
A Full Proofs of Presented Results490

In this appendix, we present full proofs of all results which are not already complete in the main text.491

Proof of Theorem 4 For any i ∈ [d] and x ∈ Zd define492

M (i) = EX∼µ[f(X)|Bc, X [i] = x[i]]− EX∼µ[f(X)|Bc, X [i−1] = x[i−1]] . (26)

with the edge case493

M (1) = EX∼µ[f(X)|Bc, X1 = x1]− EX∼µ[f(X)|Bc] (27)

Due to EX∼µ[f(X)|Bc, X = x] = f(x) for x ∈ Bc we have494

f − EX∼µ[f(X)|Bc] =

d∑

i=1

M (i) (28)

Since the conditions X [i] = x[i] generate a nested sequence of σ-algebras, the quantities495

K(i+1)f(x) = Eµ[f(X)|Bc, X [i] = x[i]] are a Doob martingale and (26) is a martingale differ-496

ence sequence. In order to bound the moment generating function of f , we will bound every M (i)
497

from above and below and apply the Azuma-Hoeffding theorem [34, Theorem 4.1]. We have498

M (i) = Eµ[f(X)|Bc, X [i] = x[i]]− Eµ[f(X)|Bc, X [i−1] = x[i−1]] (29a)

= Eµ[f(X)|Bc, X [i] = x[i]]− Eµ[Eµ[f(X)|Bc, X [i−1] = x[i−1], Xi]|B
c, X [i−1] = x[i−1]]

(29b)

=

∫
f(x[i]y(i,d])µ(dy(i,d]|x[i],Bc)

−

∫ (∫
f(x[i]u(i,d])µ(du(i,d]|x[i−1], yi,B

c)
)
µ(dy[i,d]|x[i−1],Bc) (29c)

by the tower property of conditional expectations. Because µ(dy[i,d]|x[i−1],Bc) is a probability499

measure, it holds500

∫
f(x[i]y(i,d])µ(dy(i,d]|x[i],Bc) =

∫ (∫
f(x[i−1]xiu

(i,d])µ(du(i,d]|x[i],Bc)
)
µ(dy[i,d]|x[i−1],Bc)

(30)
and we find501

M (i) =

∫
µ(dy[i,d]|x[i−1],Bc)

(∫
f(x[i−1]xiu

(i,d])µ(du(i,d]|x[i],Bc)

−

∫
f(x[i]u(i,d])µ(du(i,d]|x[i−1], yi,B

c)
)

(31)

Now bound A(i) ≤ M (i) ≤ B(i) almost surely with502

A(i) =

∫
µ(dy[i,d]|x[i−1],Bc) inf

xi∈Bc

i
(x[i−1])

(∫
f(x[i−1]xiu

(i,d])µ(du(i,d]|x[i],Bc)

−

∫
f(x[i]u(i,d])µ(du(i,d]|x[i−1], yi,B

c)
)

(32a)

B(i) =

∫
µ(dy[i,d]|x[i−1],Bc) sup

xi∈Bc

i
(x[i−1])

(∫
f(x[i−1]xiu

(i,d])µ(du(i,d]|x[i],Bc)

−

∫
f(x[i]u(i,d])µ(du(i,d]|x[i−1], yi,B

c)
)

(32b)

where Bc
i (x

[i−1]) contains all xi ∈ Z such that there exist x(i,d] ∈ Zd−i with (x[i−1], xi, x
(i,d]) ∈ Bc.503

Because every realization of a random variable conditioned on Bc is in the set of good inputs, the504

difference ∥B(i) −A(i)∥∞ can be written as505

sup
x,z∈Bc,x[d]\{i}=z[d]\{i}

∫
f(x[i]u(i,d])µ(du(i,d]|x[i],Bc)−

∫
f(z[i]u(i,d])µ(du(i,d]|z[i],Bc) (33)
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By seeing this expression in terms of oscillation of the kernel action K(i+1)f , we find506

∥B(i) −A(i)∥∞ ≤ ∥ρ∥δi(K
(i+1)f̃) ≤ ∥ρ∥(V (i+1)δ(f̃))i = (Γδ(f̃))i (34)

where f̃ : Bc → R is the restriction of f to Bc. The assertion then follows from the Azuma-Hoeffding507

theorem [34, Theorem 4.1] which we recite as Theorem 10 to make this paper self-contained.508

Proof of Proposition 6 For arbitrary z, z′ ∈ Zd it holds509

|f(z)− f(z′)| ≤ δj(f)ρ(zj , z
′
j), ∀ i ∈ [d] (35)

and thus, by summing over all indices we get510

|f(z)− f(z′)| ≤
1

d

∑

j∈[d]

