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A Optimization paths of neural networks are in RSI− ∩ EB+

In this section we present a short experiment motivating RSI− ∩ EB+ as useful assumptions for
the study of optimization of neural networks. The goal is to estimate whether the gradients seen by
training neural networks are interpolable by a function f ∈ RSI−∩EB+. We propose the following
process :

1. Set random seed S

2. Train a ResNet18 on CIFAR10 until convergence, and save the last iterate x∗

3. Reset random seed to S

4. Train a ResNet18 on CIFAR10, and at each iteration i, sample batch B and measure
RSIi =

⟨∇fB(xi)|xi−x∗⟩
∥xi−x∗∥2

2
and EBi =

∥∇fB(xi)∥2

∥xi−x∗∥2

Where ∇fB(x) is the gradient of the loss function on minibatch B, xi is the value of the weight at
iteration i, and x∗ is the value of the last iterate measured at step 2.

Due to resetting the seed to a same value, the two training runs will be identical. We consider the
last iterate x∗ to approximate a local minima, and RSIi and EBi will indicate whether the gradients
seen during optimization are compatible with RSI− ∩ EB+ with respect to that minima.

Even if the full-batch objective function that we intend to optimize is in RSI− ∩EB+, it is possible
for RSIi to be negative due to the variance w.r.t the sampling of the minibatch B. However, we
observe empirically that despite this, RSIi is lower bounded by a strictly positive value for every
single iteration, without exception. This behavior is consistent across optimization algorithms (LARS,
SGD without momentum, SGD with momentum, and ADAM) and initializations. For simplicity,
we present here the results using SGD without momentum, with learning rate 0.1 and batch size
|B| = 1000, and train for 360 epochs.

Results: we report the log of training loss in Figure 3 and the measured RSIi and EBi in Figure 4.
Moreover, in order to better observe the behavior of RSIi and EBi outside of the initial peak, we
report in Figure 5 the measured RSIi and EBi starting at epoch 30. We observe that EBi is upper
bounded by L = 2.303 and RSIi is lower bounded by µ = 0.0010, with a resulting condition number
κ = L

µ = 2196.0. Both have a significant peak at the beginning of training, justifying the popular use
of learning rate warm-ups. When measuring bounds after epoch 30, we obtain L = 0.2308 resulting
in a condition number κ = 220.1.

Surprisingly, despite the variance induced by minibatch sampling, the observed RSIi are all lower
bounded by µ = 0.0010 > 0. In particular, due to the necessary and sufficient conditions of
RSI− ∩EB+ (See Section 4), it is guaranteed that there exists a function f ∈ RSI− ∩EB+ which
exactly interpolates the gradients seen by the optimizer. And therefore, the convergence guarantees
of RSI− ∩ EB+ naturally apply to the optimization of neural networks in this setting.

Note that we do not claim that the objective function is in RSI− ∩ EB+, which seems unlikely, but
that the iterates explored by first-order algorithms are interpolable by functions in RSI− ∩ EB+,
including when sampling only part of the objective function through minibatches. This result strongly
motivates the study of RSI− ∩ EB+ as its guarantees apply to the optimization of neural network
under assumptions empirically verified (at least in this simple setting).
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Figure 3: log-loss throughout training.

Figure 4: RSIi (right) and EBi (left) throughout training from epoch 0 to 360.

Figure 5: RSIi (right) and EBi (left) throughout training from epoch 30 to 360.

B Proof of Theorem 1

We start with two simple lemmas

Lemma 2 Let X∗ be a closed convex set, and x∗ ∈ X∗ be the orthogonal projection of x onto
X∗. Then for any y ∈ X∗,

⟨x∗ − y | x− x∗⟩ ≥ 0 (16)
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Proof. Let y ∈ X∗.

For θ ∈ [0, 1],
let h(θ) = ∥x− ((1− θ)x∗ + θy)∥22 = ∥x− x∗∥22 + 2θ ⟨x− x∗ | x∗ − y⟩+ θ2 ∥x∗ − y∥22.

h is differentiable and

h′(θ) = 2 ⟨x− x∗ | x∗ − y⟩+ 2θ ∥x∗ − y∥22 (17)

Since x∗ is the orthogonal projection of x onto X∗ and ∀θ ∈ [0, 1], (1− θ)x∗ + θy ∈ X∗, we have
∀θ ∈ [0, 1], h(θ) ≥ h(0), and thus h′(0) ≥ 0. This concludes the proof of the Lemma thanks to (17).

