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Abstract

In the supplementary, we expand our work in several ways. First, we

analyze the impact of the diffusion step at which we switch the origi-

nal U-Net in Stable Diffusion with our model, to generate images faithful

to the text prompts. Next, we present another direct application of our

framework, namely image captioning. Then, we discuss related work on

curriculum learning and compare our approach with other state-of-the-art

curriculum learning methods. We continue by showcasing some train-

ing examples with various difficulty levels, illustrating that the proposed

difficulty scores are correlated with the alignment levels between images

and prompts. Then, we present details about the hyperparameters of our

method, and report additional results with the DAKL method using var-

ious parameter combinations. Finally, we present results with additional

neural architectures.

1 When to Replace U-Net in Stable Diffusion?

We hereby present a qualitative analysis of the impact of the denoising step at which we

substitute the original U-Net with ours. To illustrate how this change affects the final

samples, we showcase two prompt examples and several images in Figure 1. We vary the

number of denoising steps performed by our U-Net. Specifically, we use it to perform the

last 49, 40, and 25 denoising steps, respectively. The illustrated examples indicate that the

optimal text-to-image alignment is achieved for both prompt examples, when only a single

denoising step is performed with the original U-Net. However, when we make the switch

in the later stages of the denoising diffusion process, the impact on the final image becomes

less meaningful. In the first example, when we introduce the model after the first 10 steps,

the output is still aligned with the text, but for the second example, the horse is removed

when performing 10 steps with the original model. Overall, we conclude that the first part

of the denoising process has the highest impact on the content of the final image. When we

switch the model in the second half of the denoising process, the results are very similar to

the case when we use only the original U-Net. Based on these observations, we decided to

replace the original U-Net with our own right after the first sampling step in our application

to image generation discussed in the main article.

2 Application to Generated Image Captioning

In the main paper, we studied the task of prompt embedding prediction, which is a well-

posed reverse engineering task. Predicting the actual prompt is also possible, but we

consider this task ill-posed. This is because we have only one prompt for each generated

image, while image captioning benchmarks typically have several alternative ground-truth

captions for each image (Chen et al., 2015), and models are evaluated against the best match-

ing ground-truth caption. Hence, predicting the exact prompt is significantly more difficult

than predicting the prompt embedding. In the embedding space, we essentially allow the

models to predict semantically related prompts without being needlessly penalized.

Nevertheless, we next study two approaches to apply our framework on generated image

captioning. Given a generated image, one naive approach is to assign a caption via a 1-
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Figure 1: Examples that demonstrate the impact of replacing the original U-Net in Stable

Diffusion with our U-Net on text prompt generation, at various steps of the denoising

diffusion process.

nearest neighbor (1-NN) model applied on the prompt embedding space learned by our

joint framework. We obtain a prompt embedding for the query image and compare the

resulting embedding with every embedding in the training set, keeping the most similar

one in terms of the cosine similarity. This approach does not involve any fine-tuning on

prompt generation. A more sophisticated approach is to employ our framework based on

curriculum learning (CL) and an extra multi-label classification (MLC) head to fine-tune

the BLIP model on the image captioning task.

We qualitatively compare our approaches with a fine-tuned vanilla BLIP. We display a set

of representative samples in Figure 2. Our 1-NN method showcases comparable results
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Ground truth. joe biden riding an elephant 
1-NN. an elephant
BLIP. elephants are walking down the road with 
a man riding on the back of a cart, a digital 
rendering, magic realism, joe biden riding a 
dragon, emperor biden.
BLIP MLC+CL. joe biden riding an elephant.

    

Ground truth.  A Landscape by Charles Addams and 
salvador dali
1-NN. geometric painting of tomorrowland by hieronymus 
bosch 
BLIP. painting of a landscape with a tree, a yellow apple, and 
a dog, a surrealist painting, surrealism, surrealist landscape, 
surrealist landscape painting, painting of a dreamscape 
BLIP MLC+CL. a landscape with trees, a storybook illustration 
by charles addams, behance contest winner, american scene 
painting, storybook illustration.

Ground truth. photograph of a ginger male, middle aged 
balding superhero.
1-NN. portrait photo of a yellow - skinned bald wrinkly man 
with stubble and big eyes, he wears blue overalls no shirt, he 
looks like a human minion, moody cinematic lighting, realistic 
facial features, hyper detailed, crisp image.
BLIP. there is a man with a beard and a white shirt, a portrait, 
renaissance, red beard, reddish beard, acting headshot
BLIP MLC+CL. a balding man with a red beard, wearing a 
white shirt, studio lighting.

