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A Accountability and Reproducibility Statement

ChaosBench is published under the open source GNU General Public License. Further development
and potential updates discussed in the limitations section will take place on the ChaosBench page.
Furthermore, we are committed to maintaining and preserving the ChaosBench benchmark. Ongoing
maintenance also includes tracking and resolving issues identified by the broader community after
release. User feedback will be closely monitored via the GitHub issue tracker. All assets are hosted
on GitHub and HuggingFace, which guarantees reliable and stable storage.

Dataset: All our dataset, present and future (e.g., with more years, multi-resolution support, etc) are
available at https://huggingface.co/datasets/LEAP/ChaosBench.

Model Checkpoints: All of our model checkpoints used for the purposes of ablation in this work are
available at https://huggingface.co/datasets/LEAP/ChaosBench/tree/main/logs.

Code: Our code and its future extension based on community feedback is accessible at
https://github.com/leap-stc/ChaosBench.

Documentation: Finally, our main webpage will keep track of all important updates and latest
documentation, and is accessible at https://leap-stc.github.io/ChaosBench.

*Corresponding author: jn2808@columbia.edu
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B Getting Started

Here, we provide a detailed description on how to prepare the necessary data, perform
training, and benchmark your own model. However, we refer users to our webpage
https://leap-stc.github.io/ChaosBench for the most updated how-to guides.

The following sections assume successful cloning of our Github repository
https://github.com/leap-stc/ChaosBench. If you find any problems, feel free to con-
tact us or raise an issue.

B.1 Data Preparation

First, navigate to the repository directory and install the necessary dependencies.

$ cd ChaosBench
$ pip install -r requirements.txt

Second, download the dataset using the following commands.

$ cd data/
$ wget https :// huggingface.co/datasets/LEAP/ChaosBench/resolve/main/

process.sh
$ chmod +x process.sh

Third, process the following required and optional dataset.

# Required for inputs and climatology (e.g., normalization)
$ ./ process.sh era5
$ ./ process.sh lra5
$ ./ process.sh oras5
$ ./ process.sh climatology

# Optional: control (deterministic) forecasts
$ ./ process.sh ukmo
$ ./ process.sh ncep
$ ./ process.sh cma
$ ./ process.sh ecmwf

# Optional: perturbed (ensemble) forecasts
$ ./ process.sh ukmo_ensemble
$ ./ process.sh ncep_ensemble
$ ./ process.sh cma_ensemble
$ ./ process.sh ecmwf_ensemble

# Optional: SoTa (deterministic) forecasts
$ ./ process.sh panguweather
$ ./ process.sh graphcast
$ ./ process.sh fourcastnetv2
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B.2 Training

We will cover how training can generally be performed, followed by how one can switch between
different training strategies by manipulating the config .yaml file.

First, define your model class.

# An example can be found for e.g. <YOUR_MODEL > == fno

$ touch chaosbench/models/<YOUR_MODEL >.py

Second, import and initialize your model in the main chaosbench/models/model.py file, given
the pseudocode below.

# Examples for lagged_ae , fno , resnet , unet are provided

import lightning.pytorch as pl
from chaosbench.models import YOUR_MODEL

class S2SBenchmarkModel(pl.LightningModule):

def __init__(
self ,
...

):
super(S2SBenchmarkModel , self).__init__ ()

# Initialize your model
self.model = YOUR_MODEL.BEST_MODEL (...)

# The rest of model construction logic

Third, run the train.py script. We recommend using GPUs for training.

# The _s2s suffix identifies data -driven models

$ python train.py --config_filepath chaosbench/configs/<YOUR_MODEL >
_s2s.yaml
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Now you will notice that there is a .yaml file. We define the definition of each field, allowing for
greater control over different training strategies.

# The .yaml file always has two sections: model_args and data_args

model_args:
model_name: <str > # Name of your model e.g., ’unet_s2s ’
input_size: <int > # Input size , default: 60 (ERA5)
output_size: <int > # Output size , default: 60 (ERA5)
learning_rate: <float > # Learning rate
num_workers: <int > # Number of workers
epochs: <int > # Number of epochs
t_max: <int > # Learning rate scheduler
only_headline: <bool > # Only optimized for config.HEADLINE_VARS

data_args:
batch_size: <int > # Batch size
train_years: [...] # Train years e.g., [1979, ...]
val_years: [...] # Val years e.g., [2016, ...]
n_step: <int , 1> # Number of autoregressive training steps
lead_time: <int , 1> # N-day ahead forecast (for direct scheme)
land_vars: [...] # Extra LRA5 vars e.g., [’t2m ’, ...]
ocean_vars: [...] # Extra ORAS5 vars e.g., [’sosstsst ’, ...]

Note,

1. If only_headline is set to True, then the model is optimized only for a subset of variables
defined in config.HEADLINE_VARS (default: False).

2. If n_step is set to values greater than 1, the models will train over n-autoregressive steps
(default: 1).

3. If lead_time is set to values greater than 1, the models will be able to forecast n-days
ahead. For example, in our direct forecasts, if lead_time is set to 4, our model will predict
the states 4 days into the future (default: 1).

4. If land_vars and/or ocean_vars are set with entries from the acronyms in Tables S3 and
S2, these will be used as additional inputs and targets, on top of ERA5 variables (default: []).
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B.3 Evaluation

Once training is done, we can perform evaluation depending on the use case. We recommend using
GPUs for evaluation.

First, if we have an autoregressive model, we can simply run:

# Evaluating autoregressive model , e.g.,
# --model_name ’unet_s2s ’
# --eval_years 2022
# --version_num 0 ## Checkpoint versions autogenerated in logs/
# --lra5 ’t2m ’ ’tp ’ ## Additional LRA5 vars to be evaluated
# --oras5 ’sosstsst ’ ## Additional ORAS5 vars to be evaluated

$ python eval_iter.py --model_name <str > --eval_years <int > --
version_num <int > --lra5 [...] --oras5 [...]

