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ABSTRACT

Given a pretrained encoder-based language model, how can we accurately compress
it without retraining? Retraining-free structured pruning algorithms are crucial in
pretrained language model compression due to their significantly reduced pruning
cost and capability to prune large language models. However, existing retraining-
free algorithms encounter severe accuracy degradation, as they fail to handle
pruning errors, especially at high compression rates. In this paper, we propose
K-prune (Knowledge-preserving pruning), an accurate retraining-free structured
pruning algorithm for pretrained encoder-based language models. K-prune focuses
on preserving the useful knowledge of the pretrained model to minimize pruning
errors through a carefully designed iterative pruning process composed of knowl-
edge measurement, knowledge-preserving mask search, and knowledge-preserving
weight-tuning. As a result, K-prune shows significant accuracy improvements up to
58.02%p higher F1 score compared to existing retraining-free pruning algorithms
under a high compression rate of 80% on the SQuAD benchmark without any
retraining process.

1 INTRODUCTION

How can we accurately compress pretrained encoder-based language models without retraining?
Transformer-based PLMs dominate (Devlin et al., 2019; Clark et al., 2020; Liu et al., 2019; Brown
et al., 2020; Zhang et al., 2022) the field of Natural Language Processing (NLP) based on their
remarkable performance. The superiority of PLMs comes with a massive increase in their size, and
the unaffordably scaled models necessitate compression algorithms that effectively reduce the size of
PLMs without compromising accuracy.

Retraining-free structured pruning algorithms (Kwon et al., 2022b; Nova et al., 2023) are prominent
for compressing pretrained language models (PLMs) since they require dramatically lower computa-
tional costs and a smaller amount of data than existing retraining-based algorithms (Hou et al., 2020;
Liu et al., 2021; Lin et al., 2020; Wang et al., 2020b; Sajjad et al., 2023; Xia et al., 2022; Lagunas
et al., 2021). Retraining-free algorithms achieve remarkable efficiency by replacing an expensive
retraining process with a one-shot mask search process followed by a lightweight mask-tuning
process. However, when it comes to the high compression rate, retraining-free algorithms exhibit
severe accuracy degradation. The accuracy degradation comes from a failure of handling pruning
errors which represent the distortion of the model’s prediction by the accumulated deformations of
the outputs of the pruned intermediate layers.

In this paper, we propose K-prune (Knowledge-preserving pruning), an accurate retraining-free
structured pruning algorithm for encoder-based PLMs. We conceptualize pruning error as the loss of
useful knowledge to explicitly measure the amount of pruning error. We observe that the main reason
of severe accuracy degradation in previous retraining-free pruning algorithms is an unrecoverable
knowledge loss from multiple layers. Therefore, we carefully design an iterative pruning process
that distributes the knowledge loss across multiple iterations to overcome the accuracy degradation
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Figure 1: Accuracy vs. reduced FLOPs of retraining-free pruning algorithms using BERT and
DistilBERT where the dotted line indicates the accuracy degradation of 3%p. K-prune (blue star)
largely outperforms competitors in all settings.

problem. Our iterative pruning process consists of three steps which aim to preserve the model’s
useful knowledge: (1) knowledge measurement, (2) knowledge-preserving mask search, and (3)
knowledge-preserving weight-tuning. Our iterative pruning is different from previous retraining-based
iterative pruning approaches (Frankle & Carbin, 2019; Han et al., 2015) since K-prune systemically
controls the degree of pruning in each iteration. K-prune efficiently prunes the pretrained language
models by an efficient weight-tuning technique which runs within a second requiring only a small
sample dataset. As a result, K-prune successfully overcomes the accuracy degradation problem and
shows up to 58.02%p1 higher F1 score compared to the other retraining-free pruning algorithms as
depicted in Figure 1. We summarize our main contributions as follows:

• Algorithm. We propose K-prune, an accurate retraining-free pruning algorithm for PLMs.
K-prune consists of three novel ideas to preserve the useful knowledge of the pretrained mod-
els: knowledge measurement, knowledge-preserving mask search, and knowledge-preserving
weight-tuning.

• Accuracy. We perform extensive experiments on GLUE and SQuAD benchmarks to demon-
strate the performance of K-prune. K-prune shows up to 58.02%p higher F1 score than the best
results of existing retraining-free algorithms under a high compression rate of 80%.

• Efficiency. We demonstrate that K-prune shows the best accuracy-cost trade-off among
the state-of-the-art pruning algorithms. K-prune shows comparable or higher accuracy than
retraining-based algorithms on GLUE benchmarks with up to 422× lower pruning cost.

Our source code is available at https://github.com/snudm-starlab/K-prune

2 PRELIMINARIES

2.1 ENCODER-BASED PRETRAINED LANGUAGE MODEL (PLM) COMPRESSION

We define an encoder-based PLM compression problem as follows. We have an accurate PLM T
finetuned for the target task, which predicts the label y for each instance x, and a sample dataset
D = {(xi, yi)}. We assume that PLM T is too large and exceeds our FLOPs budget τFLOPs. Our goal
is to compress the PLM T to a tiny model S to satisfy our FLOPs budget τFLOPs while maintaining
its accuracy.

1percent-point
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2.2 TRANSFORMER ARCHITECTURE

Transformer Encoder. In this paper, we focus on compressing the encoder-based Transformers,
such as BERT (Devlin et al., 2019) and DistilBERT (Sanh et al., 2019). The encoder-based Trans-
formers consist of two types of sublayers: multi-head attention (MHA) and feedforward network
(FFN) sublayers. For a given input X ∈ Rd×s of s tokens each of which is of dimension d, outputs of
sublayers are as follows: N (X + M(X)) for MHA sublayers or N (X + F(X)) for FFN sublayers
where N refers to layer normalization (Ba et al., 2016). The output M(X) of multi-head attention
with H attention heads is the sum of the outputs hi(X) ∈ Rd×s of attention heads as in Equation (1)
where Bout ∈ Rd×s is a bias. The output hi(X) of the ith attention head is decomposed into the
output projection W out

i ∈ Rd×dh and the intermediate feature fi(X) ∈ Rdh×s which are the outputs
of a dot-product self-attention with dimension dh.