Ground truth. tall, security guard checks the bags of a 
worried looking woman, art, satire.
1-NN. criminal sketch of a clown.
BLIP. cartoon of a man and woman standing in a doorway 
with a bag, a cartoon, net art, an illustration, hotel room, film 
still from an cartoon 
BLIP MLC+CL. a man in a suit and tie standing in front of a 
woman in a dress, a comic book panel by david cronenberg, 
tumblr contest winner, gothic art.

 

Ground truth. Sky full of travel balloon and stars.
1-NN. hot air balloon flying through the sky, double 
rainbow, illustration by dr seuss, oh! the places 
you'll go, watercolor
BLIP. there are two hot air balloons flying in the sky 
with stars, a storybook illustration, naive art, hot air 
balloons, floating among stars
BLIP MLC+CL. A hot air balloon floating in the sky, a 
storybook illustration by chiho aoshima, behance 
contest winner, space art, storybook illustration. 

Ground truth. Field of skeletons, award winning 
horror photography.
1-NN. barrel of skeletons, horror scene, detailed, 
photorealistic 
BLIP. arafed skeleton standing in a field of bones 
with a man in the middle, digital art, surrealism, 
with a skeleton army, skeletal omens, all skeletons
BLIP MLC+CL. a man standing in front of a bunch 
of skeletons, behance contest winner, gothic art.

  

Ground truth. handsome Danny DeVito in an Iron Man 
suit, western, D&D, fantasy, intricate, elegant, highly 
detailed
1-NN. Iron Man Giant Armor, pencil sketch, concept art.
BLIP. a close up of a cartoon iron man in a suit, vector art, 
process art, iron man, superior iron man, ironman
BLIP MLC+CL. iron man, trending on artstation.

Ground truth.  Harry Maguire as a Brighton 
soccer player   
1-NN. football player in the style of 
Michaelangelo     
BLIP. there are two men playing soccer on a field 
with a crowd watching, a picture, renaissance, 
tyrell wellick, max prentis, tom burke 
BLIP MLC+CL. Harry Kane playing for Reading 
FC.

Figure 2: Examples of captions for generated images. We compare the prompts returned

by a fine-tuned vanilla BLIP with those of a 1-NN model applied on pre-trained prompt

embeddings, and those of an enhanced version of BLIP based on multi-label classification

(MLC) and curriculum learning (CL). Best viewed in color.

with those of BLIP (Li et al., 2022). For the less complex images, a matching prompt is

usually found by our nearest neighbor approach. The predicted prompts for the harder

examples are still representative and depict certain nuances of the text, but they often fail to

precisely describe all aspects of the input images. A similar behavior is often observed for

the vanilla BLIP. Our version of BLIP (based on MLC+CL) produces improved prompts in

a number of cases, e.g. the first image on the first column, the second image on the second

column, or the last image on the second column. Although the prompts of our best model

are representative, they are still far from the ground-truth prompts, suggesting that the

generated image captioning task is indeed ill-posed. A representative ill-posed case is the

third image on the second column, depicting Iron Man, where it is impossible to predict

the prompt, as Danny DeVito is hidden by the Iron Man suit. Indeed, there is no visual clue

to indicate the presence of Danny DeVito in the source prompt.

We further perform a quantitative analysis on the entire test set to compare our approaches

with vanilla BLIP. As evaluation metric, we use the reference-augmented version of the

recently proposed CLIPScore (Hessel et al., 2021), namely the RefCLIPScore. The corre-

sponding results are presented in Table 1. The BLIP model is a state-of-the-art captioning

model that obtains a RefCLIPScore of 30.93. Although our 1-NN approach is not partic-

ularly tuned for image captioning, it produces competitive captioning results, reaching a

RefCLIPScore of 25.53. The proposed version of BLIP based on multi-label classification

and curriculum learning yields superior results, increasing the RefCLIPScore of BLIP from

30.93 to 31.88. These results show that our framework can improve image captioning re-

sults, thus extending its applicability from prompt embedding generation to generated

image captioning.
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Table 1: Comparison between a fine-tuned vanilla BLIP and the proposed image caption-

ing approaches. Our first approach is based on a 1-NN applied on pre-trained prompt

embeddings. Our second approach is an enhanced version of BLIP, which integrates our

multi-label classification head and curriculum learning strategy. The best score is high-

lighted in bold.

