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Abstract: Applying reinforcement learning (RL) to learn effective policies1

on physical robots without supervision remains challenging when it comes to2

tasks where safe exploration is critical. Constrained model-based RL (CMBRL)3

presents a promising approach to this problem. These methods are designed to4

learn constraint-adhering policies through constrained optimization approaches.5

Yet, such policies often fail to meet stringent safety requirements during learn-6

ing and exploration. Our solution “CASE” aims to reduce the instances where7

constraints are breached during the learning phase. Specifically, CASE integrates8

techniques for optimizing constrained policies and employs planning-based safety9

filters as backup policies, effectively lowering constraint violations during learn-10

ing and making it a more reliable option than other recent constrained model-11

based policy optimization methods.12

Keywords: Model-based RL, Safe RL, Safety Filter, Exploration13

1 Introduction14
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Figure 1: Results for the tasks (Ant,
Walker, Hopper) with different seeds; av-
erage rewards represents average rewards
per episode in the last 10 evaluations. Con-
straint violation rate is the average percent-
age of steps with constraint violations in an
episode during exploration. CASE decreases
constraint violations during exploration with
similar task performance to other constrained
RL baselines.

Many real-world robotic systems can be effectively15

modeled as constrained Markov decision processes16

(CMDPs) [1], particularly in contexts where safety is17

paramount, and robots must adhere to specific con-18

ditions while learning to accomplish tasks. In ad-19

dition, CMDPs offer a structured framework for in-20

jecting inductive biases into the policy optimization21

process, thereby reducing the number of interactions22

required to learn effective policies. Thus, develop-23

ing deep RL algorithms for solving CMDPs has the24

promise of unlocking RL’s potential across various25

real-world robotic applications where safety is an is-26

sue. However, applying RL to systems that must27

operate under constraints all the time, even as they28

explore and learn, remains an open challenge.29

Model-free constrained policy optimization meth-30

ods have primarily adapted actor-critic techniques31

to the constrained setting, employing Lagrangian re-32

laxation, such as the augmented Lagrangian method,33

to train constrained policies. While these algorithms34

are appealing for their relative simplicity, they face35

significant challenges, particularly in terms of sen-36

sitivity to Lagrangian multipliers [2]. Moreover,37

model-free RL approaches for CMDPs often suffer38

Submitted to the 8th Conference on Robot Learning (CoRL 2024). Do not distribute.



from high sample complexity, making them ill-suited for constrained environments where a high39

number of interactions during learning constrained policies leads to a high number of constraint vio-40

lations as well as increased wear and tear, reducing their suitability for learning without supervision41

on physical robots.42

Various authors have proposed applying model-based RL methods to constrained settings to tackle43

the challenge posed by the high sample complexity of model-free approaches. These methods fall44

into two main categories. The first category includes methods that improve learning efficiency and45

reduce constraint violations during exploration by using differentiable models [3, 4]. These models46

act as simulators for both learning the policy and the value function. However, despite their advan-47

tages, they often face difficulties with the instability that comes with constrained policy optimization.48

The second category involves methods that incorporate planning [5, 6, 7, 8] possibly alongside the49

primary, unconstrained policies. This approach helps in preventing constraint violations throughout50

the learning phase. We find that combining the ability of learned models to act as simulators for51

constrained policy optimization with the possibility of using learned models in lookahead planning52

schemes remains a largely unexplored direction. Furthermore, we find that most CMBRL methods53

do not consider epistemic uncertainty, which is essential in cases where the policy is exploring online54

and needs to reason about the effect of epistemic uncertainty on its ability to satisfy constraints.55