M(X) =

(
H∑
i=1

hi(X)

)
+Bout where hi(X) = W out

i fi(X) (1)

The output F(X) of a feedforward network with N intermediate neurons is in Equation (2), where
ni(X) ∈ Rd×s is the partial output of the ith neuron and Cout ∈ Rd×s is a bias. The output ni(X)
of the ith neuron is computed by two linear transformations and is decomposed into the output
projection vout

i ∈ Rd×1 and intermediate feature gi(X) ∈ R1×s.

F(X) =

(
N∑
i=1

ni(X)

)
+Cout where ni(X) = vout

i gi(X) (2)

Pruning Criteria. In this paper, we aim to identify and prune unnecessary attention heads and
neurons following previous works (Michel et al., 2019; Kwon et al., 2022b). We introduce mask
variables ζ = [ζ1, ζ2, ..., ζH ]

T ∈ RH and ξ = [ξ1, ξ2, ..., ξN ]
T ∈ RN to indicate the pruning status

of attention heads and neurons, respectively; ζi = 0 means the ith attention head is pruned. The
masked outputs of M(X; ζ) and F(X; ξ) are described in Equation (3).

M(X; ζ) =

(
H∑
i=1

ζihi(X)

)
+Bout and F(X; ξ) =

 N∑
j=1

ξjnj(X)

+Cout (3)

All mask variables are initialized to 1, which preserves the original inference result. Once the mask
variables are determined after mask search, pruning of attention heads and neurons whose mask
variables are zero does not affect the inference results.

2.3 THE LOSS OF KNOWLEDGE AFTER PRUNING

In existing works (Hinton et al., 2015; Romero et al., 2015; Mirzadeh et al., 2020; Son et al., 2021;
Kim et al., 2021a; Jang et al., 2023), large models are employed to enhance the accuracy of smaller
models by transferring their knowledge, and pretrained models are widely adopted for this purpose in
the context of model compression (Sun et al., 2019; Sanh et al., 2019; Jiao et al., 2020; Wang et al.,
2020a; Kim et al., 2022; 2023; Cho & Kang, 2022). It is demonstrated that the knowledge of the
pretrained models can be extracted from their soft label prediction and intermediate representations,
and imitating them improves the generalization performance of the compressed model. For a given
input x, the amount Kpred(x;m) of the lost predictive knowledge of the compressed model S out of
the pretrained model T is defined in Equation (4) (Hinton et al., 2015; Sun et al., 2019; Jiao et al.,
2020) where m ∈ RL(N+H) is the pruning mask of the compressed model S with L layers. DKL
is KL-divergence, and ẑT (x;1|m|) and ẑS(x;m) are logits of the pretrained and the compressed
models, respectively. sγ is a softmax function with the temperature of γ. 1|m| ∈ R|m| is a vector of
ones indicating an unpruned status.

Kpred(x;m, γ) = γ2DKL(sγ(ẑT (x;1|m|)||sγ(ẑS(x;m)))) (4)

For the lth sublayer, the amount Krep,l of lost representational knowledge regarding intermediate
representations is defined in Equation (5) (Romero et al., 2015; Sun et al., 2020; Tang et al., 2019)
where subscript of S and T represents the compressed model S and the pretrained model T , respec-
tively. Xl is the input of the lth sublayer and it is added due to the residual connection. Subl is the
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Figure 2: Illustration of K-prune when the second sublayer is our target (best viewed in color). See
Section 3.1 for details.

sublayer function of the lth sublayer which is either M(X) or F(X), and ml is a vector of mask
variables in the lth sublayer of S.

Krep,l(XT ,l,XS,l;ml) =
∥∥XT ,l + SubT ,l(XT ,l;1|ml|)−XS,l − SubS,l(XS,l;ml)

∥∥2
F

(5)

It is crucial to reduce the amounts Kpred and Krep,l of the lost knowledge to retain the accuracy of
the pretrained model during compression.

3 PROPOSED METHOD

3.1 OVERVIEW

In this section, we propose K-prune, an accurate retraining-free pruning algorithm which preserves
the knowledge of PLMs through sublayer-wise iterative pruning process. Before describing our main
ideas, we summarize several challenges that must be tackled.

C1. Importance criterion. What aspects should we consider to find salient attention heads and
neurons for preserving the knowledge of the PLM?

C2. Identifying uninformative components. How many attention heads and neurons should
we prune in each iteration, and how can we select attention heads and neurons that minimize
knowledge loss?

C3. Minimizing the loss of knowledge. Pruning induces the loss of knowledge of the PLM,
leading to severe accuracy degradation. How can we efficiently recover the lost knowledge of
PLM after pruning?

We address these challenges with the following main ideas.

I1. Knowledge measurement (Section 3.2). We gauge the amount of inherent knowledge
regarding both label prediction and intermediate representations to estimate the saliency of
masked units.

I2. Knowledge-preserving mask search (Section 3.3). In every iteration, we identify the
meaningless masked units in the target sublayer considering their global importance which
reflects both predictive and representational knowledge.

I3. Knowledge-preserving weight-tuning (Section 3.4). We remove the identified mean-
ingless masked units only in the target sublayer and reconstruct the knowledge of the PLM
through efficient weight-tuning.

