40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

Supplementary Materials: Hyperspectral and Multispectral
Image Fusion in Bidirectional State Space Model

Anonymous Author(s)

1 BACKGROUND OF VISION MAMBA SERIES

In this section, we provide more details about the vision Mamba
series evolving recent Vim [14], VMamba [6], LocalMamba [4], Ef-
ficientVMamba [9], RS-Mamba [12] and PanMamba [3].

CNN-based methods are adept at extracting local features, and
compromise resolution, while transformer-based methods offer global
perception but increase the computational burden. To address the
challenges of Mamba’s unidirectional modeling and lack of posi-
tional awareness, Zhu et al. [14] proposed a universal visual back-
bone featuring Bidirectional Mamba Blocks (Vim), which marks
the image sequences with position embeddings and compresses
the visual representation with bidirectional state space models. Liu
et al. [6] proposed VMamba based on the state space model, achiev-
ing linear complexity without sacrificing the global receptive field.
However, the traditional Vision Mamba works directly flattening
spatial tokens overlooks preserving local 2D dependencies. To ad-
dress this, LocalMamba [4] introduces a local scanning strategy
that divides the image into different windows, effectively captur-
ing local dependencies while maintaining a global perspective. Ef-
ficientVMamba [9] integrates an atrous-based selective scan ap-
proach by efficient skip sampling to ensure full global receptive
field coverage while minimizing computational load. However, crop-
ping large images into small blocks can lead to a significant loss of
contextual information. To capture the global context of remote
sensing images with linear complexity, RS-Mamba [12] introduces
an omnidirectional selective scan module, which can globally model
the context of the image in multiple directions, capturing large
spatial features from various directions. PanMamba [3] first uti-
lizes the Mamba method for the pansharpening task. The proposed
channel-swapping Mamba and cross-modal Mamba achieve effi-
cient cross-modal information exchange and good fusion results.
However, it fails to realize the issue of state information loss and does
not tailor state space representation to exploit the spatial and spectral
domain, leading to suboptimal fusion performance.

2 MORE DETAILS OF DATASETS

This section contains more details of the used datasets. WV3 dataset
contains 9714/1080 samples for training and validation. Each sam-
ple consists of a PAN/LRMS/GT image pair of size 64 X 64 X 1,
16 X 16 X 8, and 64 X 64 X 8, respectively. PAN image has a spatial
resolution of 0.3m, whereas the LRMS image has a spatial resolu-
tion of 1.2m. GF2 dataset contains 19809/2201 samples for training
and validation. Each sample consists of a PAN/LRMS/GT image
pair of sizes 64 X 64 X 1,16 X 16 X 4, and 64 X 64 X 4, respectively.
PAN images have a spatial resolution of 0.8m, while LRMS images
have a spatial resolution of 3.2m. To evaluate the performance, we
perform the reduced-resolution and full-resolution experiments to
compute the reference and non-reference metrics, respectively.
The CAVE dataset consists of 31 indoor images captured under
controlled illumination with a size of 512 X 512 X 31, covering the

Adjacent flow

Skip-connected flow

Figure 1: Visulization of features in adjacent flow and skip-
connected flow in the proposed state sharing technique.

spectrum from 400nm to 700nm. We chose 20 samples to randomly
extract half-sized overlapping patches and split them into train-
ing/validation pairs. The training/validation sets consist of 648/72
RGB image patches with a size of 128 X 128 X 3. Both sets also
include corresponding LR-HSI image patches of size 16 x 16 X
31. The Harvard dataset contains 50 indoor and outdoor images
recorded under daylight illumination, including 31 spectral bands,
covering the visible spectrum from 420nm to 720nm. We use the
same approach as for the CAVE dataset to get HR-MSIs and LR-
HSIs. We chose 20 samples to randomly extract half-sized over-
lapping patches and split them into training/validation pairs. The
training/validation sets consist of 576/144 RGB image patches with
a size of 128 X 128 X 3. Both sets also include corresponding LR-HSI
image patches of size 16 X 16 X 31.