■

Lemma 3 If x and xi are two points with respective orthogonal projections x∗ and x∗
i on a

closed convex set, then

∥x− x∗ − (xi − x∗
i )∥2 ≤ 2 ∥x− xi∥2 (18)

Proof. As the case x∗ = x∗
i is trivial, we may assume that x∗ ̸= x∗

i .

Using lemma 2 twice, we get

0 ≤ ⟨x− x∗ | x∗ − x∗
i ⟩ (19)

0 ≤ ⟨xi − x∗
i | x∗

i − x∗⟩ = ⟨x∗
i − xi | x∗ − x∗

i ⟩ (20)

Adding the two inequalities, we get that

0 ≤ ⟨x− x∗ − xi + x∗
i | x∗ − x∗

i ⟩ = ⟨x− xi | x∗ − x∗
i ⟩ − ∥x∗ − x∗

i ∥
2
2

≤ ∥x− xi∥2 ∥x
∗ − x∗

i ∥2 − ∥x∗ − x∗
i ∥

2
2 (21)

Since x∗ ̸= x∗
i , we obtain

∥x∗ − x∗
i ∥2 ≤ ∥x− xi∥2 (22)

And thus
∥x− x∗ − (xi − x∗

i )∥2 ≤ ∥x− xi∥2 + ∥x∗ − x∗
i ∥2 ≤ 2 ∥x− xi∥2 (23)

■

We now move on to the proof of Theorem 1, that is :

Let (xi, gi)i≤n ∈
(
Rd × Rd

)n+1
, such that the xi are separate points.

Then, ∀µ,L > 0:
∃f ∈ RSI−(µ) ∩ EB+(L), s.t. ∀i, ∇f(xi) = gi

⇕

∃X∗ ⊆ Rd convex, s.t. ∀i,

∥gi∥2 ≤ L ∥xi − x∗
i ∥2 and ⟨gi | xi − x∗

i ⟩ ≥ µ ∥xi − x∗
i ∥

2
2

(24)

Where x∗
i is the orthogonal projection of xi onto X∗.

Proof. The direct implication is trivial since the second property is simply the application of RSI−

and EB+ in each xi. Let us now assume that (7) is verified.

First, let us note that if L = µ, then we have ∀i, gi = µ(xi − x∗
i ) and thus we can easily interpolate

the (xi, gi) using f(x) = µ
2 ∥x− x∗∥22. We now assume L > µ.

If there is only one pair (xi, gi), then we can simply use f(x) = ⟨gi | x− xi⟩+ µ+L
4 ∥x− xi∥22 to

interpolate (xi, gi). f is then µ-strongly convex and L-smooth so it is also in RSI−(µ) and EB+(L).
Let us now assume there are at least two pairs (xi, gi)i. Let
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ϵ0 =
1

2
min
i ̸=j

(∥xi − xj∥2) > 0 (25)

By construction,

∀x ∈ Rd, (∃i, ∥x− xi∥2 < ϵ0) ⇒ ∀j ̸= i, ∥x− xj∥2 ≥ ϵ0 (26)

Moreover, if ∀i, xi ∈ X∗, we can simply take f(x) = µ
2 ∥x− x∗∥22. Otherwise, let

I = {i | xi ̸= x∗
i }, and let ϵ1 = 1

2 mini∈I(∥xi − x∗
i ∥2) > 0

Let ϵ < min(ϵ0, ϵ1) and 0 < β < 1
2 . We introduce the function λϵ,β from [0, ϵ] to [0, 1] defined by :

λϵ,β(u) =
1 + cos

(
π uβ

ϵβ

)
2

(27)

We finally introduce our interpolation function :

fϵ,β(x) =

{
µ+L
4 ∥x− x∗∥22 if ∀i, ∥x− xi∥2 ≥ ϵ

µ+L
4 ∥x− x∗∥22 + λϵ,β (∥x− xi∥2)

〈
gi − µ+L

2 (xi − x∗
i ) | x− xi

〉
if ∃i, ∥x− xi∥2 < ϵ

(28)

First let us note that fϵ,β is properly defined : as stated in (26), there may be at most one i such that
∥x− xi∥2 < ϵ. Moreover, fϵ,β is continuous because λϵ,β(ϵ) = 0.