K-prune iteratively performs sublayer-wise pruning, from the bottom to the top sublayer, with the
following three steps: (a) knowledge measurement, (b) knowledge-preserving mask search, and (c)
knowledge-preserving weight-tuning. We illustrate a pruning process for a two-layered Transformer
Encoder with four sublayers when the second sublayer is our target in Figure 2. In the first step,
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(a) we measure the amount of inherent predictive and representational knowledge in each masked
unit (attention head and neuron) in the target sublayer and sublayers above the target sublayer (e.g.,
from the second to the fourth sublayers in Figure 2). The red and blue colors indicate the amounts of
predictive and representational knowledge, respectively; darker colors denote richer knowledge. We
measure the amount of knowledge in the above sublayers to consider the global importance of masked
units in the target sublayer in step (b). We do not measure the knowledge of the sublayers (e.g.,
MHAS,1) below the target sublayer since they have already been pruned. Then, (b) we compute the
importance scores for each masked unit considering both predictive and representational knowledge
and sort them. We select the masked units with the least importance scores to be pruned considering
the FLOPs budget. The number of selected masked units in the target sublayer is determined according
to the global importance of the target sublayer since we evaluate and compare the importance scores
of masked units in all of the unpruned sublayers. After that, (c) we prune the selected components
(e.g., n2,1 and n2,2) from the target sublayer and tune the weights of the remaining components (e.g.,
n2,3), in the target sublayer on a small sample dataset to recover the PLM’s knowledge. We decrease
the FLOPs constraint by the number of FLOPs of the remaining components and then move on to the
next sublayer. K-prune accurately compresses the model since it iteratively prunes a small amount of
masked units in each sublayer considering their global importance after reconstructing the knowledge
of the previous sublayers. The running time of K-prune is significantly low since it performs only
an efficient weight-tuning on a small sample dataset. We elaborate on the details of each step in the
following sections.

3.2 KNOWLEDGE MEASUREMENT

We use the amount of both predictive and representational knowledge in each attention head and neu-
ron as a metric to estimate their saliency in identifying uninformative attention heads and neurons. We
measure the amount of knowledge contained within each attention head and neuron by evaluating the
loss of knowledge after pruning it. For ith pruning mask ml,i in the lth sublayer, we reformulate the
functions in Equations (4) and (5), which state the amount of knowledge loss, as single-variable func-
tions by assuming that all mask variables are independent, i.e. Kpred(x;m, γ) ≈ Kpred(x;ml,i, γ)
and Krep,l(XT ,l,XS,l;ml) ≈ Krep,l(XT ,l,XS,l;ml,i), respectively. Then, the predictive and
representational knowledge within an attention head or neuron which corresponds to the mask ml,i is
estimated as Kpred(x;ml,i = 0, γ) and Krep(XT ,l,XS,l;ml,i = 0), respectively.

We approximate the average of the amount Kpred(x;ml,i = 0, γ) of predictive knowledge of ml,i on
the sample dataset D as in Equation (6) by applying Taylor expansion and Fisher Information (LeCun
et al., 1989; Kwon et al., 2022b).

1

|D|
∑
x∈D

Kpred(x;ml,i = 0, γ) ≈ 1

|D|
∑
x∈D

(
1

2γ2

(
∂Kpred(x;ml,i = 1, γ)

∂ml,i

)2
)

(6)

We estimate the amount Krep,l(XT ,l,XS,l;ml,i = 0) of representational knowledge within the
ith component in the lth sublayer, which corresponds to the target mask ml,i, by the MSE loss
between the outputs of the lth sublayers of the pretrained model T and the compressed model S as in
Equation (7). We introduce a mask vector ml\i ∈ R|ml| to indicate the pruning of the ith masked
unit, and all elements of ml\i are one except for the ith element which is zero. By assuming that
the two inputs XT ,l and XS,l are the same, Krep,l(XT ,l,XS,l;ml,i = 0) becomes the norm of the
output of the components as in Equation (8) since the masked outputs of sublayers are computed as
the sum of unpruned attention heads or neurons as in Equation (3).
Krep,l(XT ,l,XS,l;ml,i=0) =

∥∥XT ,l+SubT ,l(XT ,l,1ml
)−XS,l−SubS,l(XS,l,ml\i)

∥∥2
F

(7)

≈

{
∥hl,i(XS,l)∥2F for MHA sublayers

∥nl,i(XS,l)∥2F for FFN sublayers
(8)

3.3 KNOWLEDGE-PRESERVING MASK SEARCH (KPMS)

We propose Knowledge-preserving mask search (KPMS), an accurate mask search algorithm which
finds an accurate non-uniform pruning mask for each sublayer. In KPMS, we estimate the importance
of each masked unit using the amount of knowledge in the masked unit to minimize the knowledge
loss after pruning. We estimate the importance score not only in the target sublayer but also in the
sublayers above the target sublayer to control the number of masked units to prune in the target
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Algorithm 1 Knowledge-Preserving Mask Search (KPMS)
Input : Sample dataset D, pretrained model T , compressed model S ,

FLOPs Fh and Fn of a head and a neuron, FLOPs budget τFLOPs,
temperature γ for Equation (4) and balance coefficients λ and µ for Equation (9).

