a0 A Full Proofs of Presented Results

491 In this appendix, we present full proofs of all results which are not already complete in the main text.

a2 Proof of Theorem 4 For any i € [d] and x € Z¢ define
M® =Ex.,[f(X)B% X = 2] - Ex, [f(X)B¢, X1 = gli=1] (26)

493 with the edge case

MY = Exu[f(X)B, X1 = 1] — Exnp[f(X)|B°] 27
494 Dueto Ex.,[f(X)|B° X = z] = f(x) for z € B° we have
d

f=Exaulf(X)|B7 =Y MO (28)
i=1

495 Since the conditions X! = zl1 generate a nested sequence of o-algebras, the quantities

w6 KU f(2) = E,[f(X)|B¢, X! = zl] are a Doob martingale and (26) is a martingale differ-
497 ence sequence. In order to bound the moment generating function of f, we will bound every A (%)
498 from above and below and apply the Azuma-Hoeffding theorem [34, Theorem 4.1]. We have

MY =E,[f(X)|B°, X1 = 2l — B, [f(X)|B°, X~1) = zli=1]) (29a)
= EL[f(X)|B°, X1 = all] — B, [B,[£(X)|B, XU~1 = £l =1 X ]Be, X U1 = oli~1])
(29b)

= [ #ally Dy, 5
/ /f (zd du(zd|x[z Uy, BC))ﬂ(dy[i,d]w[iq]’BC) (29¢)

499 by the tower property of conditional expectations. Because u(dy!>¥|2l"=1 B¢) is a probability
500 measure, it holds

/f(x[i]y(i,d]) dy )| 211) e / /f i1 3, 1y (g o) ] B(’)) (dyli9| 2= 1), Be)

(30)
501 and we find

MO = [y a5 ([ e ()l 5)

_ / f(m[i]u(@d])u(du(ivd]|$[i—1]7yi780)) 31)
502 Now bound A® < M® < B almost surely with

A® Z/M(dy[i’d}lw[i_l],l?c) inf (/f(x[i—l]xiu(i,d])M(du(i,d]|x[i]7Bc)
z;€B¢ (xli—11)

- / Fa (a1, y, B)) - (320

BW = / pldy Ol B s / Fali M) (Y210, B
z; €82 (ali=1)

_ / F a1 (@D |1y, Bc)) (32b)
s03  where B¢(z"~ 1) contains all 2; € Z such that there exist 2(*% € Z4=% with (zl"= z;, 2(-d) € Be,

s04 Because every realization of a random variable conditioned on B¢ is in the set of good inputs, the
so5 difference || B — A®||, can be written as

sup / Ml M) p(dut D), BY) — / PO u(du® A0, BY) - (33)

m,zeBCﬂj[d]\{i}:z[(l]
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By seeing this expression in terms of oscillation of the kernel action K“t1) f, we find
IBY — AD|e < [|pll8:( K F) < [lpl|(VEFDS(F)): = (T3(F))s 34)

where f: B¢ — R is the restriction of f to B¢. The assertion then follows from the Azuma-Hoeffding
theorem [34, Theorem 4.1] which we recite as Theorem[];O]to make this paper self-contained.

Proof of Proposition 6 For arbitrary z, 2/ € Z% it holds
[f(z) = f(2) < 6;(F)p(z,25),  Vie[d] (35)
and thus, by summing over all indices we get
1£(2) = Z JGECED) (36)
JG [d]

Let 2,z € Z% with z[@\i} = 2l4\ i} be given for some i € [d]. Recall the action (8) of Markov
kernels K ("1 is an expected value with respect to conditional distributions (@ (dy |,

Because v has no atoms, l/d|.AC also has no atoms. Therefore, there is a unique KR-rearrangement
T with Tﬁ = | A°. Then T =ToTisaKR- -rearrangement with

Tyt = u|B° (37)

by Lemma@ and we have T'(Z) = . Lemma 3 implies
plo D (dy 8o, Ty = T(@l, ) '~ (38)
An analogous expression holds for the distribution conditioned on z. We have therefore found two

transport functions pushing the reference measure to the respective conditional distributions. By
Lemma 5, a coupling of the conditional distributions is then given by

piz;]z = (Tl ) Tl )yt (39)
Using a change of measure we find
KO f(a) = KO £(2)
/ PUL(duo), oy (7 (i) — (b)) 40)
= / FEATEAGH, 7)) — fEATEAEE, )t () 1)
5 5, i y
< ZEl )p(xz,zz)—k Z %/p(T(“d](xM,T)j,T(”d](z[l],T)j)ud ‘(1) (42)
J€E(i,d]
0; 0,
< Elf) p(wi, zi) + Z j;f)LijP(lfi, zi) (43)
]E(z,d]
which shows
SR ) < (500 + Y Luti() (44)
j€(i,d]
for good inputs. We have thus found a Wasserstein matrix V41 for K(+1) with entries
| 0 ifi >
‘/;gz—&-l) R ifi =j (45)