Our Contributions In this work, we combine constrained model-based policy optimization with56

a planning-based safety filter that acts as a backup policy to minimize constraint violations during57

exploration. In addition, we introduce modifications to the constrained model-based policy opti-58

mization training to ensure stable training. We also modify the safety filter’s objective to consider59

the behavior of the constrained base policy during planning. We evaluate our method on constrained60

tasks from the Omnisafe benchmark [9] and show that our combination of constrained policy op-61

timization and planning can lead to significantly reducing constraint violations during training in62

comparison with other CMBRL methods as seen in figure 1.63

2 Preliminaries64

2.1 Problem Setting65

We consider a CMDP, which is defined by the tuple (S , A , p , ρ0 , r , γ , c , γsafe). S and A are66

the state and action spaces respectively. The discount factor and the safety discount factor are67

represented by γ and γsafe. The dynamics of the system are represented by p(st+1 | st, at), and68

the initial state distribution is represented by ρ0. The reward function is represented by r(st, at),69

and the constraint cost function is represented by c(st, at). In this work, we consider constraint costs70

represented with the indicator function I(st, at) where the unsafe state is represented as Sunsafe =71

{st | I(st, at) = 1} and the safe states are represented as Ssafe = {st | I(st, at) = 0}.72

The challenge in CMDPs is maximizing the performance of the agent while satisfying constraints73

J(π) = E
at∼π,s0∼ρ0

[ ∞∑
t=0

γtr(st, at)

]
such that Jc(π) = E

at∼π,s0∼ρ0

[ ∞∑
t=0

γtsafeI(st, at)

]
≤ l,

(1)

where l is a problem-specific threshold.74

2.2 Constrained Model-based Reinforcement Learning75

In constrained model-based RL, we use transition tuples in the form of {st, at, rt, ct, st+1} to learn76

a transition model p. The transition model can then be used in online planning as done in [10, 11],77

or by amortizing decision-making by offline training of a parametric policy using an actor-critic78

approach as in [12, 13].79

Recent methods [3, 4] have shown the effectiveness of MBRL in solving CMDPs as formulated80

in Eq. (1). Both methods adapt previous model-based RL methods to the constrained setting;81
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Figure 2: Overview of CASE. A dynamics model is used to pretrain policy, critic, and constraint
critic. The policy is used alongside a safety filter to ensure a low rate of constraint violations during
explorations.

LAMBDA [3] is based on Dreamer [12], where the RSSM model from PLANET [11] is used as82

a differentiable simulator for on-policy actor-critic training to learn a policy πθ and a critic vπ;83

safeSLAC [4] is based on SLAC [14], where the model is used to fill a replay buffer that is used in84

an off-policy algorithm. Both methods extend their base MBRL algorithm by adding a constraint85

critic vπ,safe and using a Lagrangian relaxation to train a constrained policy by optimizing86

min
λ≥0

max
πθ

Es0∼ρ0 [J(s0)] + λEs0∼ρ0 [Jc(s0)]. (2)

We follow a similar constrained model-based actor-critic (CMBAC) scheme to LAMBDA. However,87

we do not follow a similarly complex approach to the multiplier updates; rather, we add some minor88

modifications to the calculation of the value functions in constrained policy optimization to ensure89

the stability of the multiplier updates using gradient descent. Additionally, we avoid learning the90

policy πθ using a pessimistic constraint cost, which leads to learning an overtly conservative policy91

[4].92

2.3 Deep Ensemble Transition Models93

Due to our focus on exploration, we need a model that can provide well-calibrated epistemic uncer-94

tainties. Deep ensemble models present a straightforward approach to provide representations of the95

epistemic uncertainty due to their ability to provide good approximations of the Bayesian posterior96

predictive distribution of the neural network [15]. Thus, we rely on an ensemble of dynamic models97

Pψ = {pψ,1, . . . , pψ,B}, where each ensemble member pψ,i is a neural network that predicts the98

transition as a Gaussian distribution with a diagonal covariance pψ,i(st+1 | st, at) = N (st+1 |99

µψ,i(st, at),Σψ,i). We optimize each ensemble member by minimizing the negative log-likelihood100