Output : the sets Phead and Pneuron of attention heads and neurons to be pruned
1: Kpred

head, Krep
head, Kpred

neuron, Krep
neuron← measure-knowledge(S, T ,D, γ) ▷ Equations (6), (8)

2: Zhead, Zneuron ← scoring(Kpred
head,K

rep
head,K

pred
neuron,K

rep
neuron, µ, λ, Fh, Fn) ▷ Equation (9)

3: Z̃ ← concat-and-sort-ascending-order(Zhead,Zneuron)
4: p← 0, f ← |Zhead|Fh + |Zneuron|Fn

5: while f > τFLOPs do
6: ν ← Z̃[p] ▷ candidate threshold
7: nh ← |{h|Shead[h] ≥ ν}|, nn ← |{n|Sneuron[n] ≥ ν}| ▷ remained heads and neurons
8: p← p+ 1, f ← nhFh + nnFn ▷ FLOPs of the compressed model
9: end while

10: ν∗ ← ν
11: Phead ← {h|Zhead[h] < ν∗}, Pneuron ← {n|Zneuron[n] < ν∗} ▷ selected to be pruned

sublayer, considering their global importance. KPMS is described in Algorithm 1. We begin KPMS
by measuring the amount of knowledge in attention heads and neurons to estimate their importance
score (line 1). We evaluate the amount of both predictive and representational knowledge in attention
heads and neurons on the sample dataset D following Equations (6) and (8). Kpred

head,K
rep
head ∈ RLH

and Kpred
neuron,K

rep
neuron ∈ RLN in Algorithm 1 represent the vectors of the estimated amount of

knowledge in all attention heads and neurons in the model, respectively, where L is the number
of layers, i.e. there are L MHA sublayers and L FFN sublayers. In detail, we set the amount of
knowledge as 0 for the attention heads and neurons in the sublayers below the target sublayer, which
was pruned in previous steps, in order to ignore them during the mask search. Then, we estimate
the importance score of each attention head and neuron as the weighted sum of the amount of the
predictive and representational knowledge with a balance coefficient λ as in Equations (9) (line 2).
We divide the scores of attention heads and neurons by their number of FLOPs (Fh for attention heads
and Fn for neurons) in order to consider the amount of importance score per FLOP. We multiply the
scores Zhead of attention heads by another balance coefficient µ to reflect the different sensitivity
between attention heads and neurons.

Zhead = µ
(
Kpred

head + λKrep
head

)
/Fh and Zneuron =

(
Kpred

neuron + λKrep
neuron

)
/Fn (9)

We concatenate two vectors Zneuron and Zhead, and then sort the concatenated vector in increasing
order to find the threshold for pruning (line 3). We sequentially obtain threshold candidates ν from
the sorted score vector Z̃ until the FLOPs f of the compressed model pruned by the threshold ν is
smaller than our FLOPs budget τFLOPs (lines 4-9). Consequently, we get the optimal threshold ν∗,
and find the sets Phead and Pneuron containing the indices of heads and neurons whose importance
score is lower than ν∗, respectively (lines 10-11).

3.4 KNOWLEDGE-PRESERVING WEIGHT-TUNING (KPWT)

We propose Knowledge-preserving weight-tuning (KPWT), an efficient weight-tuning process that
reconstructs the distorted knowledge of the PLM after pruning. In every sublayer-wise iteration of
K-prune, we prune only masked units in the target sublayer to formulate the problem of knowledge
reconstruction as a problem which requires an extremely short time to solve. When the lth sublayer
is our target, we prune masked units in the lth sublayer if they are included in Phead or Pneuron of
KPMS. Then, we formulate the knowledge reconstructing problem as the problem of minimizing
the loss Krep,l(XT ,l,XS,l;ml) of representational knowledge of the lth sublayer in Equation (5).
Equation (10) is the reformulated problem of Equation (5) for MHA sublayers where ζ∗l,i represents
the found mask of the ith attention head in the lth sublayer in Algorithm 1, i.e. the value of mask
ζ∗l,i is 0 if the index (lH + i) of its corresponding attention head is in Phead or 1 otherwise. We
modify the problem as the linear least square problem over the set of output projections {W out

l,i }Hi=1

to exploit the efficiency of the linear solver. We collect the sublayer outputs (XT ,l + MT ,l(XT ,l,1))
of the pretrained model, which does not change during a pruning process, at the first iteration of
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K-prune and reuse them for every iteration. We collect the set {fl,i(XS,l)}Hi=1 of features when we
measure the knowledge in KPMS (line 1 in Algorithm 1) Analogously, we formulate the problem for
FFN sublayers as in Equation (11) where ξ∗l,i represents the found mask of the ith neuron of the lth
sublayer. The subscript l in a symbol represents that the symbol is related to the lth sublayer. We
tune weights (W out

l,i or vout
l,i ) to achieve high accuracy even at high compression rates.

argmin
{W out

l,i }H
i=1

∥∥∥∥∥XT ,l + MT ,l(XT ,l,1H)−XS,l −

(
H∑
i=1

ζ∗l,iW
out
l,i fl,i(XS,l)

)
−Bout

l

∥∥∥∥∥
2

F

(10)

argmin
{vout

l,i }N
i=1

∥∥∥∥∥XT ,l + FT ,l(XT ,l,1N )−XS,l −

(
N∑
i=1

ξ∗l,iv
out
l,i gl,i(XS,l)

)
−Cout

l

∥∥∥∥∥
2

F

(11)

We use a linear solver2 in PyTorch (Paszke et al., 2019) to solve Equations (10) and (11). Note
that the time for solving the problems in Equations (10) and (11) is shorter than a second in a
typical desktop computer, which is several magnitudes smaller than those of conventional retraining
processes in existing works (Xia et al., 2022; Hou et al., 2020; Lagunas et al., 2021; Liu et al., 2021),
and does not require any hyperparameter tuning. After pruning and knowledge reconstruction, we
decrease our FLOPs constraint by the FLOPs of the remaining attention heads or neurons in the
lth sublayer. Then, we move on to the (l + 1)th sublayer with the adjusted FLOPs constraint. This
enables K-prune to satisfy the FLOPs constraint through a single run without any interventions from
users.

4 EXPERIMENTS

We perform experiments to answer the following questions about K-prune:

Q1. Accuracy (Section 4.2). How accurate are the models compressed with K-prune compared
to the models compressed with existing retraining-free pruning algorithms?