Second, if we have a collection of models trained specifically for unique lead_time, we can run:

# Evaluating direct model with the default sequence of
# lead_time = [1, 5, 10, 15, 20, 25, 30, 35, 40, 44] e.g.,
# --model_name ’unet_s2s ’
# --eval_years 2022
# --version_nums 0 4 5 6 7 8 9 10 11 12
# --lra5 ’t2m ’ ’tp ’ ## Additional LRA5 vars to be evaluated
# --oras5 ’sosstsst ’ ## Additional ORAS5 vars to be evaluated

$ python eval_direct.py --model_name <str > --eval_years <int > --
version_nums [...] --lra5 [...] --oras5 [...]

Third, if we have a probabilistic model that generates ensemble forecasts (e.g., one checkpoint
represents one ensemble member) and are supposed to be evaluated with additional probabilistic
metrics, we can run:

# Evaluating ensembles with additional probabilistic metrics e.g.,
# --model_name ’unet_ensemble_s2s ’
# --eval_years 2022
# --version_nums 0 1 2 ## One ensemble member per version
# --lra5 ’t2m ’ ’tp ’ ## Additional LRA5 vars to be evaluated
# --oras5 ’sosstsst ’ ## Additional ORAS5 vars to be evaluated

$ python eval_ensemble.py --model_name <str > --eval_years <int > --
version_nums [...] --lra5 [...] --oras5 [...]
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B.4 Optional: Processing Multi-Resolution Input

We open-source the data processing script to allow users to process the inputs given different
resolution (highest is 0.25-degree):

# Process inputs with e.g., 0.25- degree resolution
$ python scripts/process_atmos.py --resolution 0.25 # ERA5
$ python scripts/process_ocean.py --resolution 0.25 # ORAS5
$ python scripts/process_land.py --resolution 0.25 # LRA5
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C Related Work

Here we discuss the criteria used to compare different S2S benchmark. This list is by no means
exhaustive and there exists many ways to interpret the different contribution, strength, and scope of
each. We refer interested reader to the respective benchmark paper and website.

On Input Variables. The number of input channels indicates the number of unique variables used
for training data-driven models. For instance, in the case of SubseasonalClimateUSA, these include
tmin, tmax, tmean, precip_agg, precip_mean, SST, SIC, z-10, z100, z500, z850, u-250, u-925, v-250,
v-925, surface_P, RH, SSP, precipitable water, PE, DEM, KG, MJO-phase, MJO-amp, ENSO-I,
despite them having similar (25) variables across data sources.

On Target Variables and Agencies. Similarly, the number of target channels represent the variables
these benchmarks are aiming for. This is closely related to the number of benchmark agencies, which
refers to the number of physics-based simulations used as target, rather than inputs. In the case for
SubseasonalClimateUSA, for instance, the number of target channels correspond to two: precipitation
and surface temperature, while the number of benchmark agencies is also two: CFSv2 (NCEP) and
IFS (ECMWF), despite them using multiple other simulations generated from agencies but as inputs;
though evaluated on all in their follow-up work [50] despite not initially described in the dataset
paper.

On Physics Metrics. The flag for physics-based metrics indicates whether these benchmarks
incorporate not just physical explanation, but also formulate them as scalar and differentiable metrics
for future optimization problem.

On Probabilistic Metrics. The flag for probabilistic metrics indicates whether these benchmarks
incorporate probabilistic (e.g., CRPS, CRPSS, Spread, SSR), in addition to deterministic metrics.

On Spatial Extent. Furthermore, the spatial extent indicates the extent of the target benchmark,
rather than of the input dataset. This is because some of the more challenging S2S forecasting task is
to get the correct global space-time correlation, and having a full global coverage provides a more
complete evaluation.
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D ChaosBench

D.1 Observations from Reanalysis Products

D.1.1 ERA5

The following table indicates the 48 variables that are inferred by physics-based models. Note that
the Input ERA5 observations contains ALL fields, including the unchecked boxes:

Table S1: List of ERA5 reanalysis variables
Parameters/Levels (hPa) 1000 925 850 700 500 300 200 100 50 10
Geopotential height, z (gpm) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Specific humidity, q (kg kg−1) ✓ ✓ ✓ ✓ ✓ ✓ ✓
Temperature, t (K) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
U component of wind, u (ms−1) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
V component of wind, v (ms−1) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Vertical velocity, w (Pas−1) ✓

D.1.2 ORAS5

The variables for ORAS5 consist of the following as described in Table S2.

Table S2: List of ORAS5 reanalysis variables
Acronyms Long Name Units
iicethic sea ice thickness m
iicevelu sea ice zonal velocity ms−1

iicevelv sea ice meridional velocity ms−1

ileadfra sea ice concentration (0-1)
so14chgt depth of 14◦ isotherm m
so17chgt depth of 17◦ isotherm m
so20chgt depth of 20◦ isotherm m
so26chgt depth of 26◦ isotherm m
so28chgt depth of 28◦ isotherm m
sohefldo net downward heat flux Wm−2

sohtc300 heat content at upper 300m Jm−2

sohtc700 heat content at upper 700m Jm−2

sohtcbtm heat content for total water column Jm−2

sometauy meridonial wind stress Nm−2

somxl010 mixed layer depth 0.01 m
somxl030 mixed layer depth 0.03 m
sosaline salinity PSU
sossheig sea surface height m
sosstsst sea surface temperature ◦C
sowaflup net upward water flux kg/m2/s
sozotaux zonal wind stress Nm−2
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D.1.3 LRA5

The variables for LRA5 consist of the following as described in Table S3.

