
APPENDIX A

In this appendix, we demonstrate the potential advantages of achieving zero (or close-to-zero)
divergence everywhere on (Rn

, gab).

For any ✓ 2 Rn, we can perform a second-order Taylor expansion of Es0 [v⇡✓ (s0)] on the manifold
(Rn

, gab), as presented below:

Es0 [v⇡(✓+~v)
(s0)] ⇡ Es0 [v⇡✓ (s0)] + v

a
raEs0 [v⇡✓ (s0)] +

1

2
v
a
v
b
rarbEs0 [v⇡✓ (s0)] (9)

Here v
a refers to an arbitrary vector at ✓ that can cause a small positional change of ✓ in the policy

parametric space. We use ~v 2 Rn to indicate the same vector in linear algebra. Hence ✓ + ~v

corresponds to an different element of the manifold (Rn
, gab) that is close to ✓. Note that va = g

ab
vb,

hence
1

2
v
a
v
b
rarbEs0 [v⇡✓ (s0)] =

1

2
vbv

b
g
ab
rarbEs0 [v⇡✓ (s0)]

If the divergence of Ja is 0 (or close-to-zero) at ✓, by definition rb(gabraEs0 [v⇡✓ (s0)])|✓ = 0.
Therefore

rb(g
ab
raEs0 [v⇡✓ (s0)])|✓ = g

ab
rarbEs0 [v⇡✓ (s0)])|✓ = 0.

In other words, by jointly considering all n dimensions of ✓, we have
nX

µ=1

nX

⌫=1

g
µ⌫
r✓(µ)r✓(⌫)Es0 [v⇡✓ (s0)]) = 0.

Assume that va satisfies v(µ)v(µ) = c
2
, 8µ = 1, . . . , n, where c is a real-valued constant. v(µ) and

v(µ) refer respectively to the µ-th dimension of vector va and its corresponding dual vector va at ✓. In
other words, the magnitude of change caused by v

a on ✓ stays at a fixed level across all dimensions.
Using this condition, we can simplify the Taylor expansion in equation 9 as:

Es0 [v⇡(✓+~v)
(s0)]

⇡ Es0 [v⇡✓ (s0)] +
nX

µ=1

v
(µ) @Es0 [v⇡✓ (s0)]

@✓(µ)
+

1

2

nX

µ=1

nX

⌫=1

v
⌫
v⌫g

µ⌫
r✓(µ)r✓(⌫)Es0 [v⇡✓ (s0)])

= Es0 [v⇡✓ (s0)] +
nX

µ=1

v
(µ) @Es0 [v⇡✓ (s0)]

@✓(µ)
+

c
2

2

nX

µ=1

nX

⌫=1

g
µ⌫
r✓(µ)r✓(⌫)Es0 [v⇡✓ (s0)])

= Es0 [v⇡✓ (s0)] +
nX

µ=1

v
(µ) @Es0 [v⇡✓ (s0)]

@✓(µ)
.

Therefore, with zero (or close-to-zero) divergence, the second-order differential components involved
in approximating Es0 [v⇡(✓+~v)

(s0)] can be nullified. Since the above approximation guides the training
of policy networks in practice, gab regularized policy gradient in equation 1 has the potential to
improve the performance and sample efficiency of policy gradient based DRL algorithms. Driven by
this motivation, we aim to develop mathematical tools and deep learning techniques to achieve gab

regularized policy network training in this paper.

APPENDIX B

This appendix presents a proof of Proposition 1. The divergence of C1 vector field J
a
|✓ at any

✓ 2 Rn satisfies the equation below:

Div(Ja)|✓ = raJ
a =

1p
|g|

nX

µ=1

@

@✓(µ)

⇣p
|g| ~J

(µ)
⌘

where g = det(G✓). Following the specific structure of G✓ in equation 2 and using the matrix
determinant lemma Press et al. (2007),

g = 1 + ~u
T (✓,�) · ~u(✓,�) > 0

13

Hence,
p
|g| =

p
g. Let

✏ =
nX

µ=1

@

@✓(µ)

⇣p
|g| ~J

(µ)
⌘

=
p
g

nX

µ=1

@ ~J

(µ)

@✓(µ)
+

~J
(µ)

p
g

@
p
g

@✓(µ)

!