Q2. Inference speed (Section 4.3). How fast are the models compressed with K-prune com-
pared to the models compressed with existing retraining-free pruning algorithms?

Q3. Efficiency (Section 4.4). How efficient is K-prune compared to the existing pruning algo-
rithms including retraining-based ones in terms of both accuracy and pruning cost?

Q4. Ablation study (Section 4.5). Do our ideas of K-prune, i.e. knowledge-based importance
criteria, KPMS, and KPWT, improve the accuracy of the compressed models?

4.1 EXPERIMENTAL SETUP

Setup. We use PyTorch (Paszke et al., 2019), and the weights of the pretrained models in Transform-
ers (Wolf et al., 2020). We evaluate the performance of compressing the pretrained BERT (Devlin
et al., 2019) and DistilBERT (Sanh et al., 2019) models on GLUE (Wang et al., 2019), SQuAD
v1.1 (Rajpurkar et al., 2016), and v2 (Rajpurkar et al., 2018) under diverse compression rates. We
use FLOPs as a compression measure which is computed on the average sequence length of each
dataset. We report the compression rate as ratio of the removed number of FLOPs after pruning. We
use NVIDIA 1080 Ti for all experiments.

Hyperparameters. We use 100K tokens from the training dataset as a sample dataset, and exploit
the pretrained tokenizers in Transformers (Wolf et al., 2020) for counting. The size of the sample
dataset is small compared to the GLUE and SQuAD datasets, e.g. around 0.64% of MNLI (Williams
et al., 2018) dataset. We fix random seeds from 0 to 4 and report the average performance of the 5
runs. We use two combinations of hyperparameters (γ, λ, µ) ∈ {(2, 0, 64), (2, 0.00025, 64)} for all
experiments of K-prune.

Competitors. We compare the performance of K-prune with existing retraining-free pruning
algorithms for PLMs: Kwon et al. (2022b) and KCM (Nova et al., 2023). We compare the pruning
efficiency with state-of-the-art retraining-based pruning algorithms for PLMs, DynaBERT (Hou et al.,
2020) and EBERT (Liu et al., 2021) which show the best tradeoff in terms of accuracy vs. pruning
cost, outperforming FLOP (Wang et al., 2020b), Sajjad et al. (2023), CoFi (Xia et al., 2022), and
BMP (Lagunas et al., 2021) as reported in Kwon et al. (2022b). We use entire datasets for training
retraining-based algorithms.

2torch.linalg.lstsq
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Table 1: Comparison of inference speed of the models compressed by K-prune and competitors.
We report the best result of the compressed models whose accuracy degradation is lower than 3%p.
K-prune shows the highest acceleration, giving up to 2.93× faster speed than the uncompressed
model.

Method MRPC STS-B SQuAD1.1 SQuAD2.0 Avg.∗

KCM (Nova et al., 2023) 1.08× 1.23× 1.20× 1.08× 1.15×
Kwon et al. (2022b) 1.59× 2.10× 2.09× 1.75× 1.87×
K-prune (ours) 2.66× 2.43× 2.60× 2.93× 2.65×

∗ Geometric mean

DynaBERT-w DynaBERT-dEBERT
BESTBEST 422 213

Kwon et al.K-Prune (ours)

Figure 3: Accuracy of compressed models
vs. time cost for pruning under a compression
rate of 75%. K-prune (blue star) shows the
best trade-off among both retraining-free and
retraining-based pruning algorithms.

Table 2: Evaluation of K-prune and its variants un-
der a compression rate of 80%. Each of the pro-
posed ideas successfully improves the accuracy of
the compressed models, and K-prune shows the best
results. We get the largest accuracy improvement
from KPWT.

Method MRPC SQuAD∗

K-prune 84.80 74.16
K-prune - Kpred, Krep 84.07 72.55
K-prune - KPMS 81.71 67.10
K-prune - KPWT 68.38 16.50

∗ SQuAD1.1

4.2 ACCURACY OF THE COMPRESSED MODELS (Q1)

Figure 1 shows a comparison of the accuracy vs. reduced FLOPs of the compressed models generated
by K-prune and competitors on diverse tasks and models. The black dotted line indicates the 3%p
accuracy degradation from the baseline models. In all settings, K-prune outperforms all competitors
in large gaps by up to 58%p. The accuracy gap between K-prune and the competitors grows larger as
the compression ratio gets higher since their one-shot pruning process fails to cope with the pruning
errors; especially, KCM shows drastic accuracy degradation as the ratio of reduced FLOPs increases
since it cannot prune attention heads. Our results demonstrate that K-prune effectively addresses the
significant accuracy degradation problem by preserving the knowledge of PLM via a thoughtfully
designed iterative pruning process incorporating our novel ideas: KPMS and KPWT.

4.3 ACCELERATION ON COMMODITY HARDWARE (Q2)

We compare the inference speed of the compressed models whose accuracy drop is lower than 3%p
compared to the baseline model. We use randomly generated input sequences whose length is equal
to the average length of input sequences in each task. We use a batch size of 32 for all experiments.
We summarize the highest acceleration ratio of K-prune and competitors compared to the baseline
model in Table 1. K-prune consistently shows the highest acceleration compared to existing methods
on all tasks. K-prune achieves up to 2.93× faster inference speed compared to the baseline model on
commodity hardware, while other methods achieve at most 2.10× faster inference speed.