Since λϵ,β(ϵ) = 0 and λ′
ϵ,β(ϵ) = 0, we can easily verify that for x such that ∥x− xi∥2 = ϵ, fϵ,β is

differentiable in x with ∇fϵ,β(x) =
µ+L
2 (x−x∗). Thus fϵ,β is differentiable on Rd. For any x ∈ Rd

such that ∀i, ∥x− xi∥2 ≥ ϵ, we have ∇fϵ,β(x) =
µ+L
2 (x− x∗) and thus trivially

⟨∇fϵ,β(x) | x− x∗⟩ = µ+ L

2
∥x− x∗∥22 ≥ µ ∥x− x∗∥22 (29)

∥∇fϵ,β(x)∥ =
µ+ L

2
∥x− x∗∥2 ≤ L ∥x− x∗∥2 (30)

Let us now assume there is i such that ∥x− xi∥2 < ϵ. If xi = x∗
i , then gi = 0 and ∇f(x) =

µ+L
4 (x− x∗) and equations (29) and (30) are respected as well. Otherwise, we have ∥x− x∗∥2 ≥

mini∈I(∥xi − x∗
i ∥2)− ϵ = ϵ1 − ϵ > 0

We then have, for x ̸= xi:

∇fϵ,β(x) =
µ+ L

2
(x− x∗) + λϵ,β (∥x− xi∥2)

(
gi −

µ+ L

2
(xi − x∗

i )

)
+ λ′

ϵ,β (∥x− xi∥2)
x− xi

∥x− xi∥2

〈
gi −

µ+ L

2
(xi − x∗

i ) | x− xi

〉
= (1− λϵ,β (∥x− xi∥2))

µ+ L

2
(x− x∗) + λϵ,β(∥x− xi∥2)gi

+ λϵ,β(∥x− xi∥2)
µ+ L

2
(x− x∗ − (xi − x∗

i ))

− π

2

∥x− xi∥β2
ϵβ

β(x− xi)

∥x− xi∥22
sin(π

∥x− xi∥β2
ϵβ

)

〈
gi −

µ+ L

2
(xi − x∗

i ) | x− xi

〉
(31)

Since X∗ is a convex set (and closed by continuity of fϵ,β), we have from Lemma 3
∥(x− x∗ − (xi − x∗

i ))∥2 ≤ 2 ∥x− xi∥2.
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To simplify notations, let us note u = ∥x− xi∥2, λ = λϵ,β(u), and

r = −π
2
uβ

ϵβ
β(x−xi)

u2 sin(π uβ

ϵβ
)
〈
gi − µ+L

2 (xi − x∗
i ) | x− xi

〉
.

We first want to upper bound ∥∇fϵ,β∥2 using (31):

∥∇fϵ,β(x)∥2 ≤ (1− λ)
µ+ L

2
∥x− x∗∥2 + λ ∥gi∥2 + (µ+ L)λu+ ∥r∥2

≤ (1− λ)
µ+ L

2
∥x− x∗∥2 + λL (∥x− x∗∥2 + ∥xi − x∗

i ∥ − ∥x− x∗∥) + (µ+ L)λu+ ∥r∥2

≤ L ∥x− x∗∥2 − (1− λ)
L− µ

2
∥x− x∗∥2 + (µ+ 3L)λu+ ∥r∥2

(32)

Moreover, the 3rd order remainder of the Taylor expansion of cos(π uβ

ϵβ
) is cos(c)

4! (π4 u4β

ϵ4β
) for some c

in [0, π u
ϵ ] and by upper bounding it we get cos(π uβ

ϵβ
) ≤ 1− π2u2β

2ϵ2β
+ π4u4β

24ϵ4β
and thus, for u

ϵ ≤ 1,

−(1− λ)
L− µ

2
∥x− x∗∥2 ≤

(
−π2u2β

4ϵ2β
+

π4u4β

48ϵ4β

)
L− µ

2
∥x− x∗∥2

≤ −C0
u2β

ϵ2β

(33)

with C0 =
(

π2

4 − π4

48

)
L−µ
2 ϵ1 > 0

Furthermore, since 2β < 1 and u
ϵ ≤ 1, we can also bound

(µ+ 3L)λu ≤ ϵ(µ+ 3L)
u

ϵ
≤ ϵC1

u2β

ϵ2β
(34)

with C1 = µ+ 3L > 0

Finally, we can bound the last term using sin(x) ≤ |x|

∥r∥2 ≤ β
π2

2

3L+ µ

2
∥xi − x∗

i ∥2
u2β

ϵ2β

≤ βC2
u2β

ϵ2β

(35)

with C2 = π2

2
3L+µ

2 maxi(∥xi − x∗
i ∥2)