Model Multi-Label Classification Curriculum Learning RefCLIPScore

1-NN (ours) ✓ ✓ 25.53

BLIP - - 30.93

BLIP (ours) ✓ - 31.77

BLIP (ours) ✓ ✓ 31.88

Table 2: Comparison between our curriculum learning method and two state-of-the-art

curriculum learning approaches, CBS (Sinha et al., 2020) and LeRaC (Croitoru et al., 2022).

The best score is highlighted in bold.

Backbone Curriculum learning method Cosine similarity

ViT

No curriculum 0.6526

LeRaC (Croitoru et al., 2022) 0.6521

CBS (Sinha et al., 2020) 0.6254

Ours 0.6544

3 Related Work on Curriculum Learning

Since we employ a novel curriculum learning regime to boost the performance of the

studied models, we can also consider work on curriculum learning as related. The research

community has extensively utilized this learning paradigm across a range of domains,

including both computer vision (Bengio et al., 2009; Croitoru et al., 2022; Ionescu et al.,

2016; Shi & Ferrari, 2016; Soviany et al., 2021; Chen & Gupta, 2015; Sinha et al., 2020;

Zhang et al., 2021a) and natural language processing (Croitoru et al., 2022; Liu et al., 2018;

Platanios et al., 2019). However, given the unique nature of each application, distinct data

organization approaches have been developed to ensure optimal results. For example,

in vision, the number of objects in the image is one criterion (Soviany et al., 2021; Shi &

Ferrari, 2016), while, in natural language processing, both word frequency (Liu et al., 2018)

and sequence length (Kocmi & Bojar, 2017; Tay et al., 2019; Zhang et al., 2021b) are utilized.

Other contributions tried to avoid estimating sample difficulty by implementing curriculum

learning on the model itself (Karras et al., 2018; Sinha et al., 2020; Croitoru et al., 2022), or

by selecting the samples dynamically, based on the performance of the model (Kumar et al.,

2010; Jiang et al., 2015). Different from related approaches based on ordering data samples

according to their difficulty (Bengio et al., 2009; Soviany et al., 2021; Shi & Ferrari, 2016),

we propose to employ a novel approach to assess the difficulty level. More specifically,

we utilize the mean cosine similarity between the prompt embedding produced by the

model and the ground-truth embedding vector, measured at various stages of the standard

training process.

4 Comparison with Other Curriculum Learning Methods

To assess the performance of our proposed curriculum learning technique, we compare it

with other curriculum learning methods from the recent literature. We choose two state-of-

the-art methods, namely Curriculum by Smoothing (CBS) (Sinha et al., 2020) and Learning

Rate Curriculum (LeRaC) (Croitoru et al., 2022). Each of these methods have additional

hyperparameters, which we tried to carefully tune via grid search. Unfortunately, we did

not manage to make them surpass the performance of the vanilla training regime. As shown

in Table 2, the results demonstrate the net superiority of our curriculum learning method in

image-to-prompt generation with the ViT backbone. The success of our technique relies on

harnessing the misalignment level between the image and the prompt in each training pair

to create the curriculum schedule. In contrast, CBS and LeRaC do not take the misalignment

into account. We believe this explains why our results are better.
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yoda in red 
dead 

redemption 2

cat playing
piano

professor 
einstein 
portrait

A giraffe in 
New York 

City

road to 
nowhere

having a chat with your worries and 
fears, gold clouds color scheme, 

ayahuasca, trending on artstation

a renaissance portrait of chris 
brown by leonardo da vinci, 

golden ratio composition

closeup of intricate cute alien 
anemones, coral reef, cuttlefish and 

sunflowers, underwater photography, 
soft focus, soft lighting, by pixar

1990s photo of inside the Rugrats Battle Reptar 
show ride at Universal Studios in Orlando, Florida, 
children riding in baby walkers battling Reptar a 

giant animatronic dinosaur, cinematic, UHD

an elephant 
drinks from a 

red bull

Life itself is only a vision, a dream. 
Nothing exists save empty space - 

and you! And you are but a thought

graphic design, layout for a 
commercial real estate brochure 

for a suburban office park

HardEasy Medium

Figure 3: Examples labeled as easy, medium and hard by our difficulty estimation procedure

based on monitoring the cosine similarity of samples during conventional training. Best

viewed in color.