Lpψ,i = −
T∑
t=1

log pψ,i(st+1 | st, at). (3)

The use of ensemble-based transition models has already shown very good performance in model-101

based RL papers such as [16] and [10]. In deep ensemble transition models, each ensemble member102

pψ,i captures the aleatoric uncertainty of the ground-truth MDP. In contrast, the disagreement be-103

tween the ensemble members captures the epistemic uncertainty on the learned transition function.104

3 Approach105

In CASE, we combine CMBAC with a planning-based safety filter aiming to lower constraint viola-106

tion rates while exploring CMDPs. Our motivation is to leverage both the advantages of lookahead107

planning and the computational efficiency of actor-critic methods to explore the CMDP while keep-108

ing constraint violations to a minimum. This combination of learning and planning has been studied109
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in recent work [6, 17, 18], leveraging the ability of actor-critic methods to learn parametric poli-110

cies and critics efficiently and compensating for the bias and limited expressiveness of an amortized111

parametric policy with lookahead planning using the model. We learn an ensemble transition model112

Pψ as discussed in section 2.3, and use model-based actor-critic by leveraging the learned model113

as a learned simulator for constrained on-policy actor-critic training. Online exploration is per-114

formed primarily using the constrained parametric policy; in addition, we implement a conservative115

planning-based safety filter to avoid violating constraints. An overview of our methods can be seen116

in figure 2 and algorithm 1.117

3.1 Constrained Model-based Actor-Critic118

Algorithm 1 Pseudocode of CASE

Initialize parameters θ, ϕ, ξ, ψ
for N episodes do

for t timesteps do
sample at from policy πθ(st)
if st ∈ Srecovery according to (7) then

Trigger filter and optimize filter objective
in (8) resulting in plan {ut, . . . , ut+H}
Apply ut

else
Appy at

end if
end for
Add Depisode to D
update Pψ by optimizing (3)
update πθ by optimizing (6)
update Vϕ by optimizing (4),
update V safe

ξ by optimizing (5)
end for

Our approach to policy optimization is119

most similar to [3, 4], where CMBAC120

methods were shown to result in data-121

efficient learning of constrained policies.122

For the policy optimization, we learn a pa-123

rameterized policy πθ. In addition, we124

follow [19] and learn an ensemble value125

function Vϕ = {vϕ1
, . . . , vϕB}, where vϕi126

are individual ensemble members, simi-127

larly, we learn an ensemble safety critic128

V safe
ξ = {vsafe

ξ1
, . . . , vsafe

ξB
}.129

Learning Dynamics Model We adapt130

the probabilistic ensembles discussed in131

2.3 for solving CMDPs. We add pre-132

dictions heads for rewards p(rt|st), con-133

straint cost p(It|st), and termination flags134

p(dt|st) for environments with early ter-135

mination conditions. We model the reward136

distribution p(rt|st) as a Gaussian distri-137

bution, while the binary constraint cost It138

and termination flag dt are modeled as139

Bernoulli distributions.140

Learning Critics For learning of value function ensemble members, we use imagined rollouts141

τi,st using respective transition ensemble members pψi and branching off real states st. This ap-142

proach leads to the disagreement of critic ensemble members capturing the epistemic uncertainty143

in the transition function ensemble Pψ similar to the approach followed in [20]. We use TD(λ) to144

calculate the targets for the value function similar to Dreamer [12] and train each member in the145

value function ensemble on its own independent targets as done in [21]146

min
ϕi

Est′∼pψ,i,at′∼πθ

[
t+Hv∑
t′=t

1

2

∥∥vϕ,i(st′)−Rλ,i(st′)
∥∥2] , where

Rλ,i(st) = rt + γ(1− dt)
(
(1− λ)vϕ,i(st) + λRλ,i(st+1)

)
, Rλ,it+Hv = vϕ,i(st+Hv ). (4)