Table S3: List of LRA5 reanalysis variables
Acronyms Long Name Units

asn snow albedo (0 - 1)
d2m 2-meter dewpoint temperature K
e total evaporation m of water equivalent
es snow evaporation m of water equivalent

evabs evaporation from bare soil m of water equivalent
evaow evaporation from open water m of water equivalent
evatc evaporation from top of canopy m of water equivalent
evavt evaporation from vegetation transpiration m of water equivalent
fal forecaste albedo (0 - 1)

lai_hv leaf area index, high vegetation m2m−2

lai_lv leaf area index, low vegetation m2m−2

pev potential evaporation m
ro runoff m
rsn snow density kgm−3

sd snow depth m of water equivalent
sde snow depth water equivalent m
sf snowfall m of water equivalent
skt skin temperature K
slhf surface latent heat flux Jm−2

smlt snowmelt m of water equivalent
snowc snowcover %
sp surface pressure Pa
src skin reservoir content m of water equivalent
sro surface runoff m
sshf surface sensible heat flux Jm−2

ssr net solar radiation Jm−2

ssrd download solar radiation Jm−2

ssro sub-surface runoff m
stl1 soil temperature level 1 K
stl2 soil temperature level 2 K
stl3 soil temperature level 3 K
stl4 soil temperature level 4 K
str net thermal radiation Jm−2

strd downward thermal radiation Jm−2

swvl1 volumetric soil water layer 1 m3m−3

swvl2 volumetric soil water layer 2 m3m−3

swvl3 volumetric soil water layer 3 m3m−3

swvl4 volumetric soil water layer 4 m3m−3

t2m 2-meter temperature K
tp total precipitation m
tsn temperature of snow layer K
u10 10-meter u-wind ms−1

v10 10-meter v-wind ms−1
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D.2 Physics-Based Simulations

In this section, we describe in detail the physics-based models used as baselines in ChaosBench.
Wherever possible, we discuss specific strategies regarding coupling to the ocean, sea ice, wave, land,
initialization and perturbation strategies, specifications of initial/boundary conditions, as well as other
numerical considerations to generate forecast.

D.2.1 The UK Meteorological Office (UKMO) [33]

• Initialization and Ensemble. The UKMO model employs the lagged initialization strategy
to generate an ensemble of forecasts (4 in this case) at different initialization time to
improve prediction stability.

• Coupling with ocean is performed with the Global Ocean 6.0 model [51], based on
NEMO3.6 [52] with 0.25 degree horizontal resolution and 75 vertical pressure levels. The
ocean model is initialized and calibrated using Nonlinear Evolutionary Model VARiation
(NEMOVAR) [53], a specific data assimilation strategy that uses temperature, salinity
profiles, altimeter-derived sea level anomalies to calibrate forecasts. Frequency of coupling
is 1-hourly.

• Coupling with sea ice is performed with the Global Sea Ice 8.1 (CICE5.1.2) model [54],
and again initialized from NEMOVAR.

• Coupling with wave model is not yet operational.

• Coupling with land surface is performed with the Joint UK Land Environment Simulator
(JULES) [55]. Soil moisture, soil temperature, and snow are initialized using JULES and
forced using the the Japanese 55-year Reanalysis (JRA-55) data [56]. The land surface
model is paramaterized by land cover type from a combination of satellite (e.g., MODIS
LAI [57]) and radiometer data (e.g., AVHRR [58]). In addition, another parameterization in
the form of soil characteristics is derived from the Harmonized World Soil Database [59].

• Model grid uses the Arakawa C-grid [60] to solve partial differential equations on a
spherical surface. In particular, the velocity components (such as zonal and meridional
wind) are defined at the center of each face of the grid cells (in the case of a rectilinear grid)
or along cell edges (in the case of a curvilinear grid). The scalar quantities such as pressure
or temperature are computed at the corners of the grid cells.

• Large-scale dynamics uses the Semi-Lagrangian approach. It does not strictly follow fluid
parcels (i.e., Lagrangian), but it does calculate the value of a field, such as temperature (i.e.,
Eulerian) by tracing back along the trajectory that a fluid parcel would have taken to reach a
specific point at the current time step. This backward trajectory is used to find the origin of
the fluid parcel and determine its properties, which are then used to update the model fields.
This hybrid approach is therefore termed Semi-Lagrangian.

D.2.2 National Centers for Environmental Prediction (NCEP) [61]

• Initialization and Ensemble. The NCEP model adds small perturbation to the atmospheric,
oceanic and land analysis at each cycle across 4 ensemble to reduce sensitivity to initial
conditions.

• Coupling with ocean is performed with the GFDL Modular Ocean Model version
4 (MOM4) model that has a spatial resolution of 0.5-degree and 0.25-degree in the
longitude-latitude directions [62]. There are 40 vertical pressure levels.
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• Coupling with sea ice is also performed with the GFDL Sea Ice Simulator (SIS), which
models the thermodynamics and overall dynamics of sea ice [62].

• Coupling with wave model is not yet operational.

• Coupling with land surface is performed with 4-layer Noah Land surface model 2.7.1
[63]. Soil moisture, soil temperature, and snow are initialized using Noah and forced using
the Climate Forecast System [61] and the Global Land Data Assimilation System [64]
reanalysis data. The land surface model is parameterized by land cover type AVHRR data.
In addition, another paramaterization in the form of soil characteristics is derived from the
world soil climate database [65].

• Model grid uses the Gaussian grid [66], where the longitude (x-axis) are evenly spaced
while the latitudes (y-axis) are not. Instead, they are determined by the roots of the
associated Legendre polynomials, which correspond to the Gaussian quadrature points
for the sphere. This ensures that the actual area represented by each grid cell is more uniform.

• Large-scale dynamics uses the Spectral approach. It solves partial differential equations
by transforming them from the physical space into the spectral domain. In the latter case,
the equations are transformed into a series of coefficients that represent the amplitude of
waves across scales. The transformations are usually done using Fourier series for periodic
domains or spherical harmonics when dealing with the whole Earth’s surface [66]. This
method is especially beneficial for smooth functions and for representing large-scale wave
phenomena, such as the Rossby waves, which are important for understanding weather and
climate.

D.2.3 China Meteorological Administration (CMA) [35]

• Initialization and Ensemble. The CMA model uses the lagged average forecasting (LAF)
method across 4 ensemble members to ensure that the mean forecast is less sensitive to
initial conditions.

• Coupling with ocean is performed with the GFDL MOM4 model, which has 40 vertical
pressure levels [62]. Frequency of coupling is 2-hourly.

• Coupling with sea ice is performed with the GFDL Sea Ice Simulator (SIS), similar to that
used by NCEP [62].

• Coupling with wave model is not yet operational.