Table 3: Varying the number of k-means clusters r and the parameter γ of the RBF kernel

used in DAKL.

DAKL r γ Cosine similarity

- - - 0.6900

✓ 1,000 0.001 0.6899

✓ 5,000 0.001 0.6905

✓ 10,000 0.0001 0.6898

✓ 10,000 0.001 0.6917

✓ 10,000 0.01 0.6909

✓ 10,000 0.1 0.6878

5 Qualitative Analysis of Proposed Difficulty Score

In Figure 3, we illustrate some examples showing how our method categorizes image-

prompt pairs based on their difficulty (easy, medium, or hard). The easy samples contain

short straight-forward descriptions, which are very well aligned with the generated images.

The medium examples involve descriptions that produce abstract images, or descriptions

that require rich creativity. Finally, the hard samples consist of prompts that cannot be

associated with a visual representation, e.g. quotes, or very complex prompts with multiple,

especially unreal, elements. These examples indicate that our difficulty scores are easy to

interpret visually, suggesting a reasonable organization of the easy, medium and hard

example batches, which is correlated with the alignment between images and prompts.

6 Hyperparameter Tuning

We establish the hyperparameters during preliminary experiments on the validation set.

Due to the large scale of the training set, we train all models for three epochs. The image

resolution is either 224×224 or 256×256, depending on the model, while the mini-batch

size is set to 64. The models are optimized with Adam. We set the learning rate to 10−4

for ViT / Swin models, and 5 · 10−6
for CLIP-based models. With the introduction of

the classification head, there are two extra hyperparameters. These are the weight λ of

the additional classification loss and the size of the vocabulary m. We set λ = 0.1 and

m = 1000. For DAKL, we set the number of k-means clusters to 10K and γ = 0.001. To

foster future research and allow others to fully reproduce our results, we release our code

as open source.

To provide a more comprehensive overview of the hyperparameters of our DAKL method,

we present additional results by varying the parameter σ of the RBF transformation. Ad-

ditionally, we explore various choices for the number of centroids r used by the k-means

algorithm. We present the corresponding empirical results in Table 3. There are multiple

hyperparameter combinations surpassing the baseline, but the best results are obtained for

r = 10, 000 clusters and γ = 0.001.
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Table 4: Comparison between several neural architectures, which are divided into two

categories: black box (■) and white box (□). Black-box models do not have access to the

weights of Stable Diffusion. In contrast, the white-box model starts the fine-tuning process

from the weights of Stable Diffusion.

Image Encoder Type Cosine similarity

CLIP-Huge + k-NN ■ 0.6189

BLIP ■ 0.5129

CLIP-Huge ■ 0.6725

Swin-L ■ 0.6624

ViT ■ 0.6526

U-Netenc □ 0.6130

7 Results with Other Tested Models

Additional baselines. In the main paper, we reported results with three models having no

knowledge about the internals of Stable Diffusion, treating the diffusion model as a black

box. We also employed the U-Net encoder from Stable Diffusion, which comes with the

pre-trained weights of the diffusion model. Hence, we consider the approach based on

U-Net as a white-box method. As underlying models, we initially considered two more

black-box architectures. The first one is a k-nearest neighbors (k-NN) algorithm, applied in

a regression setting. Leveraging the power of a fine-tuned CLIP to match the image and text

representations, the embedding of the image is compared to all the embeddings obtained

from reference training prompts. Then, based on the distance to the closest neighbors, the

output embedding (in the sentence transformer space) is regressed as a weighted mean.

The second baseline is represented by a BLIP model (Li et al., 2022), a recent approach with

state-of-the-art results in image captioning, which is fine-tuned on our task.

Results. In Table 4, we compare the four models included in the main paper with the

two additional models. For a fair comparison, all models are trained with the vanilla

training procedure. We emphasize that the three black-box models (CLIP-Huge, Swin-L,

and ViT) chosen as underlying architectures for our novel training framework are the most

competitive ones. Hence, increasing the performance levels of these models by employing

our learning framework is more challenging. This is why our learning framework exhibits

the highest performance boost for the U-Net encoder, which starts from a lower average

cosine similarity compared to the top three black-box models.