4.4 COMPARISON WITH RETRAINING-BASED PRUNING ALGORITHMS (Q3)

In Sections 4.2 and 4.3, we demonstrate that K-prune outperforms existing retraining-free algorithms
with large margins in terms of both accuracy and inference speed. In this section, we compare
K-prune with both retraining-free and retraining-based pruning algorithms to show the efficiency of
K-prune. We compare the cost of each pruning algorithm by measuring the time for pruning in hours,
and the accuracy of the compressed models for 75% compression rate on MNLI and QNLI datasets in
Figure 3. DynaBERT-d and DynaBERT-w are two variants of DyanaBERT with and without applying
depth multipliers, respectively. Note that K-prune shows comparable or better accuracy in all settings
compared to Kwon et al., EBERT, DynaBERT-w, and DynaBERT-d while showing up to 422 × lower
pruning cost. Thus, K-prune shows the best trade-off regarding the accuracy and pruning time among
both the retraining-based and retraining-free pruning algorithms.

8



Published as a conference paper at ICLR 2024

4.5 ABLATION STUDY (Q4)

We perform an ablation study to show that each technique of K-prune, such as knowledge-based
importance criteria, KPMS, and KPWT, improves the accuracy of the compressed model. We
summarize the results in Table 2 under the compression rate of 80% on MRPC and SQuAD1.1. Each
row of Table 2 depicts the change of performance when an individual idea is omitted from K-prune.
-Kpred, Krep shows the results from using the magnitude of the derivative of cross entropy instead
of the knowledge-based importance criterion, -KPMS denotes cases where pruning is performed
uniformly across sub-layers without considering global importance, and -KPWT represents that
iterative pruning and weight-tuning are not employed. Our results show that all ideas contribute to
the performance enhancement, and KPWT shows the most significant impact.

5 RELATED WORKS

5.1 TRANSFORMER COMPRESSION

Transformer compression algorithms are designed to reduce the size and inference time of Transformer.
These algorithms are categorized based on the aspects they focus on: quantization (Kim et al., 2021b;
Piao et al., 2022; Kwon et al., 2022a), low-rank approximation (Wang et al., 2022; Cordonnier et al.,
2020), parameter sharing (Lan et al., 2020; Jeon et al., 2023), structured pruning (Hou et al., 2020;
Liu et al., 2021; Kwon et al., 2022b; Nova et al., 2023), and unstructured pruning (Sanh et al., 2020;
Yao et al., 2021). In this paper, we focus on structured pruning which guarantees instant acceleration
on commodity hardware. Note that other types of algorithms are complementary to structured pruning
in achieving a higher compression rate, as they address different kinds of inefficiencies (Lazarevich
et al., 2021; Frantar & Alistarh, 2023).

5.2 STRUCTURED PRUNING FOR TRANSFORMERS

Structured pruning algorithms for Transformers are divided into two groups: retraining-based and
retraining-free ones. Earlier approaches for structured pruning (Hou et al., 2020; Liu et al., 2021;
Lagunas et al., 2021; Xia et al., 2022) are retraining-based algorithms which generate highly sparse
and accurate models based on their sophisticated training using entire datasets. However, these
algorithms demand extensive retraining costs and intensive hyperparameter tuning, limiting their
usage; for large language models (Brown et al., 2020; Zhang et al., 2022), retraining-based algorithms
are intractable. For example, DynaBERT (Hou et al., 2020) requires three individual retraining
processes for pruning BERT. Retraining-free algorithms (Kwon et al., 2022b; Nova et al., 2023) are
proposed to reduce the expensive pruning cost by removing retraining processes. However, they
face a significant accuracy drop since they fail to cope with pruning errors. Our proposed K-prune
resolves the accuracy degradation problem, achieving both speed and accuracy.

6 CONCLUSION

We propose K-prune, an accurate retraining-free structured pruning algorithm for encoder-based
PLMs. We address the problem of severe accuracy degradation in prior retraining-free pruning
algorithms by carefully designing an iterative pruning algorithm to preserve the knowledge of PLMs.
K-prune achieves remarkable accuracy improvement up to 58.02%p better performance than existing
retraining-free pruning algorithms. Future works include extending our method for decoder-based
models.
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A SYMBOLS AND DEFINITIONS

We summarize the definitions of the symbols in Table 3. For simplicity, we omit the notation l
representing the lth sub-layer if omiting l does not introduce any confusion.

Table 3: Symbols and descriptions.

Symbol Description

T , S pre-trained and compressed models
Sub(·) a sub-layer function

M(·), F(·) sub-layer functions for MHA and FFN sub-layers
h(·), n(·) an attention head and a neuron in an intermediate layer
f(·), g(·) intermediate features of an attention head and a neuron

W out, vout output projections for an attention head and a neuron
Bout, Cout biases for output projections in MHA and FFN sub-layers

ζ, ξ masks for an attention head and a neuron
1d a length d vector filled with ones

ml\i a mask vector filled with ones except the ith element which is zero

H the number of attention heads in an MHA sub-layer
N the number of neurons in a FFN sub-layer
d the dimension of token embeddings
s a sequence length
dh the dimension of projected embeddings in attention heads

D a sample dataset
(x, y) a tuple of a data point and its label in D
X an input of a sub-layer

Kpred, Krep predictive and representational knowledge
Zhead, Zneuron importance scores of attention heads and neurons

γ the temperature of softmax functions
λ a coefficient for balancing Kpred and Krep

µ a coefficient for balancing Shead and Sneuron

τFLOPs a FLOPs constraint
FLOPs(·) a function for measuring FLOPs of the model

Fh the number of FLOPs for computing the output of an attention head
Fn the number of FLOPs for computing the output of a neuron
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B DERIVATIONS

We provide additional derivations for completeness.

B.1 DERIVATION OF EQUATION (8) IN SECTION 3.2

For MHA sublayers, we derive Krep,l(XT ,l,XS,l;ml,i = 0) ≈ ∥hl,i(XS,l)∥2F as follows under the
same assumption. We assume that XT ,l ≈ XS,l since we reconstruct the output of the previous
sublayer.