• Coupling with land surface is performed with the Atmosphere-Vegetation Interaction
Model version 2 (AVIM2) model [67] and the NCAR NCAR Community Land Model
version 3.0 (CLMv3) [68]. Soil moisture, soil temperature, and snow are not initialized
directly using reanalysis data, as used by other land surface models. Rather, air-sea-land-ice
coupled model is forced by near-surface atmospheric and ocean reanalysis in a long-term
integration, and the land initial conditions are produced as a by-product. As a result, the
parameterization of land cover type is done by this process, while soil characteristics is
derived from the Harmonized World Soil Database [59].

• Model grid uses the Gaussian grid [66], similar to that used by the NCEP.

• Large-scale dynamics uses a mixture of Spectral approach for the vorticity, temperature,
and surface pressure, as well as Semi-Lagrangian for specific humidity and cloud waters
other tracers.
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D.2.4 European Center for Medium-Range Weather Forecasts (ECMWF) [36]

• Initialization and Ensemble. The operational IFS forecast is generated through Singular
Vectors (SV) method: it creates a variety of initial conditions by adjusting certain parameters
slightly, thus generating different starting points.

• Coupling with ocean is performed with NEMO3.4.1 with 1-degree resolution and 42
vertical pressure levels. Frequency of coupling is 3-hourly.

• Coupling with sea ice is not operational for this model’s version (but it is in the newer
generation, though the forecast start-date is much later than 2016). As a result, sea ice initial
conditions are persisted up to day 15 and then relaxed to climatology up to day 45.

• Coupling with wave model is performed with ECMWF wave model with 0.5-degree
resolution [69].

• Coupling with land surface is relatively more complex than the rest, and we refer readers
to their documentation. Regardless, it is based on Land Data Assimilation System (LDAS)
that combines heterogenous high-quality dataset from satellite to ground sensors, and
integrated with the operational IFS model. The parameterization for land cover type is
primarily based on MODIS collection 5 [57] and soil characteristics from the FAO dominant
soil texture class [70].

• Model grid uses the Cubic Octohedral grid [71], where the Earth’s surface is projected
onto a cube. Then, the cube is further subdivided to form an octahedron, where the faces
represent finer grid cells. This multi-scale gridding scheme allows for parallelization where
processes at different scales could be solved simultaneously.

• Large-scale dynamics uses a mixture of Spectral and Semi-Lagrangian approach, similar
to that used by CMA.
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E Data-Driven Baseline Models

In this section, we describe in detail implementation and hyperparemeter selections of our data-driven
models used as baselines to ChaosBench. Most of the choices are based on the original works that are
adapted to weather and climate applications using similar input dataset. All training are performed
using 2x NVIDIA A100 GPUs.

E.1 Lagged Autoencoder (AE)

We implement lagged AE from [72] with 5 encoder blocks and 5 decoder block, with
detailed specification in Table S4. Each encoder block is comprised of MAXPOOL2D ◦
(CONV2D → BATCHNORM2D → RELU → CONV2D → BATCHNORM2D → RELU).
Similarly, the decoder block is comprised of CONVTRANSPOSE2D → BACTNORM2D →
RELU)

⊕
(CONVTRANSPOSE2D → BACTNORM2D → SIGMOID) ◦ (CONV2D).

Table S4: Hyperparameters for Lagged AE
Hyperparameters Values

Channels [64, 128, 256, 512, 1024]
Encoder Kernel 3× 3
Decoder Kernel 2× 2

Max Pooling Window 2× 2
Batch Normalization TRUE

Optimizer ADAMW [73]
Learning Rate COSINEANNEALING(10−2 → 10−3)

Batch Size 32
Epochs 500
Tmax 500

E.2 ResNet

We adapt ResNet implementation from [42] using ResNet-50 as feature extractor and 5
decoder blocks, following specification in Table S5. Each decoder block is composed of
CONVTRANSPOSE2D → BACTNORM2D → LEAKYRELU.

Table S5: Hyperparameters for ResNet
Hyperparameters Values

Backbone RESNET-50
Decoder Channels [1024, 512, 256, 128, 64]
Decoder Activation LEAKYRELU(0.15)

Optimizer ADAMW
Learning Rate COSINEANNEALING(10−2 → 10−3)

Batch Size 32
Epochs 500
Tmax 500

E.3 UNet

We adapt UNet implementation from [22] using 5 encoder and 5 decoder blocks, with skip connec-
tions, following specification in Table S6. The composition of the encoder and decoder components
are similar to those described for Lagged Autoencoder, with the addition of SKIP connection between
each corresponding contracting-expansive path.

13



Table S6: Hyperparameters for UNet
Hyperparameters Values

Channels [64, 128, 256, 512, 1024]
Activation LEAKYRELU(0.15)

Encoder Kernel 3× 3
Decoder Kernel 2× 2

Max Pooling Window 2× 2
Optimizer ADAMW

Learning Rate COSINEANNEALING(10−2 → 10−3)
Batch Size 32

Epochs 500
Tmax 500

E.4 Fourier Neural Operator (FNO)

We adapt FNO implementation from [43], following specification in Table S7 and illustrated in
S1. We implement the encoder-decoder structure, where we (1) first transform our input Xt by
convolutional layers both in the Fourier (applying fast fourier transform; FFT) and physical domains,
before we concatenate both (applying inverse FFT for the former convolved features), and apply
non-linear GELU activation function [74]. We select only the first 4 main Fourier modes to make
the number of trainable parameters comparable with the other data-driven baseline models. The (2)
decoder block then applies deconvolutional operation to the latent features to generate output Yt.

Table S7: Hyperparameters for FNO
Hyperparameters Values

Non-Spectral Channels [64, 128, 256, 512, 1024]
Spectral Channel [64, 128, 256, 512, 1024]

Activation GELU
Fourier Modes (4,4)

Optimizer ADAMW
Learning Rate COSINEANNEALING(10−2 → 10−3)

Batch Size 32
Epochs 500
Tmax 500

Xt
FFT = H(Xt)

Spectral
Conv2D

IFFT = H-1H(Xt)

Conv2D

Wt

Activation:
GeLU

Encoder Block (x4)

Decoder Block (x4)

Yt

Figure S1: FNO architecture: (1) in the encoder block, we transform our input Xt by convolutional
layers both in the Fourier and physical domains, before we concatenate and apply non-linear GELU
activation function. The (2) decoder block is then applying deconvolutional operation to the latent
features to generate forecast Yt.