δj(f)ρ(zj , z
′
j) (36)

Let x, z ∈ Zd with x[d]\{i} = z[d]\{i} be given for some i ∈ [d]. Recall the action (8) of Markov511

kernels K(i+1) is an expected value with respect to conditional distributions µ(i,d](dy(i,d]|x[i]).512

Because νd has no atoms, νd|Ac also has no atoms. Therefore, there is a unique KR-rearrangement513

T̂ with T̂♯ν
d = νd|Ac. Then T̃ = T ◦ T̂ is a KR-rearrangement with514

T̃♯ν
d = µ|Bc (37)

by Lemma 9 and we have T̃ (x̂) = x. Lemma 3 implies515

µ(i,d](dy(i,d]|Bc, x[i]) = T̃ (x̂[i], ·)♯ν
d−i (38)

An analogous expression holds for the distribution conditioned on z. We have therefore found two516

transport functions pushing the reference measure to the respective conditional distributions. By517

Lemma 5, a coupling of the conditional distributions is then given by518

P [i]
x,z = (T̃ (i,d](x̂[i], ·), T̃ (i,d](ẑ[i], ·))♯ν

d−i (39)

Using a change of measure we find519

K(i+1)f(x)−K(i+1)f(z)

=

∫
P [i]
x,z(du

(i,d], dv(i,d])
(
f(x[i]u(i,d])− f(z[i]v(i,d])

)
(40)

=

∫ (
f(x[i]T̃ (i,d](x̂[i], τ))− f(z[i]T̃ (i,d](ẑ[i], τ))

)
νd−i(τ) (41)

≤
δi(f)

d
ρ(xi, zi) +

∑

j∈(i,d]

δj(f)

d

∫
ρ
(
T̃ (i,d](x̂[i], τ)j , T̃

(i,d](ẑ[i], τ)j
)
νd−i(τ) (42)

≤
δi(f)

d
ρ(xi, zi) +

∑

j∈(i,d]

δj(f)

d
Lijρ(xi, zi) (43)

which shows520

δi(K
(i+1)f) ≤

1

d

(
δi(f) +

∑

j∈(i,d]

Lijδj(f)
)

(44)

for good inputs. We have thus found a Wasserstein matrix V (i+1) for K(i+1) with entries521

V
(i+1)
ij =





0 if i > j

d−1 if i = j

d−1Lij if i < j

(45)

in row i which shows the assertion.522
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Proof of Theorem 7 For any hypothesis h ∈ H, we have523

R(h)−Rm(h,Dm) = EZ∼µ[L(h, Z)−Rm(h,Dm)] (46a)

= EZ∼µ

[(
L(h, Z)−Rm(h,Dm)

)
1{Z /∈ B}

]

+ EZ∼µ

[(
L(h, Z)−Rm(h,Dm)

)
1{Z ∈ B}

]
(46b)

≤ EZ∼µ

[(
L(h, Z)−Rm(h,Dm)

)
1{Z /∈ B}

]
+ ξ (46c)

≤ EZ∼µ|Bc [L(h, Z)]−Rm(h,Dm) + ξ (46d)

where in (46c) we have used that pointwise loss is in [0, 1]. Note that the underlying distribution of524

the risk R(h) is µ, while Dm are drawn from µ|Bc. The above inequality reconciles this such that525

a concentration argument for the conditional distribution becomes applicable. For any PAC-Bayes526

posterior distribution ζ and any β > 0, this implies527

R(ζ)−Rm(ζ,Dm) = Eh∼ζEZ∼µ[L(h, Z)−Rm(h,Dm)] (47a)

≤ Eh∼ζ

[
EZ∼µ|Bc [L(h, Z)]−Rm(h,Dm)

]
+ ξ (47b)

=
1

β
Eh∼ζ

[
β(EZ∼µ|Bc [L(h, Z)]−Rm(h,Dm))

]
+ ξ (47c)

≤
1

β
logEh∼π

[
exp

(
β(EZ∼µ|Bc [L(h, Z)]−Rm(h,Dm))

)]

+
1

β
KL[ζ : π] + ξ (47d)

by Donsker and Varadhan’s variational formula [2, Lemma 2.2]. Focusing on the first term, we find528

exp
(
β(EZ∼µ|Bc [L(h, Z)]−Rm(h,Dm))

)
= exp

( β

m

∑

k∈[m]

(
EZ∼µ|Bc [L(h, Z)]− L(h, Z(k))

))

(48a)

=
∏

k∈[m]

exp
( β

m

(
EZ∼µ|Bc [L(h, Z)]− L(h, Z(k))

))

(48b)

Each structured datum Z(k) is drawn independently from µ|Bc. By Proposition 6 there exists a529