dilLij ifi < j

in row 7 which shows the assertion.
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523 Proof of Theorem 7 For any hypothesis h € H, we have
R(h) = Rp(h, D) =Ezu[L(h, Z) — R (h, Dyy)] (46a)
=Ez, [(L(h, Z) - Rm(h,Dm))l{Z ¢ B}}
+ Bz (L, 2) = Run(h, D) ) 1{Z € B} (46b)

< By (L0, 2) = Run(h, Do) ) U{Z ¢ BY] +¢ (460)
< Byl L 2)] = Ru(h, D) + € (464)

s24  where in (@6c) we have used that pointwise loss is in [0, 1]. Note that the underlying distribution of
525 the risk R(h) is p, while D,,, are drawn from p|B¢. The above inequality reconciles this such that
526 a concentration argument for the conditional distribution becomes applicable. For any PAC-Bayes
s27  posterior distribution ¢ and any 8 > 0, this implies

’R’(C) - Rm((a Dm) = EhNCEZNM[L(ha Z) - Rm (h7 Dm)] (473)
< Epe¢ [Ezmpise[L(h, Z)] = Ry (h, D) + € (47b)
= %]Eh~§ [B(EZNMB“ [L(h7 Z)] - Rm(h7 Dm))] + g (470)
< 5108 B [0 (B(E 2o (L. 2)) = Ron (1 D)
+ % KL[¢ : 7] + ¢ (47d)

528 by Donsker and Varadhan’s variational formula [2, Lemma 2.2]. Focusing on the first term, we find

exp (B(Ez~puise [L(h, 2)] = Ron(h, Dm))) = exp (% > (EzmpelL(h 2)] = L(h, 20)) )

ke[m]
(48a)
- H exp (% (]EZN;AIBC [L(h, Z)] — L(h, Z(k))))
ke[m]
(48b)

s20 Each structured datum Z(*) is drawn independently from wu|B¢. By Proposition 6 there exists a
530 Wasserstein dependency matrix I' = ”%”D for u|B¢ where D has entries (17). Then

EDW"’(H\BC)"” H €xXp (%(]EZNMB“ [L(hv Z)] - L(h7 Z(M)))
ke[m]

= II Ezoonquse) exp (%(Ezw\sc [L(h, Z)] - L(h,Z““))))

ke[m]
(49a)
B
= kl_[[]Ez(mNMBc [QXP (E(EZNMIBC [L(h, Z)] — L(h, Z(k))))}
elm
(49b)
B2 ~
= H exp (W'Fé(L(h"))”g by Theorem 4 (49¢)
ke[m]
(B e
= &Xp (8m||F5(L(h, ))H2 (49d)
2
< Forsn2
< exp <8m ||1"6||2> (49e)
531 Denote the shorthand
U= EDmN(MBC)m [exp (5(EZ"’H‘BC [L(ha Z)] - RnL(hv Dnl)))] (50)

15



532

533

534

535
536

537
538
539
540

541

542

543
544
545

546
547
548
549

550

551
552

553

By Markov’s inequality it holds

1
P'DMN(MBC)"L exp (ﬁ(]EZNMB“ [L(h, Z)] - Rm(h, Dm))) Z (SU:| S 6 (51)
and combining this with we have
1 2
ex (BB 2oy L0, 2)] = Ron (D) < e -T2 52)
with probability at least 1 — § over the sample. Using (@7) we thus have
1 1 B2
_ < = z i .
R(Q) ~ R, D) < 5 (10w B [ exp (1051 ) |+ KLfc s wl) 46 530
_ Bz L 1 .
= I35 + ﬂ(loga +KLC : w]) : (53b)

Ideally, we would minimize the right hand side with respect to /5. However, this would mean to have
[ depend on ¢ and we thus would not have a uniform bound for all posterior distributions.

Instead, [37] approaches the problem by defining a sequence of constant (J;, 5;),cn, and bounding
the probability that the bound does not hold for any sequence element. Since in the opposite (high-
probability) case, the bound holds for all sequence elements, an optimal one can subsequently be
chosen dependent on the posterior.