14



E.5 ClimaX

ClimaX is based on the ViT model [75] with variational positional embedding in variable-time space.
We use ClimaX model as is described and implemented in the original paper and is pre-trained using
CMIP6 [17]. We fine-tune the original pre-trained model given our training setup.

E.6 PanguWeather, FourCastNetV2, GraphCast

We perform inference using their latest checkpoints using the API provided here:
https://github.com/ecmwf-lab/ai-models.

For this work, we process the forecasts at biweekly temporal resolution. In the codebase, we provide
the script for further flexibility, for instance:

# Process biweekly , 1.5- degree forecasts for the year 2022

## Panguweather
$ python scripts/process_sota.py --model_name panguweather --years

2022

## Graphcast
$ python scripts/process_sota.py --model_name graphcast --years 2022

## FourCastNetV2
$ python scripts/process_sota.py --model_name fourcastnetv2 --years

2022
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F Evaluation Metrics

F.1 Deterministic Metrics

We describe in detail the four primary vision-based metrics used for this benchmark, including RMSE,
Bias, ACC, and MS-SSIM.

F.1.1 Root Mean-Squared Error (RMSE)

As described in the main text, we apply latitude-adjustment to RMSE computation.

MRMSE =

√√√√ 1

|θ||γ|

|θ|∑
i=1

|γ|∑
j=1

w(θi)(Ŷi,j −Yi,j)2 (S1)

F.1.2 Bias

Similarly, we apply latitude-adjustment to Bias computation.

MBias =
1

|θ||γ|

|θ|∑
i=1

|γ|∑
j=1

w(θi)(Ŷi,j −Yi,j) (S2)

F.1.3 Anomaly Correlation Coefficient (ACC)

We remove the indexing for a more compact representation where the summation is performed
over each grid cell (i, j). The predicted and observed anomalies at each grid-cell are denoted by
AŶi,j

= Ŷi,j − C and AYi,j
= Yi,j − C, where C is the observational climatology. We apply

latitude-adjustment to ACC computation.

MACC =

∑
w(θ)[AŶ ·AY]√∑

w(θ)A2
Ŷ

∑
w(θ)A2

Y

(S3)

F.1.4 Multi-scale Structural Similarity Index Measure (MS-SSIM)

Let Y and Ŷ be two images to be compared, and let µY, σ2
Y and σYŶ be the mean of Y, the variance

of Y, and the covariance of Y and Ŷ, respectively. The luminance, contrast and structure comparison
measures are defined as follows:

l(Y, Ŷ) =
2µYµŶ + C1

µ2
Y + µ2

Ŷ
+ C1

, (S4)

c(Y, Ŷ) =
2σYσŶ + C2

σ2
Y + σ2

Ŷ
+ C2

, (S5)

s(Y, Ŷ) =
σYŶ + C3

σYσŶ + C3
, (S6)

where C1, C2 and C3 are constants given by

C1 = (K1L)
2, C2 = (K2L)

2, and C3 = C2/2. (S7)

L = 255 is the dynamic range of the gray scale images, and K1 ≪ 1 and K2 ≪ 1 are two small
constants. To compute the MS-SSIM metric across multiple scales, the images are successively
low-pass filtered and down-sampled by a factor of 2. We index the original image as scale 1, and the
desired highest scale as scale M . At each scale, the contrast comparison and structure comparison
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are computed and denoted as cj(Y, Ŷ) and sj(Y, Ŷ) respectively. The luminance comparison is
only calculated at the last scale M , denoted by lM (Y, Ŷ). Then, the MS-SSIM metric is defined by

MMS−SSIM = [lM (Y, Ŷ)]αM ·
M∏
j=1

[cj(Y, Ŷ)]βj [sj(Y, Ŷ)]γj (S8)

where αM , βj and γj are parameters. We use the same set of parameters as in [37]: K1 = 0.01,
K2 = 0.03, M = 5, α5 = β5 = γ5 = 0.1333, β4 = γ4 = 0.2363, β3 = γ3 = 0.3001,
β2 = γ2 = 0.2856, β1 = γ = 0.0448. The predicted and ground truth images of physical variables
are re-scaled to 0-255 prior to the calculation of their MS-SSIM values.

F.2 Physics-Based Metrics

In this section, we describe in detail the definition and implementation of our physics-based metrics,
including PYTORCH psuedocode implementation.

Let Y be a 2D image of size h× w for a physical variables at a specific time, variable, and level. Let
f(x, y) be the intensity of the pixel at position (x, y). First, we compute the 2D Fourier transform of
the image by

F (kx, ky) =

w−1∑
x=0

h−1∑
y=0

f(x, y) · e−2πi(kxx/w+kyy/h), (S9)

where kx and ky correspond to the wavenumber components in the horizontal and vertical directions,
respectively, and i is the imaginary unit. The power at each wavenumber component (kx, ky) is given
by the square of the magnitude spectrum of F (kx, ky), that is,

S(kx, ky) = |F (kx, ky)|2 = Re[F (kx, ky)]
2 + Im[F (kx, ky)]

2. (S10)

The scalar wavenumber is defined as:

k =
√
k2x + k2y, (S11)

which represents the magnitude of the spatial frequency vector, indicating how rapidly features change
spatially regardless of direction. Then, the energy distribution at a spatial frequency corresponding to
k is defined as

S(k) =
∑

(kx,ky):
√

k2
x+k2

y=k

S(kx, ky). (S12)

Given the spatial energy frequency distribution for observations E(k) and predictions Ŝ(k) , we
perform normalization for each over Kq, the set of wavenumbers corresponding to high-frequency
components of energy distribution, as defined in Equation S13. This is to ensure that the sum of the
component sums up to 1 which exhibits pdf-like property.

