
● Consider the generator as a composition of blocks. Each block may contain 
convolutions, upsample, batch norm, etc.

● Generator Surgery (GS): Remove the first c blocks of the generator. 
Recover images by projection onto range of the new model. 

 Main Results
● We select the cut index c based on 100 CelebA validation 

images. Recovery quality is roughly a concave function of c. 

● The generator's trained weights contribute to recovery quality: 
reinitializing weights after surgery is harmful to performance.

● Samples from the uncut generator have zero representation 
error. Gradient descent converges with negligible error in this 
case.

● We find promising results using test-time modifications for 
image recovery.

● Surprisingly, GS allows models trained on CelebA to recover 
images from COCO with high quality.

● Our method trades the model's generative sampling 
procedure for increased recovery quality.
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● We study compressed sensing of images under generative priors.  
○ Goal: recover images from noisy undersampled measurements.
○ Unique recovery is possible under prior assumptions on image.
○ CS with Generative Models (CSGM): assume images are sampled from a 

generative model (e.g. GAN, VAE, etc). 

●  Procedure: project noisy measurements onto range of model.
○ Given measurement matrix    , noise     , generator        a :          

● Intuition: of all images consistent with measurements, use a generative model to 
decide which looks most natural.

● Key Problem: typical generative models cannot represent all natural images, 
inducing representation error. 

We introduce Generator Surgery (GS), which mitigates representation error and 
improves CSGM recovery performance. 
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● CelebA (in-training-distribution): 
GS substantially improves 
recovery performance for all 
considered architectures 
(DCGAN, BEGAN, and VAE).

● COCO 
(out-of-training-distribution): 
performance increase over no 
surgery is similar to CelebA 
images.

GS (ours)                                     Control                                 Lasso-DCT (Sparsity)

● Baselines: IAGAN, mGANprior, Deep Decoder (with 
similar number of optimized parameters).

● GS generally beats mGANprior and performs similarly 
to DD. IAGAN is highly overparameterized.

● Qualitative comparison of GS to other baseline 
methods.

● Note: all models trained on CelebA.

Code: https://github.com/nik-sm/generator-surgery

https://github.com/nik-sm/generator-surgery