3 STATE SHARING TECHNIQUE
VISULIZATION

In this section, we provide more visual results for the proposed
state sharing technique. The illustrations of the input feature and
state shared feature are shown in Fig. 1. For the adjacent flow, in
the first row, the strips of the toy and the contours of the objects are
lighter and the network focuses on more semantic information. In
the last row, the buildings are highlighted. For the skip-connected
flow, we can see the state shared feature obtains more low-level in-
formation, e.g., , the notes on the wall in the second row are more
clear and the backpack in the third row is more likely to HRMS.
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Thus, we can conclude that adjacent flow helps to learn more se-
mantic information and skip-connected flow maintains more low-
level details and helps fusion.

4 NETWORK CONFIGURATIONS &
IMPLEMENTATION DETAILS

The proposed LE-Mamba configurations and training details on

WV3, GF2, CAVE(x 8), and Harvard(Xx 8) are listed in Tab. 1. The

compared methods are trained using the same AdamW [7] opti-
mizer and training epochs to convergence for a fair comparison.

Table 1: Network and training configuration on different
datasets.

Configurations WV3&GF2 CAVE(x 8)&Harvard(x 8)
Encoder blocks [2,1,1] [4,3,2]
Middle blocks 1 2
Decoder blocks [1,1,2] [2,3,4]
Basic channel 32 32
Window size 8 8
Train epochs 800 2000
Local SSM state (N) 16 16
Global SSM state (N) 32 32
Basic Ir le-3—1e-4 le-3—1e-4
Lr scheduler Cosine Cosine
Batchsize 96 18
Weight decay le-6 le-6

5 NETWORK GENERALIZATION

To validate the network’s generalization ability, we choose the
WV2 dataset, which comprises photos of various geographic ar-
eas captured using the same equipment. The generalization per-
formance is provided in Tab. 2 compared with previous SOTA DL-
based methods. It can be observed that our architecture has a satis-
factory generalization ability and outperforms most previous DL-
based models.

Table 2: Generalization ability of DL-based methods. The
best results are in red and the second best results are in blue.

WV2 Reduced Resolution (RR): Avg+std

Methods SAM ERGAS Q2n e

DiCNN [2] 6.92+0.79 6.25+0.57 0.721+0.075 0.855+0.029
FusionNet [1] | 6.43+0.86  5.14£052  0.796+0.074  0.875:+0.013
LAGNet [5] 6.95+0.47 5.33+0.32 0.805+0.084 0.913+0.010
Invformer [13] 6.43+0.62 4.68+0.47 0.810+0.089 0.914+0.011
DCFNet [11] 5.62+0.60 4.49+0.38 0.829+0.082 0.915+0.008
HMPNet [10] | 6.10+0.57  4.67+0.46  0.830+0.081  0.905:0.010
PanDiff [8] 5.66£0.72  5.11+0.30  0.780£0.074  0.886+0.018
Proposed 5.62+0.55 4.34+0.32 0.841+0.080 0.914+0.012

6 MORE EXPERIMENTAL ILLUSTRATIONS

In this section, we provide more visual results in Figs. 3, 4, 5 on the
used datasets. It is clear that the proposed method has fewer errors
compared with GT on the reduced-resolution test set and more

Anon.

fidelity with respective input LRMS and PAN on the full-resolution
test set.

7 LOCAL-ENHANCED VISUAL MAMBA
BLOCK ENABLES AN EFFECTIVE 2D LOCAL
SCAN
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(b) VMamba 2D scan

Figure 2: Local-enhancaed visual Mamba block in (a) enables
an effective 2D local scan. Fig. (a): The dotted line with the
arrow means 2D scan and the box indicates the partitioned
local window. Fig (b): VMamba 2D scan adopted in [6].