S′(k) =
S(k)∑

k∈Kq
S(k)

, Ŝ′(k) =
Ŝ(k)∑

k∈Kq
Ŝ(k)

, k ∈ Kq (S13)
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import torch
import torch.nn as nn

class SpectralDiv(nn.Module):
"""
Compute Spectral divergence given the top -k percentile wavenumber

(higher k means higher frequency)
"""
def __init__(

self ,
percentile =0.9,
input_shape =(121 ,240)

):
super(SpectralDiv , self).__init__ ()

self.percentile = percentile

# Compute the discrete Fourier Transform sample frequencies
for a signal of size

nx , ny = input_shape
kx = torch.fft.fftfreq(nx) * nx
ky = torch.fft.fftfreq(ny) * ny
kx , ky = torch.meshgrid(kx, ky)

# Construct discretized k-bins
self.k = specify_k_bins (...)

# Get k-percentile index
self.k_percentile_idx = int(len(self.k) * self.percentile)

def forward(self , predictions , targets):

# Preprocess data , including handling of missing values , etc
predictions = preprocess_data (...)
targets = preprocess_data (...)

# Compute along mini -batch
predictions , targets = torch.nanmean(predictions , dim=0),

torch.nanmean(targets , dim =0)

# Transform prediction and targets onto the Fourier space and
compute the power

predictions_power = torch.fft.fft2(predictions)
predictions_power = torch.abs(predictions_power)**2

targets_power = torch.fft.fft2(targets)
targets_power = torch.abs(targets_power)**2

# Normalize as pdf
predictions_Sk = predictions_power / torch.nansum(

predictions_power)
targets_Sk = targets_power / torch.nansum(targets_power)

# Compute spectral Sk divergence
div = torch.nansum(targets_Sk * torch.log(torch.clamp(

targets_Sk / predictions_Sk , min=1e-9)))

return div

Listing S1: Psuedocode for computing SpecDiv using PYTORCH
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import torch
import torch.nn as nn

class SpectralRes(nn.Module):
"""
Compute Spectral residual given the top -k percentile wavenumber (

higher k means higher frequency)
"""
def __init__(

self ,
percentile =0.9,
input_shape =(121 ,240)

):
super(SpectralRes , self).__init__ ()

self.percentile = percentile

# Compute the discrete Fourier Transform sample frequencies
for a signal of size

nx , ny = input_shape
kx = torch.fft.fftfreq(nx) * nx
ky = torch.fft.fftfreq(ny) * ny
kx , ky = torch.meshgrid(kx, ky)

# Construct discretized k-bins
self.k = specify_k_bins (...)

# Get k-percentile index
self.k_percentile_idx = int(len(self.k) * self.percentile)

def forward(self , predictions , targets):

# Preprocess data , including handling of missing values , etc
predictions = preprocess_data (...)
targets = preprocess_data (...)

# Compute along mini -batch
predictions , targets = torch.nanmean(predictions , dim=0),

torch.nanmean(targets , dim =0)

# Transform prediction and targets onto the Fourier space and
compute the power

predictions_power = torch.fft.fft2(predictions)
predictions_power = torch.abs(predictions_power)**2

targets_power = torch.fft.fft2(targets)
targets_power = torch.abs(targets_power)**2

# Normalize as pdf
predictions_Sk = predictions_power / torch.nansum(

predictions_power)
targets_Sk = targets_power / torch.nansum(targets_power)

# Compute spectral Sk residual
res = torch.sqrt(torch.nanmean(torch.square(predictions_Sk -

targets_Sk)))

return res

Listing S2: Psuedocode for computing SpecRes using PYTORCH
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F.3 Probabilistic Metrics

Here, we broadly define n ∈ N as an ensemble member, and N ∈ R the total number of ensemble
members.

F.3.1 Deterministic Extension

This includes the ensemble version of deterministic and physics-based metrics, including RMSE,
Bias, ACC, MS-SSIM, SpecDiv, and SpecRes.

Mens
RMSE =

1

N

N∑
n=1

Mn
RMSE (S14)

Mens
Bias =

1

N

N∑
n=1

Mn
Bias (S15)

Mens
ACC =

1

N

N∑
n=1

Mn
ACC (S16)

Mens
MS−SSIM =

1

N

N∑
n=1

Mn
MS−SSIM (S17)

Mens
SpecDiv =

1

N

N∑
n=1

Mn
SpecDiv (S18)

Mens
SpecRes =

1

N

N∑
n=1

Mn
SpecRes (S19)

F.3.2 CRPS

CRPS measures the accuracy of probabilistic forecasts by integrating the square of the difference
between the cumulative distribution function (CDF) of the forecast and the CDF of the observed
data over all possible outcomes. It can be thought of as probabilistic MAE, where a smaller value is
desirable and a deterministic forecast reduces to MAE. We first apply latitude-adjustments for the
forecasts and target fields.

MCRPS(F, x) =

∫ ∞

−∞
(F (y)−H(y − x))2 dy (S20)

where F (y) is the CDF of the forecast, H(y− x) is the Heaviside step function at the observed value
x, and y ranges over all possible outcomes.

F.3.3 CRPSS

CRPSS measures the skillfulness of an ensemble forecasts, with positive being skillful, zero unskilled,
and negative being worse than baseline climatology.

MCRPSS = 1− CRPSforecast

CRPSclimatology
(S21)
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F.3.4 Spread

We apply latitude-adjusted spread of the ensemble members, and std is the standard deviation
operator.

MSpread =
1

|θ||γ|

|θ|∑
i=1

|γ|∑
j=1

std
(
{w(θi)Ŷn

i,j}Nn=1

)
(S22)

F.3.5 Spread/Skill Ratio (SSR)

We use ensemble RMSE as the skill in the SSR computation.

MSSR =
MSpread

Mens
RMSE

(S23)
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G Extended Results

We provide extended results accompanying the main text.
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Figure S2: Evaluation results between baseline climatology (black line) and physics-based control
(deterministic) forecasts. At longer forecasting horizon, most physics-based deterministic forecasts
perform worse than climatology while maintaining structures as evidenced from their low SpecDiv
(barring NCEP).