Another interesting observation is that the white-box U-Net is not necessarily the best

model. Indeed, the privilege of having access to the weights of the Stable Diffusion model

seems to fade out in front of very deep architectures, such as Swin-L and CLIP-Huge, that

benefit from large-scale pre-training.

References

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In

Proceedings of ICML, pp. 41–48, 2009. 4

Xinlei Chen and Abhinav Gupta. Webly Supervised Learning of Convolutional Networks. In Proceed-
ings of ICCV, pp. 1431–1439, 2015. 4

Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh Gupta, Piotr Dollár, and

C Lawrence Zitnick. Microsoft COCO Captions: Data Collection and Evaluation Server. arXiv
preprint arXiv:1504.00325, 2015. 1

Florinel-Alin Croitoru, Nicolae-Catalin Ristea, Radu Tudor Ionescu, and Nicu Sebe. LeRaC: Learning

Rate Curriculum. arXiv preprint arXiv:2205.09180, 2022. 4

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. CLIPScore: A Reference-

free Evaluation Metric for Image Captioning. In Proceedings of EMNLP, pp. 7514–7528, 2021. 3

Radu Tudor Ionescu, Bogdan Alexe, Marius Leordeanu, Marius Popescu, Dim Papadopoulos, and

Vittorio Ferrari. How hard can it be? Estimating the difficulty of visual search in an image. In

Proceedings of CVPR, pp. 2157–2166, 2016. 4

6



Under review as a conference paper at ICLR 2024

Lu Jiang, Deyu Meng, Qian Zhao, Shiguang Shan, and Alexander G. Hauptmann. Self-Paced Cur-

riculum Learning. In Proceedings of AAAI, pp. 2694–2700, 2015. 4

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive Growing of GANs for

Improved Quality, Stability, and Variation. In Proceedings of ICLR, 2018. 4

Tom Kocmi and Ondřej Bojar. Curriculum Learning and Minibatch Bucketing in Neural Machine

Translation. In Proceedings of RANLP, pp. 379–386, 2017. 4

M. Kumar, Benjamin Packer, and Daphne Koller. Self-Paced Learning for Latent Variable Models. In

Proceedings of NIPS, volume 23, pp. 1189–1197, 2010. 4

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. BLIP: Bootstrapping Language-Image Pre-

training for Unified Vision-Language Understanding and Generation. In Proceedings of ICML, 2022.

3, 6

Cao Liu, Shizhu He, Kang Liu, and Jun Zhao. Curriculum Learning for Natural Answer Generation.

In Proceedings of ĲCAI, pp. 4223–4229, 2018. 4

Emmanouil Antonios Platanios, Otilia Stretcu, Graham Neubig, Barnabas Poczos, and Tom Mitchell.

Competence-based curriculum learning for neural machine translation. In Proceedings of NAACL,

pp. 1162–1172, 2019. 4

Miaojing Shi and Vittorio Ferrari. Weakly Supervised Object Localization Using Size Estimates. In

Proceedings of ECCV, pp. 105–121, 2016. 4

Samarth Sinha, Animesh Garg, and Hugo Larochelle. Curriculum by smoothing. In Proceedings of
NeurIPS, pp. 21653–21664, 2020. 4

Petru Soviany, Radu Tudor Ionescu, Paolo Rota, and Nicu Sebe. Curriculum self-paced learning for

cross-domain object detection. Computer Vision and Image Understanding, 204:103–166, 2021. 4

Yi Tay, Shuohang Wang, Anh Tuan Luu, Jie Fu, Minh C. Phan, Xingdi Yuan, Jinfeng Rao, Siu Cheung

Hui, and Aston Zhang. Simple and Effective Curriculum Pointer-Generator Networks for Reading

Comprehension over Long Narratives. In Proceedings of ACL, pp. 4922–4931, 2019. 4

Bowen Zhang, Yidong Wang, Wenxin Hou, Hao Wu, Jindong Wang, Manabu Okumura, and Takahiro

Shinozaki. FlexMatch: Boosting Semi-Supervised Learning with Curriculum Pseudo Labeling. In

Proceedings of NeurIPS, pp. 18408–18419, 2021a. 4

Wei Zhang, Wei Wei, Wen Wang, Lingling Jin, and Zheng Cao. Reducing BERT Computation by

Padding Removal and Curriculum Learning. In Proceedings of ISPASS, pp. 90–92, 2021b. 4

7


