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Abstract: Applying reinforcement learning (RL) to learn effective policies
on physical robots without supervision remains challenging when it comes to
tasks where safe exploration is critical. Constrained model-based RL (CMBRL)
presents a promising approach to this problem. These methods are designed to
learn constraint-adhering policies through constrained optimization approaches.
Yet, such policies often fail to meet stringent safety requirements during learn-
ing and exploration. Our solution “CASE” aims to reduce the instances where
constraints are breached during the learning phase. Specifically, CASE integrates
techniques for optimizing constrained policies and employs planning-based safety
filters as backup policies, effectively lowering constraint violations during learn-
ing and making it a more reliable option than other recent constrained model-

based policy optimization methods.

Keywords: Model-based RL, Safe RL, Safety Filter, Exploration

1 Introduction

Many real-world robotic systems can be effectively
modeled as constrained Markov decision processes
(CMDPs) [1], particularly in contexts where safety is
paramount, and robots must adhere to specific con-
ditions while learning to accomplish tasks. In ad-
dition, CMDPs offer a structured framework for in-
jecting inductive biases into the policy optimization
process, thereby reducing the number of interactions
required to learn effective policies. Thus, develop-
ing deep RL algorithms for solving CMDPs has the
promise of unlocking RL’s potential across various
real-world robotic applications where safety is an is-
sue. However, applying RL to systems that must
operate under constraints all the time, even as they
explore and learn, remains an open challenge.

Model-free constrained policy optimization meth-
ods have primarily adapted actor-critic techniques
to the constrained setting, employing Lagrangian re-
laxation, such as the augmented Lagrangian method,
to train constrained policies. While these algorithms
are appealing for their relative simplicity, they face
significant challenges, particularly in terms of sen-
sitivity to Lagrangian multipliers [2]. Moreover,
model-free RL approaches for CMDPs often suffer
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Figure 1: Results for the tasks (Ant,
Walker, Hopper) with different seeds; av-
erage rewards represents average rewards
per episode in the last 10 evaluations. Con-
straint violation rate is the average percent-
age of steps with constraint violations in an
episode during exploration. CASE decreases
constraint violations during exploration with
similar task performance to other constrained
RL baselines.
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from high sample complexity, making them ill-suited for constrained environments where a high
number of interactions during learning constrained policies leads to a high number of constraint vio-
lations as well as increased wear and tear, reducing their suitability for learning without supervision
on physical robots.

Various authors have proposed applying model-based RL methods to constrained settings to tackle
the challenge posed by the high sample complexity of model-free approaches. These methods fall
into two main categories. The first category includes methods that improve learning efficiency and
reduce constraint violations during exploration by using differentiable models [3, 4]. These models
act as simulators for both learning the policy and the value function. However, despite their advan-
tages, they often face difficulties with the instability that comes with constrained policy optimization.
The second category involves methods that incorporate planning [5, 6, 7, 8] possibly alongside the
primary, unconstrained policies. This approach helps in preventing constraint violations throughout
the learning phase. We find that combining the ability of learned models to act as simulators for
constrained policy optimization with the possibility of using learned models in lookahead planning
schemes remains a largely unexplored direction. Furthermore, we find that most CMBRL methods
do not consider epistemic uncertainty, which is essential in cases where the policy is exploring online
and needs to reason about the effect of epistemic uncertainty on its ability to satisfy constraints.

Our Contributions In this work, we combine constrained model-based policy optimization with
a planning-based safety filter that acts as a backup policy to minimize constraint violations during
exploration. In addition, we introduce modifications to the constrained model-based policy opti-
mization training to ensure stable training. We also modify the safety filter’s objective to consider
the behavior of the constrained base policy during planning. We evaluate our method on constrained
tasks from the Omnisafe benchmark [9] and show that our combination of constrained policy op-
timization and planning can lead to significantly reducing constraint violations during training in
comparison with other CMBRL methods as seen in figure 1.

