3.54 5.89±2.32 5.56±3.08 0.887±0.066 33.18±6.85 3.10±0.90 3.83±1.84 0.894±0.0732 − −
CSTF-FUS [21] 38.44±4.25 7.00±2.65 2.11±1.15 0.959±0.033 39.84±6.51 4.49±1.52 2.40±1.84 0.932±0.092 − −
LTTR [8] 37.92±3.59 5.37±1.96 2.44±1.05 0.972±0.018 42.09±4.56 3.62±1.34 1.80±0.96 0.960±0.048 − −
LTMR [7] 38.41±3.57 5.04±1.70 2.24±0.97 0.974±0.017 42.09±4.56 3.62±1.34 1.80±0.92 0.959±0.060 − −
IR-TenSR [44] 36.79±3.64 12.87±4.98 2.68±1.41 0.944±0.031 40.04±3.89 5.40±1.76 4.75±1.55 0.958±0.016 − −
ResTFNet [23] 43.77±5.34 3.49±0.94 1.38±1.25 0.992±0.006 43.50±3.96 3.53±1.11 1.74±0.93 0.979±0.012 2.387M 1.75G
SSRNet [47] 46.23±4.19 3.13±0.97 1.05±0.73 0.993±0.004 45.76±3.34 2.99±0.98 1.34±0.74 0.983±0.010 0.027M 0.11G
HSRNet [18] 46.69±4.48 2.91±0.86 0.93±0.63 0.994±0.003 44.02±4.89 3.64±1.79 1.49±0.81 0.980±0.013 1.09M 2.00G
MogDCN [9] 49.21±4.99 2.44±0.74 0.76±0.63 0.996±0.003 45.14±5.41 3.19±1.45 1.75±1.66 0.980±0.019 6.840M 47.48G
Fusformer [17] 47.96±7.79 2.75±1.30 1.45±2.69 0.990±0.022 44.93±5.65 3.63±2.40 1.49±0.96 0.979±0.017 0.504M 9.83G
DHIF [19] 48.46±4.89 2.50±0.79 0.83±0.67 0.996±0.003 45.00±4.13 3.70±1.68 1.32±0.61 0.983±0.011 22.462M 54.27G
PSRT [6] 47.86±7.53 2.73±0.80 1.52±3.02 0.994±0.005 45.10±4.06 2.90±0.84 1.37±0.84 0.985±0.009 0.247M 1.14G
3DT-Net [30] 49.41±5.83 2.26±0.66 0.83±1.07 0.996±0.003 44.41±5.38 2.93±0.88 1.55±0.89 0.983±0.010 3.464M 68.07G
DSPNet [36] 49.18±4.84 2.57±0.79 0.75±0.62 0.996±0.003 45.84±3.62 2.97±0.75 1.33±0.64 0.984±0.010 6.064M 6.81G
MIMO-SST [11] 48.31±5.04 2.88±0.86 0.89±0.79 0.995±0.004 46.59±3.34 2.91±0.75 2.29±1.03 0.985±0.009 4.983M 1.58G
Proposed 49.86±4.77 2.31±0.69 0.70±0.56 0.997±0.002 46.84±3.82 2.75±0.71 1.16±0.53 0.986±0.009 3.158M 9.80G

MTF-GLP-FS BT-H LRTCFPan DiCNN FusionNet LAGConv InvFormer DCFNet

HMPNet PanDiff Proposed LRMS PAN GTPanMamba
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 4: Error maps of LE-Mamba and compared previous SOTAmethods onWV3 test set. Our LE-Mamba shows fewer errors
on GT. Some close-ups are depicted at the corner.

CSTF-FUS LTTR LTMR IR-TenSR ResTFNet SSRNet HSRNet MogDCN

DHIF PSRT 3DT-Net DSPNet MIMO-SST Proposed GT
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Figure 5: Error maps of LE-Mamba and compared previous SOTA methods on Harvard (× 8) test set. Our LE-Mamba shows
fewer errors on GT. Some close-ups are depicted at the corner.
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vision Mamba block and state sharing technique and report the fu-
sion performance on Tab. 4. Starting at the basic multi-scale net-
work baseline which only contains NAFBlock [3], we observe the
performance is poor whose SAM only has 3.52. Then we replace
the NAFBlock with the LEVM block, the performance is boosted
to 2.86. Based on it, we further share the SSM state at adjacent
flow and skip-connected flow and conduct spatial-spectral learn-
ing (S2L), one can notice the fusion performance is better and the
SAM metric reaches 2.76. From the consistent performance im-
provement in the above experiments, we can summarize that our
proposed LEVM and state sharing technique are effective in boost-
ing the performance of the image fusion task. We will conduct ab-
lation studies on the S2L method in the next round.

Table 4: Ablation study on proposed multi-scale architec-
ture, LEVMblock, and state sharing technique (including ad-
jacent flow and skip-connected flow) on WV3 dataset.