Similarly we learn the safety critic ensemble V safe
ξ using TD(λ) targets147

min
ξi

Est′∼pψ,i,at′∼πθ

[
t+Hv∑
t′=t

1

2

∥∥vsafe
ξ,i (st′)− Cλ,i(st′)

∥∥2] , where

Cλ,i(st) = It + γsafe ((1− λsafe)vsafe
ξ,i (st) + λsafeCλ,i(st+1)

)
, Cλ,i(st+Hv ) = vsafe

ξ,i (st+Hv ).
(5)
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We note that the termination flag dt is only included in calculating the task critic targets. We do not148

include it in the constraint critic’s training, which would lead the constraint critic to underestimate149

the cost for states near termination states. We discuss this design choice further in appendix A.150

Constrained policy optimization For solving the constrained problem in equation (1), we resort151

to Lagrangian relaxation by including the constraint cost term in the policy objective weighted by152

the Lagrangian multiplier λ, thus turning the problem into an unconstrained problem as in equation153

(2), where we solve a min-max optimization over the policy πθ and the Lagrangian multiplier λ154

min
λ≥0

max
πθ

1

1 + λ
Eat′∼π,st∼Ssafe,st′∼Pψ

[
Rλ(st+k) + λCλ(st+k) | st

]
, (6)

where Rλ and Cλ are the means over the TD(λ) returns from the different ensemble members155

Rλ,i and Cλ,i for the rewards and the constraint costs respectively. Designing stable update rules156

for Lagrangian multipliers is a challenging task in the model-based setting, as using biased model157

rollouts for updating the multipliers can lead to a rapid increase in their magnitudes, thus derailing158

training. Furthermore, model rollouts in MBRL normally use observations from the replay buffer as159

starting states, which can lead to the multipliers being updated to reflect the behavior of the policy160

used to collect the data rather than the optimized policy πθ. In [3], a complicated optimization161

scheme is used to decelerate the updates of the multipliers. In [4], the multipliers are updated solely162

using real online rollouts, presumably to avoid inaccuracies in the model from causing erroneous163

multiplier updates. We follow a more straightforward scheme and update the multipliers using164

stochastic gradient descent with no additional heuristics.165

Our changes center around the calculation of the policy’s objective and are highlighted in objective166

(6) in cyan. We only use constraint-satisfying states Ssafe as initial states for our rollouts and only167

include the tail of the rollouts in the calculation of the terms in the objective, thus avoiding situations168

where the agent is already doomed but starts in a safe state. Thus giving the policy enough time to169

steer the system away from constraint-violating regions. Over time, these changes decelerate the170

increase in the multipliers and prevent them from exploding in value. In addition, we normalize the171

whole objective by a factor of 1 + λ, which helps keep the absolute value of the loss in the same172

scale as the multiplier λ increases in value similar to [2].173

3.2 Exploration with Safety Filter174

Our aim is to enable safer online exploration. Thus, we do not use conservatism to prevent the policy175

from exploring online as in [22, 23, 3], which would lead the policy to learn an overtly conservative176

behavior. In contrast, we rely on a conservative safety filter MPC as a backup policy that intervenes177

to prevent constraint violation, guided by the critic.178

Trigger To trigger the filter, we rely on the ensemble transition model and use it to roll out the179

learned policy πθ for horizon Hfilter starting from the current state st, generating separate imagined180

trajectories {(sit′ , ait′)}
t+Hfilter

t using each member pθ,i. We use the worst-case value of the ensemble181

safety critic V safe
max = max

st′∈Pψ
V safe(st′) to define a pessimistic recovery set182

Srecovery = {(st) ∈ S : V safe
max(s

i
t′) ≥ ϵsafe}, (7)

where V safe
max is the maximum prediction of the ensemble critic across the lookahead trajectories.183