2 Preliminaries

2.1 Problem Setting

We consider a CMDP, which is defined by the tuple (S, A, p, po, 7,7, C, Vsafe)- S and A are
the state and action spaces respectively. The discount factor and the safety discount factor are
represented by v and 7. The dynamics of the system are represented by p(s¢+1 | st, at), and
the initial state distribution is represented by pg. The reward function is represented by 7(s;, at),
and the constraint cost function is represented by ¢(s¢, a;). In this work, we consider constraint costs
represented with the indicator function Z(s;, a;) where the unsafe state is represented as Sypsafe =
{st | Z(s¢,ar) = 1} and the safe states are represented as Sgte = {S¢ | Z(s¢,a:) = 0}.

The challenge in CMDPs is maximizing the performance of the agent while satisfying constraints

Z ’Ytr(sta at)] such that  J* (7T) = E [Z fYSafeI(Stv at)] S l)

o ay~T,80™~ PO =0
(1)

J(m) =

ay~T,50~Po

where [ is a problem-specific threshold.

2.2 Constrained Model-based Reinforcement Learning

In constrained model-based RL, we use transition tuples in the form of {s;, at, r+, ¢t, S¢11} to learn
a transition model p. The transition model can then be used in online planning as done in [10, 11],
or by amortizing decision-making by offline training of a parametric policy using an actor-critic
approach as in [12, 13].

Recent methods [3, 4] have shown the effectiveness of MBRL in solving CMDPs as formulated
in Eq. (I). Both methods adapt previous model-based RL methods to the constrained setting;
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Figure 2: Overview of CASE. A dynamics model is used to pretrain policy, critic, and constraint
critic. The policy is used alongside a safety filter to ensure a low rate of constraint violations during
explorations.

LAMBDA [3] is based on Dreamer [12], where the RSSM model from PLANET [11] is used as
a differentiable simulator for on-policy actor-critic training to learn a policy my and a critic v™;
safeSLAC [4] is based on SLAC [14], where the model is used to fill a replay buffer that is used in
an off-policy algorithm. Both methods extend their base MBRL algorithm by adding a constraint
critic v™*4 and using a Lagrangian relaxation to train a constrained policy by optimizing
min max Eg 0 [ (50)] + AEsg~po [J(50)]- (2)
A>0 g
We follow a similar constrained model-based actor-critic (CMBAC) scheme to LAMBDA. However,
we do not follow a similarly complex approach to the multiplier updates; rather, we add some minor
modifications to the calculation of the value functions in constrained policy optimization to ensure
the stability of the multiplier updates using gradient descent. Additionally, we avoid learning the
policy 7y using a pessimistic constraint cost, which leads to learning an overtly conservative policy

[4].

2.3 Deep Ensemble Transition Models

Due to our focus on exploration, we need a model that can provide well-calibrated epistemic uncer-
tainties. Deep ensemble models present a straightforward approach to provide representations of the
epistemic uncertainty due to their ability to provide good approximations of the Bayesian posterior
predictive distribution of the neural network [15]. Thus, we rely on an ensemble of dynamic models
Py = {py1,--.,Py}, Where each ensemble member p,; ; is a neural network that predicts the
transition as a Gaussian distribution with a diagonal covariance py ;(S¢41 | S¢,a¢) = N(si11 |
i (8¢, at), Xy ;). We optimize each ensemble member by minimizing the negative log-likelihood

T
Ly, =— ZIOg Pyi(St41 | St5a)- 3)

t=1

The use of ensemble-based transition models has already shown very good performance in model-
based RL papers such as [16] and [10]. In deep ensemble transition models, each ensemble member
Dy,i captures the aleatoric uncertainty of the ground-truth MDP. In contrast, the disagreement be-
tween the ensemble members captures the epistemic uncertainty on the learned transition function.

3 Approach

In CASE, we combine CMBAC with a planning-based safety filter aiming to lower constraint viola-
tion rates while exploring CMDPs. Our motivation is to leverage both the advantages of lookahead
planning and the computational efficiency of actor-critic methods to explore the CMDP while keep-
ing constraint violations to a minimum. This combination of learning and planning has been studied
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in recent work [6, 17, 18], leveraging the ability of actor-critic methods to learn parametric poli-
cies and critics efficiently and compensating for the bias and limited expressiveness of an amortized
parametric policy with lookahead planning using the model. We learn an ensemble transition model
Py as discussed in section 2.3, and use model-based actor-critic by leveraging the learned model
as a learned simulator for constrained on-policy actor-critic training. Online exploration is per-
formed primarily using the constrained parametric policy; in addition, we implement a conservative
planning-based safety filter to avoid violating constraints. An overview of our methods can be seen
in figure 2 and algorithm 1.