Krep,l(XT ,l,XS,l;ml,i = 0) =
∥∥XT ,l + SubT ,l(XT ,l,1ml

)−XS,l − SubS,l(XS,l,ml\i)
∥∥2
F

≈

∥∥∥∥∥∥
H∑
j=1

hl,j(XS,l) +Bout
l −

 H∑
j=1

hl,j(XS,l) +Bout
l − hl,i(XS,l)

∥∥∥∥∥∥
2

F

= ∥hl,i(XS,l)∥2F

Analogously, we derive Krep,l(XT ,l,XS,l;ml,i = 0) ≈ ∥nl,i(XS,l)∥2F for FFN sublayers as
follows.

Krep,l(XT ,l,XS,l;ml,i = 0) =
∥∥XT ,l + SubT ,l(XT ,l,1ml

)−XS,l − SubS,l(XS,l,ml\i)
∥∥2
F

≈

∥∥∥∥∥∥
N∑
j=1

nl,j(XS,l) +Cout
l −

 N∑
j=1

nl,j(XS,l) +Cout
l − nl,i(XS,l)

∥∥∥∥∥∥
2

F

= ∥nl,i(XS,l)∥2F

B.2 REFORMULATED PROBLEM OF KNOWELDGE RECONSTRUCTION FOR LINEAR SOLVERS
(SECTION 4.4)

We reformulate Equations (10) and ( 11) in our main text as a form of linear least square problem to
use linear solvers, such as torch.linalg.lstsq, as in Equation (12).

W ∗ = argmin
W

∥PW −Q∥2F (12)

We derive P , W , and Q for MHA sub-layers as in Equation (13) where ∥ is columnwise concatena-
tion. P is a transpose of concatenated feature matrix of the remained attention heads after pruning
and W is a concatenation of transposed weight matrices of the output projections in the remained
attention heads after pruning.

P =
(
∥i∈{i|ζi ̸=0} fi(XS)

)T
W =∥i∈{i|ζi ̸=0}

(
W out

i

)T
(13)

Q =
(
XT + MT (XT ,1H)−XS −Bout

)T
We derive P , W , and Q for FFN sub-layers of Equation (14) in the same logic as the MHA
sub-layers.

P =
(
∥i∈{i|ξi ̸=0} gi(XS)

)T
W =∥i∈{i|ξi ̸=0}

(
vout
i

)T
(14)

Q =
(
XT + FT (XT ,1N )−XS −Cout

)T
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C DETAILED EXPERIMENTAL SETTINGS

C.1 DATA DESCRIPTION

We summarize the characteristics of GLUE and SQuAD benchmarks in Table 4.

Table 4: Summarization of benchmark datasets.

Name Samples Tokens Task Metric

MRPC 3.7k 195k paraphrase accuracy
QQP 364k 11,123k paraphrase accuracy
SST-2 67k 897k sentiment accuracy
STS-B 7k 160k sentence similarity Spearman corr.
MNLI 393k 15,629k NLI∗ accuracy
QNLI 105k 5,176k QA∗∗/ NLI accuracy
SQuAD1.1 88k 15,116k QA F1 score
SQuAD2.0 132k 22,455k QA F1 score
∗ natural language inference ∗∗ question answering

C.2 FINE-TUNING OF PLMS

We fine-tune BERT (Devlin et al., 2019) following a standard training recipe. We use fine-tuned
checkpoints of DistilBERT in the github3. We summarize the performance of fine-tuned BERT and
DistilBERT in Table 5.

Table 5: Accuracy of the fine-tuned BERT and DistilBERT.

MRPC QQP SST-2 STS-B MNLI QNLI SQuAD1.1 SQuAD2.0

BERT 87.01 91.54 93.12 89.08 84.90 91.87 88.51 76.54
DistilBERT 84.80 89.99 91.39 86.12 82.10 88.55 85.73 68.84

C.3 TRAINING DETAILS OF K-PRUNE

Code. We attach our implementation of K-prune in the supplementary material. We attach scripts
and detailed instructions for reproducing our experimental results.

Hyperparameter. In addition to the hyperparameter settings {(2, 1, 64), (2, 0.00025, 64)} used
in the main text, we provide additional results with a wider range of hyperparameter settings. We
perform experiments on SQuAD1.1 under compression rates of 40%, 60%, and 80%.

Sensitivity analysis regarding γ. Figure 4 shows the change of the F1 score of the model with
regard to the change of the temperature γ for softmax functions. We use γ ∈ {0.5, 1.0, 1.5, ..., 4.0}
where a higher γ represents a smoother prediction after softmax. The F1 score of the compressed
model is weakly sensitive to the change of γ. We get an accurate compressed model with γ = 2
which is used for comparison with existing works in the main text, and we get additional accuracy
improvement when we use γ = 1.5.

Sensitivity analysis regarding λ. Figure 5 shows the change of the F1 score of the model
with regard to the change of the balance coefficient λ for representational knowledge. We use
λ ∈ {0.25, 0.025, ..., 0.0000025} where a higher λ imposes higher importance on representational
knowledge than predictive knowledge. We additionally depict the results of two cases that use only
predictive or representational knowledge with the leftmost and rightmost stars in each figure. Overall,
predictive knowledge plays an important role and shows higher f1 scores than representational
knowledge. However, when it comes to the high compression rate, i.e. 80%, we find that using
representational knowledge improves the performance of the compressed model compared to the case

3https://github.com/WoosukKwon/retraining-free-pruning
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used for comparison in the main text others

Figure 4: Change of f1 scores with regard to the change of the temperature γ on SQuAD1.1 under
compression rates of 40%, 60%, and 80%. The f1 scores of the compressed model exhibit weak
sensitivity to the alteration in γ.

only only
only

only
only

only

used for comparison in the main text others

Figure 5: Change of f1 scores with regard to the change of the balance coefficient λ on SQuAD1.1
under compression rates of 40%, 60%, and 80%. The leftmost and rightmost stars represent the cases
that use only predictive or representational knowledge, respectively. Representational knowledge is
not effective by itself in general, however, it improves the accuracy of the compressed model when
combined with predictive knowledge.

in which we use only predictive knowledge. We get an accurate model with λ ∈ {0, 0.00025} which
is used for comparison with existing works in the main text. We get additional accuracy improvement
when we use λ = 0.0025 at the compression rate of 80%.