Finally, by choosing ϵ ≤ C0

2C1
and β ≤ C0

2C2
, and plugging (33), (34), (35) into (32), we get :

∥∇fϵ,β(x)∥2 ≤ L ∥x− x∗∥2

It only remains now to adequately lower bound ⟨∇fϵ,β(x) | x− x∗⟩. We use the same method as
before and keep the notations :
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⟨∇fϵ,β(x) | x− x∗⟩ = (1− λ)
µ+ L

2
∥x− x∗∥22 + λ ⟨gi | x− x∗⟩

+ λ
µ+ L

2
⟨x− x∗ − (xi − x∗

i ) | x− x∗⟩+ ⟨r | x− x∗⟩

≥ (1− λ)
µ+ L

2
∥x− x∗∥22 + λµ ∥xi − x∗

i ∥
2
2 + λ ⟨gi | x− x∗ − (xi − x∗

i )⟩

− λ(µ+ L)u ∥x− x∗∥2 − ∥r∥2 ∥x− x∗∥2

≥ (1− λ)
µ+ L

2
∥x− x∗∥22 − (1− λ)µ ∥x− x∗∥22 + µ ∥x− x∗∥22

+ λµ
(
∥xi − x∗

i ∥
2
2 − ∥x− x∗∥22

)
− 2uλ ∥gi∥2

− λ(µ+ L)u ∥x− x∗∥2 − ∥r∥2 ∥x− x∗∥2

≥ µ ∥x− x∗∥22 + C0
u2β

ϵ2β
− 2µu(2 ∥xi − x∗

i ∥2 + u)

− 2ϵλL ∥xi − x∗
i ∥2

u

ϵ
− ϵλ(µ+ L) ∥x− x∗∥2

u

ϵ
− βC2 ∥x− x∗∥2

u2β

ϵ2β

≥ µ ∥x− x∗∥22 + (C0 − ϵM0 − βM1)
u2β

ϵ2β
(36)

With M0 = 4(µ+ L)maxi(∥xi − x∗
i ∥2) + (L+ 3µ)ϵ1 > 0

and M1 = C2(maxi(∥xi − x∗
i ∥2) + ϵ1) > 0

Therefore by taking ϵ ≤ C0

2M0
and β ≤ C0

2M1
, we guarantee

⟨∇fϵ,β(x) | x− x∗⟩ ≥ µ ∥x− x∗∥22
Finally, for any i, we have :

∥x− xi∥2 λ
′
ϵ,β(∥x− xi∥2) = −π

2

∥x− xi∥β2
ϵβ

β(x− xi)

∥x− xi∥2
sin(π

∥x− xi∥β2
ϵβ

) (37)

Which goes to 0 as x tends to xi. Therefore using the definition of fϵ,β in (28) and the fact that〈
gi − µ+L

2 (xi − x∗
i ) | x− xi

〉
is linear in x− xi, we can conclude ∇fϵ,β(xi) =

µ+L
2 (xi − x∗

i ) +

λϵ,β(0)(gi − µ+L
2 (xi − x∗

i )) = gi.

We thus have proven that for sufficiently small ϵ and β, ∀i,∇fϵ,β(xi) = gi, that for all x,
⟨∇fϵ,β(x) | x− x∗⟩ ≥ µ ∥x− x∗∥22 and ∥∇fϵ,β(x)∥2 ≤ L ∥x− x∗∥2. Therefore by definition,
fϵ,β is in RSI−(µ) ∩ EB+(L) and interpolates the xi, gi.

Which concludes the proof.

■

C Proof of Lemma 1

Let µ > 0 and L > µ. Let α0 ∈
[

µ
L2 ,max

(
µ
L2 ,

1
2µ

)]
. For any first-order optimization algorithm

A and starting point x0 ∈ Rd, there exists (gi)i≤(d−2) ∈ Rd, (fi)i≤(d−2) ∈ R and Sd−2 ⊆ Sd−1 ⊆
· · · ⊆ S0 ⊆ Rd such that:

1. ∀i ≤ d − 2, there exists a (d − i − 1)-dimensional affine space Hi containing Si and in

which Si is a (d − i − 2)-sphere of radius ri =
√

α0

µ − α2
0 ∥g0∥2

(
1− µ2

L2

) i
2

and center
ci ∈ Hi.
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2. Let (xi)i the iterates generated by A starting from x0 and reading gradients (gi)i and
function values (fi)i, then for any i ≤ d − 2 and any x ∈ Si, there exists a function f in
RSI−(µ) ∩ EB+(L) minimized by {x} that interpolates (xj , fj , gj)j≤i.