3.1 Constrained Model-based Actor-Critic

Our approach to policy optimization is
most similar to [3, 4], where CMBAC
methods were shown to result in data- Algorithm 1 Pseudocode of CASE
efficient learning of constrained policies.
For the policy optimization, we learn a pa-
rameterized policy my. In addition, we
follow [19] and learn an ensemble value

Initialize parameters 6, ¢, &, ¢
for N episodes do
for t timesteps do
sample a; from policy 7y (s¢)

func'tior'l V¢> = {Vgy,-- Vg5 } Where' Vg if 5¢ € Srecovery according to (7) then

are individual ensemble members, simi- Trigger filter and optimize filter objective
larly, we learn an ensemble safety critic in (8) resulting in plan {u;, ..., ur g}
Vgafe = {vgfe, ... ,v?ge ) elseApply Ug

Learning Dynamics Model We adapt en d?tp Py i

the probabilistic ensembles discussed in end for

2:3 .for solving CMDPs. We add pre- Add Depisode to D

dictions heads for rewards p(rs|s;), con- update P,, by optimizing (3)

straint cost p(Z|s¢), and termination flags update 7 by optimizing (6)

p(di|s¢) for environments with early ter- update V, by optimizing (4),

mination conditions. We model the reward update Vgafe by optimizing (5)

distribution p(r¢|s;) as a Gaussian distri- end for
bution, while the binary constraint cost Z;
and termination flag d, are modeled as
Bernoulli distributions.

Learning Critics For learning of value function ensemble members, we use imagined rollouts
Ti,s, Using respective transition ensemble members p,,, and branching off real states s;. This ap-
proach leads to the disagreement of critic ensemble members capturing the epistemic uncertainty
in the transition function ensemble P, similar to the approach followed in [20]. We use TD()) to
calculate the targets for the value function similar to Dreamer [12] and train each member in the
value function ensemble on its own independent targets as done in [21]

t+H, 1
0 s, lZ g llve(s) = B (s0)

t'=t

| 2

RM(se) = 1 +7(1 = d) (1= Nvgi(se) + ARM (s041)) . Ry, = vg,i(se4m,). (4

, where

Similarly we learn the safety critic ensemble Vgaf" using TD()) targets

t+H,
. 1 ) 5
IIéinEst/NPw,i,at/Nﬂe [Z 5”4}25:&3(325/) - C/\,Z(St/)H ] , where
t'=t
CMi(s1) = Ty (1= NPl (sy) + XTCM (s101)) , CV(siem,) = v (suem, ).

S
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We note that the termination flag d; is only included in calculating the task critic targets. We do not
include it in the constraint critic’s training, which would lead the constraint critic to underestimate
the cost for states near termination states. We discuss this design choice further in appendix A.

Constrained policy optimization For solving the constrained problem in equation (1), we resort
to Lagrangian relaxation by including the constraint cost term in the policy objective weighted by
the Lagrangian multiplier A, thus turning the problem into an unconstrained problem as in equation
(2), where we solve a min-max optimization over the policy 7y and the Lagrangian multiplier A

1
min max

_ . A A
AS0 o 1 +)\ Eat/fvﬂ',ﬁ/'\«\m»,st/N'Pd, R (St+/-‘) +)\C (St-l,-/,-) ‘ St (6)

where R* and C* are the means over the TD()) returns from the different ensemble members
RM and O™ for the rewards and the constraint costs respectively. Designing stable update rules
for Lagrangian multipliers is a challenging task in the model-based setting, as using biased model
rollouts for updating the multipliers can lead to a rapid increase in their magnitudes, thus derailing
training. Furthermore, model rollouts in MBRL normally use observations from the replay buffer as
starting states, which can lead to the multipliers being updated to reflect the behavior of the policy
used to collect the data rather than the optimized policy my. In [3], a complicated optimization
scheme is used to decelerate the updates of the multipliers. In [4], the multipliers are updated solely
using real online rollouts, presumably to avoid inaccuracies in the model from causing erroneous
multiplier updates. We follow a more straightforward scheme and update the multipliers using
stochastic gradient descent with no additional heuristics.