Wasserstein dependency matrix Γ = ∥ρ∥
d
D for µ|Bc where D has entries (17). Then530

EDm∼(µ|Bc)m

∏

k∈[m]

exp
( β

m

(
EZ∼µ|Bc [L(h, Z)]− L(h, Z(k))

))

=
∏

k∈[m]

EZ(k)∼(µ|Bc) exp
( β

m

(
EZ∼µ|Bc [L(h, Z)]− L(h, Z(k))

))

(49a)

=
∏

k∈[m]

EZ(k)∼µ|Bc

[
exp

( β

m

(
EZ∼µ|Bc [L(h, Z)]− L(h, Z(k))

))]

(49b)

≤
∏

k∈[m]

exp

(
β2

8m2
∥Γδ(L̃(h, ·))∥22

)
by Theorem 4 (49c)

= exp

(
β2

8m
∥Γδ(L̃(h, ·))∥22

)
(49d)

≤ exp

(
β2

8m
∥Γδ̃∥22

)
(49e)

Denote the shorthand531

U = EDm∼(µ|Bc)m
[
exp

(
β(EZ∼µ|Bc [L(h, Z)]−Rm(h,Dm))

)]
(50)
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By Markov’s inequality it holds532

PDm∼(µ|Bc)m

[
exp

(
β(EZ∼µ|Bc [L(h, Z)]−Rm(h,Dm))

)
≥

1

δ
U

]
≤ δ (51)

and combining this with (49) we have533

exp
(
β(EZ∼µ|Bc [L(h, Z)]−Rm(h,Dm))

)
≤

1

δ
exp

(
β2

8m
∥Γδ̃∥22

)
(52)

with probability at least 1− δ over the sample. Using (47) we thus have534

R(ζ)−Rm(ζ,Dm) ≤
1

β

(
logEh∼π

[1
δ
exp

(
β2

8m
∥Γδ̃∥22

)]
+KL[ζ : π]

)
+ ξ (53a)

=
β

8m
∥Γδ̃∥22 +

1

β

(
log

1

δ
+KL[ζ : π]

)
+ ξ (53b)

Ideally, we would minimize the right hand side with respect to β. However, this would mean to have535

β depend on ζ and we thus would not have a uniform bound for all posterior distributions.536

Instead, [37] approaches the problem by defining a sequence of constant (δj , βj)j∈N0 and bounding537

the probability that the bound does not hold for any sequence element. Since in the opposite (high-538

probability) case, the bound holds for all sequence elements, an optimal one can subsequently be539

chosen dependent on the posterior.540

For all j ∈ N0, define541

δj = δ2−(j+1), βj = 2j

√
8m log 1

δ

∥Γδ̃∥22
(54)

which are independent of ζ. Now consider the event Ej that542

exp
(
βj(EX∼µ|Bc [ℓ(h,X)]−Rm(h,Dm))

)
≥

1

δj
exp

(
β2
j

8m
∥Γδ̃∥22

)
(55)

By the above argument leading up to (52), the probability for Ej under a random sample of the543

conditioned data distribution µ|Bc is at most δj . Therefore, the probability that any Ej occurs is544

bounded by545

P
( ⋃

j∈N0

Ej

)
≤
∑

j∈N0

P(Ej) ≤
∑

j∈N0

δj = δ (56)

Thus, for all posteriors ζ with probability at least 1 − δ none of the events (55) occurs. We may546

therefore select an index j dependent on ζ to obtain a sharper risk certificate which still holds with547

probability at least 1− δ over the sample conditioned on the good set. For a fixed posterior ζ, the548

optimizer of (53b) would be549

β∗ =
1

∥Γδ̃∥2

√
8m(log

1

δ
+KL[ζ : π]) (57)

Equating this to (55) and rounding down to the nearest integer gives550

j∗ =

⌊
1

2
log2

(
1 +

KL[ζ : π]

log 1
δ

)⌋
(58)

Denote this number before rounding by r, i.e. j∗ = ⌊r⌋. For any real number r it holds r − 1 ≤551

⌊r⌋ ≤ r. Therefore552

1

2

√
1 +

KL[ζ : π]

log 1
δ

= 2r−1 ≤ 2j
∗

≤ 2r =

√
1 +

KL[ζ : π]

log 1
δ

(59)

which gives the following bounds on uj∗553

1

2

√
8m(log 1

δ
+KL[ζ : π])

∥Γδ̃∥22
≤ uj∗ ≤

√
8m(log 1

δ
+KL[ζ : π])

∥Γδ̃∥22
(60)
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Likewise, we bound554