22



0 10 20 30 40
Number of days ahead

1

2

3

4

5

6

RM
SE

 [K
]

t-850

Climatology
PW
GC
FCN2

0 10 20 30 40
Number of days ahead

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

RM
SE

 [g
pm

]

×102 z-500

Climatology
PW
GC
FCN2

0 10 20 30 40
Number of days ahead

0.5

1.0

1.5

2.0

2.5

3.0

RM
SE

 [1
0

3 k
gk

g
1 ]

×10 3 q-700
Climatology
PW
GC

(a) RMSE (↓ is better)

0 10 20 30 40
Number of days ahead

0.2

0.0

0.2

0.4

0.6

0.8

1.0

AC
C

t-850
Climatology
PW
GC
FCN2

0 10 20 30 40
Number of days ahead

0.2

0.0

0.2

0.4

0.6

0.8

1.0

AC
C

z-500
Climatology
PW
GC
FCN2

0 10 20 30 40
Number of days ahead

0.2

0.0

0.2

0.4

0.6

0.8

1.0

AC
C

q-700
Climatology
PW
GC

(b) ACC (↑ is better)

0 10 20 30 40
Number of days ahead

2.0

1.5

1.0

0.5

0.0

0.5

1.0

BI
AS

 [K
]

t-850

Climatology
PW
GC
FCN2

0 10 20 30 40
Number of days ahead

40
30
20
10
0

10
20
30
40

BI
AS

 [g
pm

]

z-500
Climatology
PW
GC
FCN2

0 10 20 30 40
Number of days ahead

4

2

0

2

4

BI
AS

 [1
0

3 k
gk

g
1 ]

×10 4 q-700
Climatology
PW
GC

(c) Bias (→ 0 is better)

0 10 20 30 40
Number of days ahead

0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

SS
IM

t-850

Climatology
PW
GC
FCN2

0 10 20 30 40
Number of days ahead

0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

SS
IM

z-500
Climatology
PW
GC
FCN2

0 10 20 30 40
Number of days ahead

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

SS
IM

q-700
Climatology
PW
GC

(d) MS-SSIM (↑ is better)

Climatology PW GC
FCN2

0.0

0.1

0.2

0.3

0.4

0.5

SD
IV

t-850

Climatology PW GC
FCN2

0.0

0.1

0.2

0.3

0.4

0.5

SD
IV

z-500

Climatology PW GC
FCN2

0.0

0.1

0.2

0.3

0.4

0.5

SD
IV

q-700

(e) SpecDiv (↓ is better)

Figure S3: Evaluation results between baseline climatology (black line) and data-driven models
including PanguWeather (PW), FourCastNetV2 (FCN2), and GraphCast (GC). Overall, we observe
that data-driven models perform significantly worse than climatology on S2S timescale. They also
perform poorly on physics-based metrics indicating the lack of predictive power on multi-scale
structures. Note: FCN2 lacks q-700 and climatology naturally has low SpecDiv (direct observations).

23



0 10 20 30 40
Number of days ahead

1.0

1.5

2.0

2.5

3.0

3.5

4.0

RM
SE

 [K
]

t-850

Climatology
ECMWF (n=50)
CMA (n=3)
UKMO (n=3)
NCEP (n=15)

0 10 20 30 40
Number of days ahead

0.2

0.4

0.6

0.8

1.0

RM
SE

 [g
pm

]

×102 z-500

Climatology
ECMWF (n=50)
CMA (n=3)
UKMO (n=3)
NCEP (n=15)

0 10 20 30 40
Number of days ahead

0.75

1.00

1.25

1.50

1.75

2.00

RM
SE

 [1
0

3 k
gk

g
1 ]

×10 3 q-700

Climatology
ECMWF (n=50)
CMA (n=3)
UKMO (n=3)
NCEP (n=15)

(a) RMSE (↓ is better)

0 10 20 30 40
Number of days ahead

0.0

0.2

0.4

0.6

0.8

1.0

AC
C

t-850
Climatology
ECMWF (n=50)
CMA (n=3)
UKMO (n=3)
NCEP (n=15)

0 10 20 30 40
Number of days ahead

0.0

0.2

0.4

0.6

0.8

1.0

AC
C

z-500
Climatology
ECMWF (n=50)
CMA (n=3)
UKMO (n=3)
NCEP (n=15)

0 10 20 30 40
Number of days ahead

0.0

0.2

0.4

0.6

0.8

AC
C

q-700
Climatology
ECMWF (n=50)
CMA (n=3)
UKMO (n=3)
NCEP (n=15)

(b) ACC (↑ is better)

0 10 20 30 40
Number of days ahead

0.70

0.75

0.80

0.85

0.90

0.95

1.00

SS
IM

t-850
Climatology
ECMWF (n=50)
CMA (n=3)
UKMO (n=3)
NCEP (n=15)

0 10 20 30 40
Number of days ahead

0.80

0.85

0.90

0.95

1.00

SS
IM

z-500
Climatology
ECMWF (n=50)
CMA (n=3)
UKMO (n=3)
NCEP (n=15)

0 10 20 30 40
Number of days ahead

0.5

0.6

0.7

0.8

0.9

SS
IM

q-700
Climatology
ECMWF (n=50)
CMA (n=3)
UKMO (n=3)
NCEP (n=15)

(c) MS-SSIM (↑ is better)

Climatology

ECMWF (n=50)

CMA (n=3)

UKMO (n=3)

NCEP (n=15)0.0

0.1

0.2

0.3

0.4

0.5

SD
IV

t-850

Climatology

ECMWF (n=50)

CMA (n=3)

UKMO (n=3)

NCEP (n=15)0.0

0.1

0.2

0.3

0.4

0.5

SD
IV

z-500

Climatology

ECMWF (n=50)

CMA (n=3)

UKMO (n=3)

NCEP (n=15)0.00

0.05

0.10

0.15

SD
IV

q-700

(d) SpecDiv (↓ is better)

Figure S4: Evaluation results between baseline climatology (black line) and physics-based ensembles
from ECMWF, CMA, UKMO, NCEP. Overall, we observe that ensemble forecasts perform better
than their deterministic counterparts.
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(a) RMSE: ensemble improves deterministic forecasts if ratio < 1
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(b) ACC: ensemble improves deterministic forecasts if ratio > 1
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(c) MS-SSIM: ensemble improves deterministic forecasts if ratio > 1
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Figure S5: Metrics ratio e.g., RMSEens/RMSEdet between ensemble and deterministic forecasts, where
the former improves the latter by accounting for IC uncertainty that can lead to long-range instability
and trajectory divergences. Note: n represents the number of ensemble members. The ratio for ACC
fluctuates as the scalar value approaches 0.
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Figure S6: Probabilistic evaluation on ensemble forecasts indicating current skill limits of 15 days.
Note: n represents the number of ensemble members.
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G.1 Effects of Different Autoregressive Training Steps; lead_time