Our changes center around the calculation of the policy’s objective and are highlighted in objective
(6) in cyan. We only use constraint-satisfying states Sqfe as initial states for our rollouts and only
include the tail of the rollouts in the calculation of the terms in the objective, thus avoiding situations
where the agent is already doomed but starts in a safe state. Thus giving the policy enough time to
steer the system away from constraint-violating regions. Over time, these changes decelerate the
increase in the multipliers and prevent them from exploding in value. In addition, we normalize the
whole objective by a factor of 1 + A, which helps keep the absolute value of the loss in the same
scale as the multiplier X increases in value similar to [2].

3.2 Exploration with Safety Filter

Our aim is to enable safer online exploration. Thus, we do not use conservatism to prevent the policy
from exploring online as in [22, 23, 3], which would lead the policy to learn an overtly conservative
behavior. In contrast, we rely on a conservative safety filter MPC as a backup policy that intervenes
to prevent constraint violation, guided by the critic.

Trigger To trigger the filter, we rely on the ensemble transition model and use it to roll out the

learned policy 7y for horizon H" starting from the current state s;, generating separate imagined
t+Hlil(er

trajectories {(s},, a,)}; using each member pg ;. We use the worst-case value of the ensemble
safety critic V3i¢ = mea% Vsife(s,,) to define a pessimistic recovery set
St P
safe ( i
Srecovery = {(8¢) € S : Vs (S4r) > €sate } )

where VS jg the maximum prediction of the ensemble critic across the lookahead trajectories.

Our pessimistic formulation of the objective and the trigger of the safety filter consider the epistemic
uncertainty inherent in the exploration task, where the filter is more likely to be triggered in situations
with high epistemic uncertainty due to the effect of considering the worst case prediction of the
ensemble safety critic.

We roll out separate trajectories starting from current state s, with each separate transition ensemble
member p,, ; and evaluate the states s!, in each trajectory with its respective safety critic vg,;. The
state s; is considered part of Specovery in case the worst case prediction of ysafe of the imagined
trajectories starting from s; exceeds the threshold €gyfe.
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Figure 3: Performance of CASE compared to other constrained RL methods on constrained envi-
ronments from the Omnisafe benchmark. We find that constraint violation rates during exploration
are reduced significantly while maintaining competitive task performance in comparison with other
constrained RL methods..

Optimization The safety filter used in this paper solves the optimization problem

t+Hfiter
. safe
utm&ng Sttt t4m~Py (s ,uyr) Z Vmax(st’) . (8)
t'=t

This MPC-filtering approach is similar to the recovery RL method [7], which minimizes the safety
critic along the lookahead horizon, thus enabling a longer lookahead at a reduced computational
cost. In addition, we use pessimism in triggering the filtering and optimizing its objective. Thus
taking epistemic uncertainty into consideration. Furthermore, our objective includes

, thus encouraging the MPC to drive the systems to regions of the
state space where the base policy is predicted to keep the system safe. We optimize the objective in
(8) using gradient descent where we optimize the whole term for the actions {us, ..., Ustm }-

4 Results

4.1 Experimental Setup

We compare our method with model-free baselines from the Omnisafe benchmarking suite [9]. For
benchmarking, we use constrained velocity control tasks, where the goal is to solve locomotion
tasks while maintaining the system below a maximum velocity. We choose different constrained
RL baselines based on TD3 [24] and SAC [25]. We first compare the performance of CASE with
the model-free baselines SAC-Lagrangian and TD3-Lagrangian, which extend SAC and TD3 with
a constrained policy optimization scheme using Lagrangian relaxation. In addition, we compare
CASE to SAC-PID and TD3-PID, which use the Lagrange multipliers updating scheme presented
in [2]. We run each method on four seeds and show the mean and the 95% confidence interval
performance in figure 3. We explain our experimental setup and hyperparameters in more detail in
appendix B.