1
5, = 02UV, g _oi [BTI085 (54)
‘ ‘ IT6]13

which are independent of (. Now consider the event E; that

For all j € Ny, define

1 2
exp (8 (Ex~pise [((h X)] = Ron(h, D)) > 5 exp <8J ||F6%> (55)
j m

By the above argument leading up to (52), the probability for £; under a random sample of the
conditioned data distribution B¢ is at most ¢;. Therefore, the probability that any E; occurs is

bounded by
P(|JE)<D PE)<SD 6;=6 (56)
Jj€No Jj€No j€ENg
Thus, for all posteriors ¢ with probability at least 1 — § none of the events (53) occurs. We may
therefore select an index j dependent on ( to obtain a sharper risk certificate which still holds with
probability at least 1 — § over the sample conditioned on the good set. For a fixed posterior ¢, the
optimizer of (53b) would be

1 1
B =— \/Sm(log — +KL[¢: 7)) (57)
1Tl 0
Equating this to (55) and rounding down to the nearest integer gives
1 KL|¢ : 7
J* = 5 log (1+ Ll]) (58)
2 log 5

Denote this number before rounding by r, i.e. j* = |r|. For any real number 7 it holds r — 1 <
|r| < r. Therefore

1 KL|( : x KL|( :
= 1+M:2T—1§23 <2 = 1+M (59)
2 log 5 log 5

which gives the following bounds on -

1\/8m(log}5 +KLC: ) _ \/&n(log}S +KL[¢ : 7))

(60)

2 ITol3 ITol13
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Likewise, we bound

1 2
KL[C:W]—Hogé_ :KL[(:W]—i—logg + j*log2 (61a)
i+
< KL[C: 7]+ log 2 + 1282 1og (1 + M) “log2 61b)
4] 2 log 5
_ ) 1 1 KL[C : 7]

1 1 1 1 1
=KL[¢: 7] + logg + 3 log (log 5 +KL[¢: W]) —5 log log 5 (61d)

The assumption § < exp(—e~!) yields —loglog + < 1 and because x + 1 < exp(z) forall z € R,
we find

KL[C : 7] + log ; < KL[¢: 7] + log% n %(log (log% +KLC: 7)) + 1) (62a)

j*

1 1 1
< KL[Q;W]+1og5+§(1ogg+KL[< : 7)) (62b)
- g(log%JrKL[g : 1) (62¢)
We can now use the bounds and in (33b) to bound the expected generalization error
Ujr | = 1 1
— < 2 2, - .
R(Q) = Ron (¢, D) = GLITDIB + - (log 57—+ KL ]) +-¢ (632)
< L 24, = - :
< S I8l + 5. (1og 5 +KL[C : 7)) +¢ (63b)
1, _~ log: + KL[C : 7 3~ log+ +KL[C: 7
< 2||r62\/ s T g BT (3o
m 2 2m
~ log L + KL[(: 7
= 2||F52\/ 23 SR (63d)
2m

Note that 5* would attain the optimal value

KL[( : 7] + log 4
2m

R(C) = Rm(¢; D) < ||F5|2\/ +¢ (64)

which only differs from the above uniform bound by a factor of two. Finally, recall I' = ”—Z”D where
D has entries (17).

B Additional Lemmata

Lemma 9. Let T: Q — Q be a measurable function on a measurable space (§,%) and let v, i
be measures on Q with Tyv = . Let B € X be a fixed set with i(B) > 0 and A = T~1(B) its
preimage under T'. Then

Ty(v]4) = |B. (65)

Proof. Let S € ¥ be arbitrary and let ;z = Ty(v|A). Then

[i(S) = (v|A)(T~H(S)) = A (66)
as well as . TSN B

(lB)(s) = MO — P 67
Note that

reTHSYNT'(B) © T(x) e SAT(zx)eB < T(x) e SNB < €T (SN B) (68)

thus T-1(S)NT~Y(B) = T~1(S N B) and consequently /1(S) = (1| B)(S). Since S was arbitrary,
this shows the assertion. O

17



570
571
572
573

574
575

576
577

578

The following theorem exists in various forms in the literature. To make this paper self-contained, we
recite the version in [34] which is used to bound moment-generating functions in Proposition 4. Note
that we only use the MGF bound (69) in our analysis. However, the concentration inequality
also holds analogously under the assumptions of Proposition 4 which may be of independent interest.

Theorem 10 (Azuma-Hoeffding [34, Theorem 4.1]). Let (M )¢, be a martingale difference
sequence with respect to a filtration (X;);c[m) of sigma algebras. Suppose that for each i € [m] there

exist X3, _1-measurable random variables AW BO such that AW < M@ < B glmost surely.
Then for all A € R it holds that

2
E[exp (A Z M(i))} < exp (% Z |B®) — A(i)Hio) (69)
i€[m] i€[m]

and consequently, for any t > 0

(5

i€[m]

22 )
icim 1BY — AO|Z /-

> t) < 2exp ( — (70)
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