Our pessimistic formulation of the objective and the trigger of the safety filter consider the epistemic184

uncertainty inherent in the exploration task, where the filter is more likely to be triggered in situations185

with high epistemic uncertainty due to the effect of considering the worst case prediction of the186

ensemble safety critic.187

We roll out separate trajectories starting from current state st with each separate transition ensemble188

member pψ,i and evaluate the states sit′ in each trajectory with its respective safety critic vξ,i. The189

state st is considered part of Srecovery in case the worst case prediction of V safe of the imagined190

trajectories starting from st exceeds the threshold ϵsafe.191
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Figure 3: Performance of CASE compared to other constrained RL methods on constrained envi-
ronments from the Omnisafe benchmark. We find that constraint violation rates during exploration
are reduced significantly while maintaining competitive task performance in comparison with other
constrained RL methods..

Optimization The safety filter used in this paper solves the optimization problem192

min
ut...ut+m

E st+1..t+m∼Pψ(.|st′ ,ut′ )
st+m+1..t+H∼Pψ(.|st′ ,πθ(st′ ))

[
t+Hfilter∑
t′=t

V safe
max(st′)

]
. (8)

This MPC-filtering approach is similar to the recovery RL method [7], which minimizes the safety193

critic along the lookahead horizon, thus enabling a longer lookahead at a reduced computational194

cost. In addition, we use pessimism in triggering the filtering and optimizing its objective. Thus195

taking epistemic uncertainty into consideration. Furthermore, our objective includes rollouts from196

the base policy πθ in the objective, thus encouraging the MPC to drive the systems to regions of the197

state space where the base policy is predicted to keep the system safe. We optimize the objective in198

(8) using gradient descent where we optimize the whole term for the actions {ut, . . . , ut+m}.199

4 Results200

4.1 Experimental Setup201

We compare our method with model-free baselines from the Omnisafe benchmarking suite [9]. For202

benchmarking, we use constrained velocity control tasks, where the goal is to solve locomotion203

tasks while maintaining the system below a maximum velocity. We choose different constrained204

RL baselines based on TD3 [24] and SAC [25]. We first compare the performance of CASE with205

the model-free baselines SAC-Lagrangian and TD3-Lagrangian, which extend SAC and TD3 with206

a constrained policy optimization scheme using Lagrangian relaxation. In addition, we compare207

CASE to SAC-PID and TD3-PID, which use the Lagrange multipliers updating scheme presented208

in [2]. We run each method on four seeds and show the mean and the 95% confidence interval209

performance in figure 3. We explain our experimental setup and hyperparameters in more detail in210

appendix B.211

4.2 Comparison to Model-free Baselines212

Our results shown in figure 3 show that combining CMBAC and planning significantly decreases the213

constraint violation rate during exploration, where the planning compensates for imperfections in the214

parametric policy πθ, which amortizes decision-making and has limited expressiveness, leading to215

situations where the behavior of πθ might lead to constraint violations. In planning, on the other216
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hand, we minimize the planner’s objective for each situation separately, compensating for such217

imperfections in πθ and instabilities in constrained policy optimization. We further discuss the218

impact of the individual modules in CASE and other design choices in appendix A. Although CASE219

shows a more constraint-adhering exploration behavior than our baselines, it is slower to reach the220

task performance of the baselines due to the restrictions posed by the pessimistic safety filter.221

The baselines learn a safe behavior eventually; however, as constrained policy optimization tends222

to have instabilities during training, they have high rates of constraint violation during exploration.223

This is compounded by the implementation in Omnisafe, which only starts updating the Lagrange224

multipliers after 100 warm-up epochs, corresponding to 200k environment steps. This initial warm-225

up phase ensures the off-policy methods have enough variety in the replay buffer. In cases where226

the robot needs to learn in the wild, such exploration behavior might not be acceptable.227