4.2 Comparison to Model-free Baselines

Our results shown in figure 3 show that combining CMBAC and planning significantly decreases the
constraint violation rate during exploration, where the planning compensates for imperfections in the
parametric policy g, which amortizes decision-making and has limited expressiveness, leading to
situations where the behavior of myp might lead to constraint violations. In planning, on the other
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hand, we minimize the planner’s objective for each situation separately, compensating for such
imperfections in 7y and instabilities in constrained policy optimization. We further discuss the
impact of the individual modules in CASE and other design choices in appendix A. Although CASE
shows a more constraint-adhering exploration behavior than our baselines, it is slower to reach the
task performance of the baselines due to the restrictions posed by the pessimistic safety filter.

The baselines learn a safe behavior eventually; however, as constrained policy optimization tends
to have instabilities during training, they have high rates of constraint violation during exploration.
This is compounded by the implementation in Omnisafe, which only starts updating the Lagrange
multipliers after 100 warm-up epochs, corresponding to 200k environment steps. This initial warm-
up phase ensures the off-policy methods have enough variety in the replay buffer. In cases where
the robot needs to learn in the wild, such exploration behavior might not be acceptable.

The results from our experiments put into question the suitability of the model-free method for
safe exploration tasks. Although model-free methods might have some advantages in their asymp-
totic performance in comparison to model-based methods [10], they lack the ability of model-based
methods to do look-ahead controlling and deciding online to avoid actions where the robot might be
uncertain or that might be deemed to be possibly dangerous. Making model-based methods more
suitable candidates for learning on physical robots, especially when the robot needs to explore under
certain restrictions.

4.3 Runtime

Although using a lookahead planner as a safety filter helps reduce the constraint violation rates of
the reactive parametric base policy, this comes at the cost of computational efficiency. The safety
filter involves an online optimizer that solves the optimization problem in objective (8). We com-
pare the frequency of the filter across the different environments in figure 4, and we find that the
filter performs around 50 Hz in all environments. Looking at other methods combining actor-critic
methods and planning, we find that TD-MPC [17], which does not consider the constrained setting,
performs similarly to our method in runtime with about 50 Hz for the default setting. LOOP [6],
which also explores CMDPs among other settings, reports a lower frequency 14.3 Hz. Generally, the
low frequency of planning-based methods represents the biggest disadvantage compared to methods
leveraging only parametric policies for decision-making.

5 Related Work

Constrained model-based reinforcement learning Differ-
ent RL methods have been introduced targeting CMDPs. The

most common variants are papers leveraging the augmented — «
Lagrangian method for learning constrained policies. CPO
[26] extended TRPO to CMDP, and building on that work w0
[27] combined the Lagrangian method with PPO to learn con- 3,
strained policy. The use of an on-policy method rendered the
method unsuitable for learning in the real world, where sam-

ple efficiency is essential. In [28], the authors implemented a 12

similar approach but replaced the on-policy algorithm with an alfcheetah - walker

off-policy approach to reduce sample complexity. Saute RL

[29] provides an alternative to using Lagrangian relaxation for .

solving CMDPs by using state space augmentation. Different lcirisf(')::)eu?;?oglsat szsrr)rllt;irtftlziﬁné
papers proposed MBRL methods combining learned models ... o110 Fps th,at makes CASE
with constrained policy optimization. In [3], the authors use feqqible to use in physical systems.
a Bayesian approximation of an RSSM [11] as a model. The

posterior of the transition is used to learn an optimistic objec-

tive regarding the rewards but pessimistic regarding the constraint cost. A similar approach was
introduced in [4] where the authors extend SLAC [14] to the constrained setting. Concurrent with

FPS [Hz]

Figure 4: Average runtime for
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our work, safeDreamer proposes combining planning with CMBAC. However, safeDreamer differs
in not leveraging the planner as a backup policy as is the case in CASE. Further, safeDreamer does
not take the epistemic uncertainty into decision-making, as proposed in our method.