Recalling the Method section, the proposed local-enhanced vi-
sual Mamba block introduces a window partition operation (Eq.
(8)). This local operation shortens the 2D image scan distance by
bringing spatially distant patches closer together. For instance, within
the orange window, the left upper corner patch and the right bot-
tom patch (represented in yellow circles) are scanned at a closer
distance compared to the original VMamba 2D scan. This localized
approach aligns better with the inherent 2D structure of images,
leading to improved performance.
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Figure 3: Visualization of fused HRMS on WV3 reduced-resolution and full-resolution test set. The first two rows are error
maps on the reduced-resolution test set compared with GT. The last two rows are visual results of the full-resolution test set.
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Figure 4: Visualization of fused HRMS on GF2 reduced-resolution and full-resolution test set. The first two rows are error maps
on the reduced-resolution test set compared with GT. The last two rows are visual results of the full-resolution test set.
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Figure 5: Visualization of fused HRHS on CAVE(x 8) reduced-resolution and full-resolution test set.

Xuanhua He, Ke Cao, Keyu Yan, Rui Li, Chengjun Xie, Jie Zhang, and Man Zhou.
2024. Pan-Mamba: Effective pan-sharpening with State Space Model. arXiv
preprint arXiv:2402.12192 (2024).

Tao Huang, Xiaohuan Pei, Shan You, Fei Wang, Chen Qian, and Chang Xu. 2024.
Localmamba: Visual state space model with windowed selective scan. arXiv
preprint arXiv:2403.09338 (2024).

Zi-Rong Jin, Tian-Jing Zhang, Tai-Xiang Jiang, Gemine Vivone, and Liang-Jian
Deng. 2022. LAGConv: Local-Context Adaptive Convolution Kernels with
Global Harmonic Bias for Pansharpening. AAAI 36, 1 (Jun. 2022), 1113-1121.
Yue Liu, Yunjie Tian, Yuzhong Zhao, Hongtian Yu, Lingxi Xie, Yaowei Wang,
Qixiang Ye, and Yunfan Liu. 2024. VMamba: Visual State Space Model. arXiv
preprint arXiv:2401.10166 (2024).

Ilya Loshchilov and Frank Hutter. 2017. Decoupled weight decay regularization.
arXiv preprint arXiv:1711.05101 (2017).

Qingyan Meng, Wenxu Shi, Sijia Li, and Linlin Zhang. 2023. PanDiff: A Novel
Pansharpening Method Based on Denoising Diffusion Probabilistic Model. IEEE
Trans. Geosci. Remote Sens. 61 (2023), 1-17.

[9]

(10]

(1]

Xiaohuan Pei, Tao Huang, and Chang Xu. 2024. Efficientvmamba: Atrous selec-
tive scan for light weight visual mamba. arXiv preprint arXiv:2403.09977 (2024).
Xin Tian, Kun Li, Wei Zhang, Zhongyuan Wang, and Jiayi Ma. 2023. Inter-
pretable Model-Driven Deep Network for Hyperspectral, Multispectral, and
Panchromatic Image Fusion. IEEE Trans. Neural Netw. Learn. Syst. (2023), 1-14.
Xiao Wu, Ting-Zhu Huang, Liang-Jian Deng, and Tian-Jing Zhang. 2021. Dy-
namic cross feature fusion for remote sensing pansharpening. In ICCV. 14687
14696.

Sijie Zhao, Hao Chen, Xueliang Zhang, Pengfeng Xiao, Lei Bai, and Wanli
Ouyang. 2024. RS-Mamba for Large Remote Sensing Image Dense Prediction.
arXiv preprint arXiv:2404.02668 (2024).

Man Zhou, Xueyang Fu, Jie Huang, Feng Zhao, Aiping Liu, and Rujing Wang.
2022. Effective Pan-Sharpening With Transformer and Invertible Neural Net-
work. IEEE Trans. Geosci. Remote Sens. 60 (2022), 1-15.

Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang, Wenyu Liu, and
Xinggang Wang. 2024. Vision Mamba: Efficient Visual Representation Learning
with Bidirectional State Space Model. arXiv preprint arXiv:2401.09417 (2024).

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432

433

435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451

452

459
460
461
462
463

464



	1 Background of Vision Mamba Series
	2 More Details of Datasets
	3 State Sharing Technique Visulization
	4 Network Configurations & Implementation Details
	5 Network Generalization
	6 More Experimental Illustrations
	7 Local-enhanced visual mamba block enables an effective 2D local scan
	8 Acknowledgement
	References