The results from our experiments put into question the suitability of the model-free method for228

safe exploration tasks. Although model-free methods might have some advantages in their asymp-229

totic performance in comparison to model-based methods [10], they lack the ability of model-based230

methods to do look-ahead controlling and deciding online to avoid actions where the robot might be231

uncertain or that might be deemed to be possibly dangerous. Making model-based methods more232

suitable candidates for learning on physical robots, especially when the robot needs to explore under233

certain restrictions.234

4.3 Runtime235

Although using a lookahead planner as a safety filter helps reduce the constraint violation rates of236

the reactive parametric base policy, this comes at the cost of computational efficiency. The safety237

filter involves an online optimizer that solves the optimization problem in objective (8). We com-238

pare the frequency of the filter across the different environments in figure 4, and we find that the239

filter performs around 50 Hz in all environments. Looking at other methods combining actor-critic240

methods and planning, we find that TD-MPC [17], which does not consider the constrained setting,241

performs similarly to our method in runtime with about 50 Hz for the default setting. LOOP [6],242

which also explores CMDPs among other settings, reports a lower frequency 14.3 Hz. Generally, the243

low frequency of planning-based methods represents the biggest disadvantage compared to methods244

leveraging only parametric policies for decision-making.245

5 Related Work246
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Figure 4: Average runtime for
CASE. We find that despite the on-
line computations, we maintain a
reasonable FPS that makes CASE
feasible to use in physical systems.

Constrained model-based reinforcement learning Differ-247

ent RL methods have been introduced targeting CMDPs. The248

most common variants are papers leveraging the augmented249

Lagrangian method for learning constrained policies. CPO250

[26] extended TRPO to CMDP, and building on that work251

[27] combined the Lagrangian method with PPO to learn con-252

strained policy. The use of an on-policy method rendered the253

method unsuitable for learning in the real world, where sam-254

ple efficiency is essential. In [28], the authors implemented a255

similar approach but replaced the on-policy algorithm with an256

off-policy approach to reduce sample complexity. Saute RL257

[29] provides an alternative to using Lagrangian relaxation for258

solving CMDPs by using state space augmentation. Different259

papers proposed MBRL methods combining learned models260

with constrained policy optimization. In [3], the authors use261

a Bayesian approximation of an RSSM [11] as a model. The262

posterior of the transition is used to learn an optimistic objec-263

tive regarding the rewards but pessimistic regarding the constraint cost. A similar approach was264

introduced in [4] where the authors extend SLAC [14] to the constrained setting. Concurrent with265
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our work, safeDreamer proposes combining planning with CMBAC. However, safeDreamer differs266

in not leveraging the planner as a backup policy as is the case in CASE. Further, safeDreamer does267

not take the epistemic uncertainty into decision-making, as proposed in our method.268

Safety filters Learning a policy to satisfy constraints and, at the same time, maximize the agent’s269

utility can be a challenging task. As a result, multiple methods have attempted to circumvent this270

problem by introducing backup policies πsafe(st) that minimize constraint costs in addition to a task-271

reward maximizing base policy π(st). Model-free methods that use a backup mechanism [7, 30]272

generally use an off-policy critic to trigger the intervention mechanism. Critics tend to be sensitive273

to out-of-distribution data and, in general, hard to learn. The two-policy setup is also investigated274

in [31], where the authors improve on the safety layers approach [32] by replacing the layers with a275

separate parametric policy that allows them to handle more complicated constraints.276

The predictive safety filter paper [8] discusses the idea of using an MPC wrapper to a base policy277

that prevents the base policy from violating constraints during learning by making assumptions about278

the model and the system dynamics as well as about the availability of a controller that can keep the279

system in the safe terminal state, allowing for guarantees on constraint satisfaction. Recovery RL280