Safety filters Learning a policy to satisfy constraints and, at the same time, maximize the agent’s
utility can be a challenging task. As a result, multiple methods have attempted to circumvent this
problem by introducing backup policies 7%(s;) that minimize constraint costs in addition to a task-
reward maximizing base policy 7(s;). Model-free methods that use a backup mechanism [7, 30]
generally use an off-policy critic to trigger the intervention mechanism. Critics tend to be sensitive
to out-of-distribution data and, in general, hard to learn. The two-policy setup is also investigated
in [31], where the authors improve on the safety layers approach [32] by replacing the layers with a
separate parametric policy that allows them to handle more complicated constraints.

The predictive safety filter paper [8] discusses the idea of using an MPC wrapper to a base policy
that prevents the base policy from violating constraints during learning by making assumptions about
the model and the system dynamics as well as about the availability of a controller that can keep the
system in the safe terminal state, allowing for guarantees on constraint satisfaction. Recovery RL
[7] is closer to our approach, where the authors deploy a safety critic to design an intervention
mechanism that prevents constraint violation. However, the paper does not explore using the model
in concurrence to train a constrained policy, as we discuss in our method. In [33], a control barrier
function is used in learning a safe policy. However, their method is only applicable for control affine
systems. SAILR [34] provides an advantage-based intervention mechanism and derives performance
bounds under the assumption of having an MDP with an absorbing state. However, their model-
based experiments seem to be based on engineered models.

Online planning using offline learned functions Combining online planning with offline learned
functions was shown to be effective in multiple papers [18, 6, 17]. The use of online planning suffers
less from bias in comparison with parameterized policies. Also, offline-learned functions enable
the planner to reason beyond its planning horizon when combined with a learned value function or
provide efficient initialization to them as done when combined with a parameterized policy. The idea
of planning using offline learned functions was shown to improve on parametric policies in [18], and
performance bounds were derived that show the benefits of using a planner in combination with a
value function. However, the methods and the bounds introduced all used an unbiased dynamics
model. In [6], these insights were extended to biased models, where they discussed the benefits of
combining planning with offline learned functions even with a biased dynamics model.

6 Conclusions and Limitations

We present a method that combines constrained model-based policy optimization with a pessimistic
planning-based safety filter for exploration in CMDPs with the aim of facilitating the learning of
effective policies entirely on physical robots. We find that leveraging the ability of model-based
methods to function as a simulator for on-policy actor-critic methods and being used in lookahead-
control schemes and thus combining the advantages of model-based actor-critic with low-bias prop-
erties of planning can lead to a significant reduction in constraint violation rates in comparison with
model-free methods.

Limitations The main limitation of our method lies in the inability to guarantee constraint sat-
isfaction. Such guarantees would involve making assumptions on the target system, such as the
smoothness of the dynamics and the availability of a safe terminal set, which might not be satisfied
in many target systems of interest. Although our method leads to less constraint violation than the
baselines during exploration, online planning can be computationally expensive. Furthermore, our
design for the learned transition model limits our method to fully observable systems, which we aim
to rectify in future work by leveraging models that can learn the dynamics of partially observable
systems.
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A Ablation Studies
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Figure 5: For ablating design choices in the safety filter. We evaluate the average rewards per episode
in the last 10 evaluations (left) and the average percentage of steps with constraint violations in an
episode during exploration (right). We first evaluate the role of the safety filter in CASE. Exploring
with only 7y leads to a significant increase in constraint violations. Next, we evaluate the effect of the
base policy rollouts. We see a decrease in the average rewards reached after exploration, especially in
the ant environment. Finally, to evaluate the effect of pessimism in the filter, we optimize the filter
by using the mean over the ensemble predictions instead of considering the worst-case ensemble
prediction. Without pessimism, the filter tends to have higher constraint violation rates.

Effect of safety filter To assess the effect of the safety filter in our method, we explore CASE
without the safety filter. In figure 5, we see that exploring solely using the constrained policy 7y
leads to higher constraint violation rates. This indicates the necessity of the filtering mechanism
in our method. By looking at the maximum rewards reached after exploration in figure 5, we see
that the increase in rewards after removing the safety filter is insignificant except in the halfcheetah
environment, where the constraint violation rates more than double after removing the filter.