Composition SAM (↓) ERGAS (↓) Q2n (↑) SCC (↑)
Multi-scale baseline 3.52 2.66 0.902 0.977
+ VMamba 2.93 2.15 0.910 0.987
+ LEVM block 2.86 2.17 0.914 0.986
+ adjacent flow 2.80 2.08 0.918 0.987
+ skip-connected flow 2.76 2.02 0.921 0.988

5.4.2 State Sharing Beats Non-state Residual Connection. FromEq. (14),
we can observe that the state sharing technique is a residual con-
nection that adds input feature 𝒙𝑙−1 with S2L (i.e., 𝒉𝑙−1𝒈). To verify
the effectiveness of using the S2L (whether the performance gain
comes from residual connections and additional convolutional pa-
rameters), we design another residual variant that does not use the
SSM state:

𝒙𝑙−1 = 𝒙𝑙−1 + 𝛼𝐿𝑖𝑛𝑒𝑎𝑟 (𝒙𝑙−1) . (15)
We validate its fusion performance on the WV3 dataset, as shown
in Tab. 5. Our state sharing outperforms the residual variant. From
this ablation, we can conclude that: using S2L to share state across
different blocks can bring performance gain.

Table 5: Discussion on the S2L of the proposed LE-Mamba
on the WV3 dataset.

Variants SAM (↓) ERGAS (↓) Q2n (↑) SCC (↑)
𝒙𝑙−1 2.86 2.17 0.914 0.986
𝒙𝑙−1 = 𝒙𝑙−1 + 𝛼𝐿𝑖𝑛𝑒𝑎𝑟 (𝒙𝑙−1) 2.84 2.13 0.917 0.986
𝒙𝑙−1 = 𝒙𝑙−1 + 𝛼𝒉𝑙−1𝒈 2.76 2.02 0.921 0.988

5.4.3 LEVMOutperforms Previous Attentions. To compare the pro-
posed LEVM with previously common Attention mechanisms, we
select common attention and its variants including traditional At-
tention [10], PVT Attention [40], Swin Attention [25], and Linear
Attention [14]. We replace the LEVM block with the correspond-
ing Attention block (including FFN) and train them uniformly on
the WV3 dataset until convergence. Their fusion performance is
shown in Tab. 6. It can be seen that the traditional Attention per-
forms the worst, which is because using Attention in the first layer

of the network occupies an extremely large GPU memory, lead-
ing to the inability to train. Therefore, most methods based on tra-
ditional Attention perform patch embedding in the first layer to
downsample the image size, which is disastrous for tasks like im-
age fusion that require low-level information. The performance of
Linear Attention is also relatively poor, which is caused by the ap-
proximation errors introduced by its approximation of the Atten-
tion mechanism. Next are PVT Attention and Swin Attention, both
of which impose restrictions on Attention. PVT downsamples both
the keys and values, resulting in information loss, while Swin lim-
its the global information to the local regions.The proposed LEVM
outperforms previous attention operations.

Table 6: Results of different self-attention (attention) types
on WV3 dataset.

Attention types SAM (↓) ERGAS (↓) Q2n(↑) SCC (↑)
Self-attention [10] 3.09 2.33 0.906 0.917
PVT attention [40] 2.89 2.16 0.919 0.986
Swin attention [25] 2.86 2.15 0.919 0.986
Linear attention [14] 2.94 2.21 0.914 0.984
Proposed 2.76 2.02 0.921 0.988

5.4.4 Enlarging SSM State Capacity Does not Solve Issue 2). To
solve issue 2) mentioned in Sect. 1, one simple and straightforward
idea is to enlarge the SSM state capacity 𝑁 . Usually, 𝑁 is set to 16
and suits most high-level tasks. We design a series of enlarged SSM
state variants with 𝑁 = 32, 𝑁 = 64 based on Tab. 4 “+VMamba”
model. One can observe that evenwhen setting𝑁 = 64with a large
state capacity, the performance gain is limited. Moreover, large 𝑁
brings additional memory consumption and FLOPs. It is unaccept-
able for resource-constraint scenarios.

Table 7: The performance of LE-Mamba with different SSM
states capacity on WV3 datasets.

Variants SAM (↓) ERGAS (↓) Q2n (↑) SCC (↑)
𝑁 = 16 2.93 2.15 0.910 0.987
𝑁 = 32 2.90 2.14 0.914 0.987
𝑁 = 64 2.88 2.13 0.915 0.987

6 CONCLUSION
Based on the observation that sequence modeling in the Mamba
network doesn’t fully consider the characteristics of the image fu-
sion task, this paper designs a multi-scale network architecture
equipped with the local-enhanced vision Mamba (LEVM) block
and the state sharing technique, called LE-Mamba. The LEVM mit-
igates the information loss caused by limited states in the Mamba
network by combining local and global information to enhance
fused image details. Additionally, the state sharing technique shares
the state between layers in adjacent and skip-connected flows, en-
abling the deep layers of the network to contain richer spatial infor-
mation. Then, the fused image exhibits improved spatial and spec-
tral details by incorporating spatial-spectral learning (S2L). The
proposed network architecture achieves state-of-the-art performance
in widely used image fusion datasets.
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