[7] is closer to our approach, where the authors deploy a safety critic to design an intervention281

mechanism that prevents constraint violation. However, the paper does not explore using the model282

in concurrence to train a constrained policy, as we discuss in our method. In [33], a control barrier283

function is used in learning a safe policy. However, their method is only applicable for control affine284

systems. SAILR [34] provides an advantage-based intervention mechanism and derives performance285

bounds under the assumption of having an MDP with an absorbing state. However, their model-286

based experiments seem to be based on engineered models.287

Online planning using offline learned functions Combining online planning with offline learned288

functions was shown to be effective in multiple papers [18, 6, 17]. The use of online planning suffers289

less from bias in comparison with parameterized policies. Also, offline-learned functions enable290

the planner to reason beyond its planning horizon when combined with a learned value function or291

provide efficient initialization to them as done when combined with a parameterized policy. The idea292

of planning using offline learned functions was shown to improve on parametric policies in [18], and293

performance bounds were derived that show the benefits of using a planner in combination with a294

value function. However, the methods and the bounds introduced all used an unbiased dynamics295

model. In [6], these insights were extended to biased models, where they discussed the benefits of296

combining planning with offline learned functions even with a biased dynamics model.297

6 Conclusions and Limitations298

We present a method that combines constrained model-based policy optimization with a pessimistic299

planning-based safety filter for exploration in CMDPs with the aim of facilitating the learning of300

effective policies entirely on physical robots. We find that leveraging the ability of model-based301

methods to function as a simulator for on-policy actor-critic methods and being used in lookahead-302

control schemes and thus combining the advantages of model-based actor-critic with low-bias prop-303

erties of planning can lead to a significant reduction in constraint violation rates in comparison with304

model-free methods.305

Limitations The main limitation of our method lies in the inability to guarantee constraint sat-306

isfaction. Such guarantees would involve making assumptions on the target system, such as the307

smoothness of the dynamics and the availability of a safe terminal set, which might not be satisfied308

in many target systems of interest. Although our method leads to less constraint violation than the309

baselines during exploration, online planning can be computationally expensive. Furthermore, our310

design for the learned transition model limits our method to fully observable systems, which we aim311

to rectify in future work by leveraging models that can learn the dynamics of partially observable312

systems.313
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A Ablation Studies402
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Figure 5: For ablating design choices in the safety filter. We evaluate the average rewards per episode
in the last 10 evaluations (left) and the average percentage of steps with constraint violations in an
episode during exploration (right). We first evaluate the role of the safety filter in CASE. Exploring
with only πθ leads to a significant increase in constraint violations. Next, we evaluate the effect of the
base policy rollouts. We see a decrease in the average rewards reached after exploration, especially in
the ant environment. Finally, to evaluate the effect of pessimism in the filter, we optimize the filter
by using the mean over the ensemble predictions instead of considering the worst-case ensemble
prediction. Without pessimism, the filter tends to have higher constraint violation rates.

Effect of safety filter To assess the effect of the safety filter in our method, we explore CASE403

without the safety filter. In figure 5, we see that exploring solely using the constrained policy πθ404

leads to higher constraint violation rates. This indicates the necessity of the filtering mechanism405

in our method. By looking at the maximum rewards reached after exploration in figure 5, we see406

that the increase in rewards after removing the safety filter is insignificant except in the halfcheetah407

environment, where the constraint violation rates more than double after removing the filter.408

Effect of base policy term in the filter objective The filter objective in (8) includes rolling out409

the base policy πθ in the tail of the lookahead trajectory of the controller. We ablate this term by410

replacing it at the tail of the lookahead trajectory, thus maintaining a fixed total horizon length. This411

equates to the following objective412

min
ut...ut+H

Est+1..t+H∼Pψ(.|st′ ,ut′ )

[
t+H∑
t′=t

V safe
max(st′)

]
.