Sensitivity analysis regarding µ. Figure 6 shows the change of the F1 score of the model
with regard to the change of the balance coefficient µ for scores of attention heads. We use µ ∈
{1, 2, 4, 8, ..., 2048} where a higher µ imposes higher importance on the scores of the attention
heads than neurons, and encourages the pruning of neurons. As a result, we find that µ ∈ [32, 128]
consistently shows accurate results on all compression rates, and too-low or too-high value of µ shows
severe accuracy degradation. We conjecture that this accuracy degradation comes from the imbalance
of pruning of attention heads and neurons. We recommend using µ = 64 which consistently shows
accurate results.

C.4 TRAINING DETAILS OF COMPETITORS

We summarize the training details of competitors.

C.4.1 KWON ET AL. (2022B)

Code. We use the code implemented by authors in github4.

Hyperparameters We use damp = 1 for LSMR solver5 in CuPy and acceptable range of tuned
varialbes as [−10, 10] following the original paper (Kwon et al., 2022b).

4https://github.com/WoosukKwon/retraining-free-pruning
5cupyx.scipy.sparse.linalg.lsmr
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used for comparison in the main text others

Figure 6: Change of f1 scores with regard to the change of the balance coefficient µ on SQuAD1.1
under compression rates of 40%, 60%, and 80%. The results with µ ∈ [32, 128] are accurate in all
settings, and too-low or too-high value of µ shows severe performance degradation.

C.4.2 KCM (NOVA ET AL., 2023)

Code. We reimplement the KCM since there is no public implementation of authors.

Hyperparameters We use width σ = 1 of the Gaussian kernel and convergence rate α = 0.01 as
in the original paper (Nova et al., 2023). We use Min-Max normalization for normalizing D2 scores.

C.4.3 DYNABERT (HOU ET AL., 2020)

Code. We use the code implemented by authors in github6.

Hyperparameters We use the same hyperparameters summarized in Table 9 of the paper (Hou
et al., 2020). We use (mw,md) = (0.25, 1.0) for DynaBERT-w and (mw,md) = (0.5, 0.5) for
DynaBERT-d where mw and md are width and depth multipliers, respectively. We do not use data
augmentation for fairness since other algorithms do not use data augmentation. We report the accuracy
after final-finetuning.

C.4.4 EBERT (LIU ET AL., 2021)

Code. We use the code implemented by authors in github7.

Hyperparameters We use the same set of hyperparameters introduced in Section 4.1 of the
paper (Liu et al., 2021).

D RETRAINING-FREE MODEL COMPRESSION IN CNN

There are retraining-free structured pruning algorithms (YVINEC et al., 2021; Kim et al., 2020;
Srinivas & Babu, 2015) for CNNs which reduce the size of pre-trained models by finding similar
neurons based on their weight distribution, and integrating the similar neurons. However, we do not
compare them with K-prune since they are not directly applicable to the PLM compression problem.
The main reason is the architectural difference between CNN and Transformer. The structured
pruning algorithms for CNN do not consider pruning of attention heads, and thus they can prune only
FFN sub-layers like KCM (Nova et al., 2023) which shows severe accuracy degradation in Figure 2
of our main text.

E EXPERIMENTS ON LARGE LANGUAGE MODELS

We provide an experimental result on decoder-based large language models (LLMs) considering
the growing interest in reducing the cost of LLMs via compression (Park et al., 2024). We prune
OPT-1.3B and OPT-2.7B models (Zhang et al., 2022) using 128 sentences in C4 dataset Raffel et al.

6https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/DynaBERT
7https://github.com/zejiangp/EBERT
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(2020) and measure the perplexity on Wiki-text2 (Merity et al., 2017) dataset for evaluation. We
summarize the experimental results in Table 6. Lower perplexities mean better results.

Table 6: Perpelxities on Wiki-text2 dataset (Merity et al., 2017) of OPT (Zhang et al., 2022) models
pruned by K-prune. The term ”Difference” represents the ratio of the amount of increased perplexity
after pruning compared to the perplexity of the unpruned model, i.e. (Difference) = ((perplexity after
pruning) - (perplexity before pruning))/(perplexity before pruning) × 100.

OPT-1.3B

Pruning rate 0% 5% 10% 15% 20%
Perplexity 14.67 14.41 13.96 14.67 15.74
Difference - -1.77% -4.84% 0.00% 7.29%

OPT-2.7B

Pruning rate 0% 5% 10% 15% 20%
Perplexity 12.46 12.23 11.94 12.01 12.51
Difference - -1.85% -4.17% -3.61% 0.40%

As a result, K-prune successfully prunes billion-scale LLMs maintaining its performance. Surpris-
ingly K-prune shows negligible performance degradation of 0.4% for OPT-2.7B under 20% pruning
rate. Note that structured pruning of decoder-based language models is much more difficult than that
of encoder-based models. For example, LLM-pruner (Ma et al., 2023) shows severe performance
degradation of over 30% for LLaMA-7B models on Wiki-text2 dataset. Combined with the obser-
vation that larger models are easier to prune (Frantar & Alistarh, 2023), we expect that K-prune
achieves higher pruning rates with minimal performance degradation for language models larger than
2.7B. Therefore, applying K-prune to decoder-based LLMs is a promising future work.
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