Proof. For any first-order optimization algorithm A and starting point x0, we are going to construct
by induction the sequences (gi)i, (fi)i and (Si)i.

Initialisation: Let g0 ∈ Rd \ {0}. We can take any non-zero gradient as initialisation. Let
c0 = x0 − α0g0, f0 = µ+L

4µ α0 ∥g0∥22, and

H0 = {x ∈ Rd | ⟨x− c0 | g0⟩ = 0}

H0 is an hyperplane with dimension d− 1, and we finally introduce

S0 =

{
x ∈ H0 | ∥x− c0∥2 =

√
α0

µ
− α2

0 ∥g0∥2

}
By construction, c0 ∈ H and S0 is the (d − 2)-sphere in H0 of center c0 and radius r0 =√

α0

µ − α2
0 ∥g0∥2. Moreover, let x∗ ∈ S0. We have

∥x∗ − x0∥22 = ∥x∗ − c0 + c0 − x0∥22 = r20 + α2
0 ∥g0∥

2
2 =

α0 ∥g0∥22
µ

And thus f0 = µ+L
4 ∥x∗ − x0∥22. We also have :

⟨g0 | x0 − x∗⟩ = ⟨g0 | x0 − c0⟩+ ⟨g0 | c0 − x∗⟩ = α0 ∥g0∥22 + 0 = µ ∥x0 − x∗∥22
Finally, since α0 ≥ µ

L2 ,

∥g0∥22 =
µ

α0
∥x0 − x∗∥22 ≤ L2 ∥x0 − x∗∥22

. Therefore all the sufficient conditions of Corollary 1 are verified, and there exists f ∈ RSI−(µ) ∩
EB+(L) which is minimized by {x∗} and interpolates (x0, f0, g0). This concludes the initialization.

Induction: Let us assume the existence of such (fj)j , (gj)j and (Sj)j up to step i ≤ d− 3. Let xi+1

be the iterate given by A after reading iterates (xj)j , function values (fj)j , and gradients (gj)j , let
Hi the (d− i− 1)-dimensional affine space in which Si is a sphere, and let ci ∈ Hi the center of the
sphere Si.

If there exists j ≤ i such that xi+1 = xj , then we simply return gi+1 = gj and fi+1 = fj . We can
take as Si+1 any (d− i− 2)-dimensional sphere of radius ri+1 included in Si, Hi+1 its supporting
affine space and ci+1 its center. We now assume ∀j ≤ i, xi+1 ̸= xj .

Let hi+1 the orthogonal projection of xi+1 into Hi. If hi+1 ̸= ci, let v = (hi+1−ci)
∥hi+1−ci∥2

. If hi+1 = ci,

let s ∈ Si and v = (s−ci)
∥s−ci∥2

.

Let
ci+1 = ci −

µ

L
riv

fi+1 =
µ+ L

4
(∥xi+1 − ci+1∥22 + (1− µ2

L2
)r2i )

gi+1 = L
∥xi+1 − x∗∥2
∥xi+1 − ci+1∥2

(xi+1 − ci+1)

Hi+1 =
{
x ∈ Hi | ⟨x− ci | v⟩ = −µ

L
ri

}
Si+1 = Si ∩Hi+1
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v is the difference between two points of Hi, therefore it is one of the direction of Hi, and since
ci ∈ Hi, Hi+1 indeed defines an affine subspace of Hi of dimension (d− i− 2). Let C the sphere in

Hi+1 of center ci+1 ∈ Hi+1 and radius ri+1 =
√

1− µ2

L2 ri. We now want to prove that C = Si+1.

First, let x ∈ Hi+1. Then

⟨x− ci+1 | v⟩ =
〈
x− ci +

µ

L
riv

∣∣∣ v〉
= ⟨x− ci | v⟩+

µ

L
ri

= −µ

L
ri +

µ

L
ri = 0 (38)

i) First, we show that C ⊆ Si+1. Let x ∈ C

∥x− ci∥22 =
∥∥∥x− ci+1 −

µ

L
riv

∥∥∥2
2

= ∥x− ci+1∥22 +
µ2

L2
r2i − 2

µ

L
ri ⟨x− ci+1 | v⟩

= ∥x− ci+1∥22 +
µ2

L2
r2i using (38) since x ∈ C ⊆ Hi+1

= (1− µ2

L2
)r2i +

µ2

L2
r2i

= r2i (39)

since x ∈ Hi+1 ⊆ Hi and ∥x− ci∥2 = ri, x ∈ Si and therefore x ∈ Si+1

ii) Conversely, we show that Si+1 ⊆ C. Let x ∈ Si+1.