The purpose of the base-policy rollout is to inform the lookahead controller of the base policy’s413

behavior and thus steer the system towards regions of the state space where the base policy can414

perform without violating constraints. Removing the base policy rollouts leads to slightly worse415

task performance, especially in the ant environment. However, the difference in task performance416

is less significant than expected. In future work, exploring other possibilities for combining the417

intervention controller with a constrained base policy, such as penalizing the difference between the418

intervention mechanism’s actions and those of the base policy as done in [8], might be interesting.419

Effect of pessimism in the safety filter In our safety filter design, we leverage a pessimistic loss420

to consider the effect of epistemic uncertainty during exploration. To study the effect of pessimism421

on the filter, we use the mean over the ensemble prediction constraint critic predictions V safe
mean, instead422

of using the maximum aggregation over the ensemble of the constraint critic predictions V safe
max, intro-423

duced in section 3.2. We found that in our setup, removing the pessimism leads to higher constraint424

violation rates, especially in the more complex halfcheetah and ant environments.425
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(a) (b)

Figure 6: We compare the predictions of the constraint critic when including the terminal flag in its
target calculation in 6a and excluding the terminal flag in 6b for two different episodes with early
termination. The top row shows the ground truth constraint costs, and the bottom row shows the
constraint critic predictions for each state in the episodes. In 6a, we see the effect of adding the
termination flags in the targets, where the critic predicts a lower constraint cost near the terminal
state. Excluding the terminal state flag leads the constraint critic in 6b to avoid this effect.

Figure 7: Constrained locomotion tasks from safety gymnasium [35]. The aim of the task is to
maximise the locomotion reward, while staying below the maximum velocity

Effect of Including Termination flag in Constraint Critic’s Targets The constraint critic target426

described in (5) does not include the termination flag dt. The termination flag is usually needed427

in environments with termination conditions, which assumes that terminating states are absorbing428

states. Including the termination flag in the task critic V leads the critic to predict low values for429

such states, incentivizing the policy to avoid termination. This effect is not desired in the constraint430

critic V safe as it would lead the constraint critic to assign erroneous cost-to-gos to states near the431

termination states, which would have an adverse effect on the safety filter and the constrained policy432

optimization. We compare the predictions of two constraint critics in figure 6. The first in figure 6a433

is trained using targets including the termination flag dt434

Cλ,i(st) = It + γsafe(1− dt)
(
(1− λsafe)vsafe

ξ,i (st) + λsafeCλ,i(st+1)
)

where,

Cλ,i(st+Hv ) = vsafe
ξ,i (st+Hv ).

The second in figure 6b is trained with the targets described in (8). We find that including dt in435

TD (λ) returns has a negative effect on the constraint critic predictions where the critic assigns436

much lower values to states near the termination state, despite constraint violations.437

B Experimental Setup Details438

B.1 Benchmark439

We use the constrained velocity tasks from safety gymnasium [35] in our experiments. Specifically,440

we use the half cheetah, hopper, walker, and ant tasks, shown in figure 7. These tasks are attractive441

as they pose conflicting objectives, where the task reward incentivizes the agent to move with high442

velocity with the correct pose, and the constraint cost punishes the agent for moving above a velocity443

limit.444
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B.2 Hyperparameters445

Our method involves hyperparameters for the model training, the CMBAC, and the safety filtering.446

We list our hyperparameters in table 1.447

HalfCheetah Hopper Ant Walker
Model Pψ

number of bootstraps B 7
learning rate 1e−3

activation softsign
number of hidden layers 4
number of hidden units 200

Critic Vϕ and safety critic Vsafe
ξ

Horizon 12
Activation softsign

TD λ 0.9
discount γ 0.99

safety critic discount γsafe 0.9
safety TD λsafe 0.75

number of hidden layers 2
number of hidden units 256

Policy πθ
Horizon 4

Activation ReLU
learning rate 5e−4

number of hidden layers 2
number of hidden units 256

Polyak factor 0.995
Learning step lagrangian multipliers 3e−4

Filter
Filter Horizon 5

number optimization steps 50
learning rate 1e−1

ϵsafe 0.5 0.5 0.5 2.5
Table 1: Hyperparameters for CASE
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