Effect of base policy term in the filter objective The filter objective in (8) includes rolling out
the base policy 7y in the tail of the lookahead trajectory of the controller. We ablate this term by
replacing it at the tail of the lookahead trajectory, thus maintaining a fixed total horizon length. This
equates to the following objective

min E

wportien g Sttt Py (s uy)

t+H
Z V;?;i(st')l :
t'=t

The purpose of the base-policy rollout is to inform the lookahead controller of the base policy’s
behavior and thus steer the system towards regions of the state space where the base policy can
perform without violating constraints. Removing the base policy rollouts leads to slightly worse
task performance, especially in the ant environment. However, the difference in task performance
is less significant than expected. In future work, exploring other possibilities for combining the
intervention controller with a constrained base policy, such as penalizing the difference between the
intervention mechanism’s actions and those of the base policy as done in [8], might be interesting.

Effect of pessimism in the safety filter In our safety filter design, we leverage a pessimistic loss
to consider the effect of epistemic uncertainty during exploration. To study the effect of pessimism
on the filter, we use the mean over the ensemble prediction constraint critic predictions V53¢ instead
of using the maximum aggregation over the ensemble of the constraint critic predictions V53¢, intro-
duced in section 3.2. We found that in our setup, removing the pessimism leads to higher constraint
violation rates, especially in the more complex halfcheetah and ant environments.
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Figure 6: We compare the predictions of the constraint critic when including the terminal flag in its
target calculation in 6a and excluding the terminal flag in 6b for two different episodes with early
termination. The top row shows the ground truth constraint costs, and the bottom row shows the
constraint critic predictions for each state in the episodes. In 6a, we see the effect of adding the
termination flags in the targets, where the critic predicts a lower constraint cost near the terminal
state. Excluding the terminal state flag leads the constraint critic in 6b to avoid this effect.

Figure 7: Constrained locomotion tasks from safety gymnasium [35]. The aim of the task is to
maximise the locomotion reward, while staying below the maximum velocity

Effect of Including Termination flag in Constraint Critic’s Targets The constraint critic target
described in (5) does not include the termination flag d;. The termination flag is usually needed
in environments with termination conditions, which assumes that terminating states are absorbing
states. Including the termination flag in the task critic V leads the critic to predict low values for
such states, incentivizing the policy to avoid termination. This effect is not desired in the constraint
critic V¥ as it would lead the constraint critic to assign erroneous cost-to-gos to states near the
termination states, which would have an adverse effect on the safety filter and the constrained policy
optimization. We compare the predictions of two constraint critics in figure 6. The first in figure 6a
is trained using targets including the termination flag d;

CM(s50) = Ty +75(1 — dy) (1 — MY (5,) + ATCN(s5,1))  where,
CM(serm,) = v (serm,)-

The second in figure 6b is trained with the targets described in (8). We find that including d; in
TD () returns has a negative effect on the constraint critic predictions where the critic assigns
much lower values to states near the termination state, despite constraint violations.

B Experimental Setup Details

B.1 Benchmark

We use the constrained velocity tasks from safety gymnasium [35] in our experiments. Specifically,
we use the half cheetah, hopper, walker, and ant tasks, shown in figure 7. These tasks are attractive
as they pose conflicting objectives, where the task reward incentivizes the agent to move with high
velocity with the correct pose, and the constraint cost punishes the agent for moving above a velocity
limit.
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445 B.2 Hyperparameters

446 Our method involves hyperparameters for the model training, the CMBAC, and the safety filtering.

447 We list our hyperparameters in table 1.

HalfCheetah Hopper Ant Walker

Model Py,
number of bootstraps B 7
learning rate le™3
activation softsign
number of hidden layers 4
number of hidden units 200
Critic V; and safety critic V;*"
Horizon 12
Activation softsign
TD A 0.9
discount y 0.99
safety critic discount y5¢/¢ 0.9
safety TD \sefe 0.75
number of hidden layers 2
number of hidden units 256
Policy 7y
Horizon 4
Activation ReLU
learning rate 5¢74
number of hidden layers 2
number of hidden units 256
Polyak factor 0.995
Learning step lagrangian multipliers R
Filter
Filter Horizon 5
number optimization steps 50
learning rate le™!
esafe 0.5 05 05 25

Table 1: Hyperparameters for CASE
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