r2i = ∥x− ci∥22 as x ∈ Si+1 ⊆ Si

=
∥∥∥x− ci+1 −

µ

L
riv

∥∥∥2
2

= ∥x− ci+1∥22 +
µ2

L2
r2i − 2

µ

L
ri ⟨x− ci+1 | v⟩

= ∥x− ci+1∥22 +
µ2

L2
r2i using (38) since x ∈ Si+1 ⊆ Hi+1 (40)

from which we obtain that

∥x− ci+1∥22 = r2i+1 (41)

So x ∈ Hi+1 and ∥x− ci+1∥2 = ri+1, thus x ∈ C. We have thus proved that Si+1 is indeed a
(d− i− 3)-sphere in a (d− i− 2) affine space with the desired radius and center which concludes
the first item of the induction.

We now want to prove the second item. For x∗ ∈ Si+1, xi+1 − hi+1 is orthogonal to Hi+1 due
to being orthogonal to Hi by construction. hi+1 − ci+1 is aligned with v and thus is orthogonal to
Hi+1. Therefore, their sum xi+1 − ci+1 is orthogonal to Hi+1 and we get

∥xi+1 − x∗∥22 = ∥xi+1 − ci+1∥22 + ∥ci+1 − x∗∥22
= ∥xi+1 − ci+1∥22 + r2i+1

(42)

And thus
fi+1 =

µ+ L

4
∥xi+1 − x∗∥22 (43)

Let x∗ ∈ Si+1. Since Si+1 ⊆ Si, then by recurrence hypothesis there exists an interpolation of the
(xj , fj , gj) in RSI−(µ) ∩ EB+(L) minimized by x∗, hence from Theorem 1,

∀j ≤ i, ∥gj∥2 ≤ L ∥xj − x∗∥2 and ⟨gj | xj − x∗⟩ ≥ µ ∥xj − x∗∥22 (44)
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Moreover, by construction of gi+1,

∥gi+1∥2 = L ∥xi+1 − x∗∥2 (45)

Since xi+1 − ci+1 is orthogonal to Hi+1 and thus to ci+1 − x∗, we have

⟨xi+1 − ci+1 | xi+1 − x∗⟩ = ∥ci+1 − x∗∥22 (46)

Besides, xi+1 − ci+1 is orthogonal to ci+1 − x∗ and thus

∥xi+1 − x∗∥22 = ∥xi+1 − ci+1 + ci+1 − x∗∥22 = ∥xi+1 − ci+1∥22 + r2i+1 (47)

By construction,

∥ci+1 − xi+1∥2 ≥ ∥ci+1 − hi+1∥2
= ∥ci+1 − ci + ci − hi+1∥2
=

∥∥∥−µ

L
riv − ∥hi+1 − ci∥2 v

∥∥∥
2

=
µ

L
ri + ∥hi+1 − ci∥2

≥ µ

L
ri

(48)

and finally :

⟨gi+1 | xi+1 − x∗⟩2

µ2 ∥xi+1 − x∗∥42
=

L2

µ2

⟨xi+1 − ci+1 | xi+1 − x∗⟩2

∥xi+1 − x∗∥22 ∥xi+1 − ci+1∥22

=
L2

µ2

∥xi+1 − ci+1∥22
∥xi+1 − x∗∥22

using (46)

=
L2

µ2

∥xi+1 − ci+1∥22
∥xi+1 − ci+1∥22 + r2i+1

using (47)

≥ L2

µ2

µ2

L2 r
2
i

µ2

L2 r2i + (1− µ2

L2 )r2i
using (48)

= 1

(49)

And thus

⟨gi+1 | xi+1 − x∗⟩ ≥ µ ∥xi+1 − x∗∥22 (50)

Since ∀j ≤ i, x∗ ∈ Sj , we also have

fj =
µ+ L

4
∥xj − x∗∥22 (51)

We finally apply Corollary 1 to all unique triples (xj , fj , gj)j≤i+1 (which ensures by construction
that all xj are distincts) which allows us to conclude from (43), (45), (44), (50) and (51) that there
exists an interpolation in RSI−(µ) ∩ EB+(L) that is minimized by {x∗}, proving the second item
of the induction and thus concluding the proof.

■
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