We showcased more results for autoregressive training strategy. In this case, we performed autoregres-
sive training using either 1 or 5 iterative steps (n_step; s). As illustrated in Figure S7, we observe
that incorporating temporal information improve the vision-based metrics even at longer forecasting
timesteps, with lower RMSE, higher MS-SSIM. However, the converse trend is true incorporating
temporal context makes S2S forecast worse off in some physics-based scores. The modified loss
function for training a model with multiple autoregressive steps is:

L =
1

|S|

s∑
i=1

L(Ŷt+siYt+si),∀si ∈ S (S24)

Here S = {1, · · · , s} and s ∈ N+ is the autoregressive steps. For this work, we set s = 5.
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Figure S7: Ablation results for incorporating temporal information in an autoregressive scheme for
long-range forecast using UNet models. The x-axis represents the number of forecasting days for
t-850, z-500, q-700 representative tasks. Blue and orange lines illustrate autoregressive scheme with
s = 1 and s = 5 respectively. Overall we observe that incorporating temporal information improve
the vision-based metrics even at longer forecasting timesteps. However, the converse trend is true
where incorporating temporal context makes S2S forecast worse off in some physics-based scores.
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G.2 Effects of Subset Optimization; headline_vars

In many cases, we seek to train data-driven models so that they are able to perform well on all states
by optimizing for the full state of the next forecasting timestep t+ 1, that is,

ϕ∗ = argmin
ϕ

L(Ŷt+1,Yt+1)

where L is any loss function. This task is especially useful for building emulators that act as surrogates
for the more expensive physics-based NWP models [17].

Although the first task is useful for learning the full complex interaction between variables, it is
relatively difficult due to the intrinsic high-dimensionality of the data. As a result, we introduce a
second task that allows for the optimization on a subset of variables of interest (Y′ ∈ Y):

ϕ∗ = argmin
ϕ

L(Ŷ′
t+1,Y

′
t+1)

Here Y′
t+1 = {t-850, z-500, q-700}, and we train them using 5 autoregressive steps i.e., n_step = 5.

Table S8: Long-range forecasting (∆t = 44) results on select metrics and target variables between
physics-based and data-driven models. Results are for Task 1 (full) and Task 2 (sparse). (*) Baseline
model that uses privileged information (observations) to make prediction.

RMSE ↓ MS-SSIM ↑ SpecDiv ↓

Models T850
(K)

Z500
(gpm)

Q700
(×10−3) T850 Z500 Q700 T850 Z500 Q700

Climatology* 3.39 81.0 1.62 0.85 0.82 0.62 0.01 0.01 0.03
Persistence* 5.88 127.8 2.47 0.71 0.69 0.41 0.02 0.03 0.05

UKMO 5.00 116.2 2.32 0.64 0.71 0.43 0.06 0.09 0.07
NCEP 4.90 116.7 2.30 0.75 0.71 0.43 0.53 0.55 0.10
CMA 5.08 118.7 2.49 0.75 0.72 0.45 0.05 0.04 0.06

ECMWF 4.72 115.1 2.30 0.75 0.72 0.44 0.06 0.07 0.06

Task 1: Full Dynamics Prediction

Lagged AE 5.55 122.4 2.03 0.74 0.71 0.47 0.18 2.44 0.21
ResNet 5.67 125.3 2.07 0.73 0.70 0.47 0.21 0.37 0.26
UNet 5.47 121.5 2.13 0.73 0.71 0.45 0.30 1.16 2.20
FNO 5.06 112.5 1.95 0.75 0.73 0.51 0.18 0.11 0.10

Task 2: Sparse Dynamics Prediction

Lagged AE 5.39 119.0 2.12 0.75 0.73 0.48 0.52 1.41 0.29
ResNet 5.80 124.1 2.18 0.74 0.72 0.46 0.33 1.22 0.09
UNet 5.57 120.2 2.18 0.74 0.71 0.45 1.20 1.08 0.07
FNO 4.73 101.8 1.91 0.79 0.76 0.52 0.18 0.23 0.21

Overall, we find models that attempt to preserve spectral structures (e.g., FNO) perform better on all
metrics, deterministic and physics-based. Also, Task 2 (sparse) appears to be easier than Task 1 (full).
Nonetheless, they are still performing worse than climatology.
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G.3 Effects of Ensemble Forecasts

This section provides additional results for data-driven ensemble approach, and follow similar
evaluation process as the physics-based counterpart.
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(a) RMSE: ensemble improves deterministic forecasts if ratio < 1
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(b) ACC: ensemble improves deterministic forecasts if ratio > 1
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Figure S8: Metrics ratio e.g., RMSEens/RMSEdet between ensemble and deterministic forecasts, where
the former improves the latter by accounting for IC uncertainty that can lead to long-range instability
and trajectory divergences. Note: n represents the number of ensemble members.
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Figure S9: Probabilistic evaluation on ensemble forecasts. Note: n represents the number of ensemble
members.
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G.4 Power Spectra
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Figure S10: Power spectra for ViT/ClimaX demonstrating energy decay/divergence especially for
high k as lead time grows.
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G.5 Qualitative Evaluation
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Figure S11: Normalized t@850-hpa qualitative results for UNet-autoregressive (S=5).
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Figure S12: Normalized z@500-hpa qualitative results for UNet-autoregressive (S=5).
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Figure S13: Normalized q@700-hpa qualitative results for UNet-autoregressive (S=5).
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Figure S14: Normalized t@850-hpa qualitative results for UNet-direct.
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Figure S15: Normalized z@500-hpa qualitative results for UNet-direct.
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Figure S16: Normalized q@700-hpa qualitative results for UNet-direct.
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Figure S17: Normalized t@850-hpa qualitative results for ClimaX-direct.
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Figure S18: Normalized z@500-hpa qualitative results for ClimaX-direct.
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Figure S19: Normalized q@700-hpa qualitative results for ClimaX-direct.
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