KL[ζ : π] + log
1

δj∗
= KL[ζ : π] + log

2

δ
+ j∗ log 2 (61a)

≤ KL[ζ : π] + log
2

δ
+

log 2

2
log2

(
1 +

KL[ζ : π]

log 1
δ

)
− log 2 (61b)

= KL[ζ : π] + log
1

δ
+

1

2
log
(
1 +

KL[ζ : π]

log 1
δ

)
(61c)

= KL[ζ : π] + log
1

δ
+

1

2
log
(
log

1

δ
+KL[ζ : π]

)
−

1

2
log log

1

δ
(61d)

The assumption δ ≤ exp(−e−1) yields − log log 1
δ
≤ 1 and because x+ 1 ≤ exp(x) for all x ∈ R,555

we find556

KL[ζ : π] + log
1

δj∗
≤ KL[ζ : π] + log

1

δ
+

1

2

(
log
(
log

1

δ
+KL[ζ : π]

)
+ 1
)

(62a)

≤ KL[ζ : π] + log
1

δ
+

1

2

(
log

1

δ
+KL[ζ : π]

)
(62b)

=
3

2

(
log

1

δ
+KL[ζ : π]

)
(62c)

We can now use the bounds (62c) and (60) in (53b) to bound the expected generalization error557

R(ζ)−Rm(ζ,Dm) ≤
uj∗

8m
∥Γδ̃∥22 +

1

uj∗

(
log

1

δj∗
+KL[ζ : π]

)
+ ξ (63a)

≤
uj∗

8m
∥Γδ̃∥22 +

3

2uj∗

(
log

1

δ
+KL[ζ : π]

)
+ ξ (63b)

≤
1

2
∥Γδ̃∥2

√
log 1

δ
+KL[ζ : π]

2m
+

3

2
∥Γδ̃∥2

√
log 1

δ
+KL[ζ : π]

2m
+ ξ (63c)

= 2∥Γδ̃∥2

√
log 1

δ
+KL[ζ : π]

2m
+ ξ (63d)

Note that β∗ would attain the optimal value558

R(ζ)−Rm(ζ,Dm) ≤ ∥Γδ̃∥2

√
KL[ζ : π] + log 1

δ

2m
+ ξ (64)

which only differs from the above uniform bound by a factor of two. Finally, recall Γ = ∥ρ∥
d
D where559

D has entries (17).560

B Additional Lemmata561

Lemma 9. Let T : Ω → Ω be a measurable function on a measurable space (Ω,Σ) and let ν, µ562

be measures on Ω with T♯ν = µ. Let B ∈ Σ be a fixed set with µ(B) > 0 and A = T−1(B) its563

preimage under T . Then564

T♯(ν|A) = µ|B . (65)

Proof. Let S ∈ Σ be arbitrary and let µ̃ = T♯(ν|A). Then565

µ̃(S) = (ν|A)(T−1(S)) =
ν(T−1(S) ∩A)

ν(A)
(66)

as well as566

(µ|B)(S) =
µ(S ∩B)

µ(B)
=

ν(T−1(S ∩B))

ν(A)
(67)

Note that567

x ∈ T−1(S)∩ T−1(B) ⇔ T (x) ∈ S ∧ T (x) ∈ B ⇔ T (x) ∈ S ∩B ⇔ x ∈ T−1(S ∩B) (68)

thus T−1(S) ∩ T−1(B) = T−1(S ∩B) and consequently µ̃(S) = (µ|B)(S). Since S was arbitrary,568

this shows the assertion.569
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The following theorem exists in various forms in the literature. To make this paper self-contained, we570

recite the version in [34] which is used to bound moment-generating functions in Proposition 4. Note571

that we only use the MGF bound (69) in our analysis. However, the concentration inequality (70)572

also holds analogously under the assumptions of Proposition 4 which may be of independent interest.573

Theorem 10 (Azuma-Hoeffding [34, Theorem 4.1]). Let (M (i))i∈[m] be a martingale difference574

sequence with respect to a filtration (Σi)i∈[m] of sigma algebras. Suppose that for each i ∈ [m] there575

exist Σi−1-measurable random variables A(i), B(i) such that A(i) ≤ M (i) ≤ B(i) almost surely.576

Then for all λ ∈ R it holds that577

E

[
exp

(
λ
∑

i∈[m]

M (i)
)]

≤ exp
(λ2

8

∑

i∈[m]

∥B(i) −A(i)∥2∞

)
(69)

and consequently, for any t ≥ 0578

P

(∣∣∣
∑

i∈[m]

M (i)
∣∣∣ ≥ t

)
≤ 2 exp

(
−

2t2∑
i∈[m] ∥B

(i) −A(i)∥2∞

)
. (70)
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