Using Jacobi’s formula Bellman (1997) below
@

@✓(µ)
det(G✓) = det(G✓)Tr

✓
G

�1
✓

@G(✓)

@✓(µ)

◆
,

✏ can be re-written as

✏ =
p
g

nX

µ=1

@ ~J

(µ)

@✓(µ)
+

~J
(µ)

2
Tr

✓
G

�1
✓

@G(✓)

@✓(µ)

◆!

Notice that
@G✓

@✓(µ)
=

✓
@~u(✓,�)

@✓(µ)

◆
· ~u(✓,�)T + ~u(✓,�) ·

✓
@~u(✓,�)

@✓(µ)

◆T

Clearly there are two parts in the above equation. We refer to them respectively as P1(@G✓

@✓(µ)) and
P2(@G✓

@✓(µ)). Using these notations,

G
�1
✓ P2

✓
@G✓

@✓(µ)

◆
= ~u(✓,�) ·

✓
@~u(✓,�)

@✓(µ)

◆T

�
~u(✓,�) · ~u(✓,�)T

1 + ~u(✓,�)T · ~u(✓,�)
~u(✓,�)

✓
@~u(✓,�)

@✓(µ)

◆T

=
1

~u(✓,�)T · ~u(✓,�)
~u(✓,�)

✓
@~u(✓,�)

@✓(µ)

◆T

Meanwhile,

G
�1
✓ P1

✓
@G✓

@✓(µ)

◆
=

✓
@~u(✓,�)

@✓(µ)

◆
· ~u(✓,�)T �

~u(✓,�) · ~u(✓,�)T

1 + ~u(✓,�)T · ~u(✓,�)

✓
@~u(✓,�)

@✓(µ)

◆
· ~u(✓,�)T

=

✓
@~u(✓,�)

@✓(µ)

◆
· ~u(✓,�)T �

~u(✓,�)T ·
@~u(✓,�)
@✓(µ)

1 + ~u(✓,�)T · ~u(✓,�)
~u(✓,�) · ~u(✓,�)T

Subsequently,

Tr

✓
G

�1
✓

@G✓

@✓(µ)

◆
= Tr

1

~u(✓,�)T · ~u(✓,�)
~u(✓,�)

✓
@~u(✓,�)

@✓(µ)

◆T
!

+ Tr

✓✓
@~u(✓,�)

@✓(µ)

◆
· ~u(✓,�)T

◆

� Tr

~u(✓,�)T ·

@~u(✓,�)
@✓(µ)

1 + ~u(✓,�)T · ~u(✓,�)
~u(✓,�) · ~u(✓,�)T

!

=
~u(✓,�)T ·

⇣
@~u(✓,�)
@✓(µ)

⌘

~u(✓,�)T · ~u(✓,�)
+ ~u(✓,�)T ·

✓
@~u(✓,�)

@✓(µ)

◆

�
~u(✓,�)T · ~u(✓,�)

1 + ~u(✓,�)T · ~u(✓,�)
~u(✓,�)T ·

@~u(✓,�)

@✓(µ)

=
2

1 + ~u(✓,�)T · ~u(✓,�)
~u(✓,�)T ·

@~u(✓,�)

@✓(µ)

Using the above equation, we have

✏ =
p
g

nX

µ=1

@ ~J

(µ)

@✓(µ)
+

~J
(µ)

1 + ~u(✓,�)T · ~u(✓,�)

nX

⌫=1

~u
(⌫)(✓)

@~u
(⌫)(✓)

@✓(µ)

!

This proves Proposition 1 below

Div(Ja)|✓ =
1
p
g
✏

=
nX

µ=1

@ ~J

(µ)

@✓(µ)
+

~J
(µ)

1 + ~u(✓,�)T · ~u(✓,�)

nX

⌫=1

~u
(⌫)(✓)

@~u
(⌫)(✓)

@✓(µ)

!

14

APPENDIX C

This appendix presents a proof of Proposition 2. For any A 2 SO(n),

exp(A) = In +A+
1

2!
A

2 +
1

3!
A

3 + . . .

Through SVD decomposition of A, we obtain

A = U · ⌃ · V
T

with U and V being two n⇥ n unitary matrices. ⌃ = Diag(~�) is a diagonal matrix. Therefore,

exp(A) = In+U ·⌃ ·V
T +

1

2!
(U ·⌃ ·V

T)(U ·⌃ ·V
T)+

1

3!
(U ·⌃ ·V

T)(U ·⌃ ·V
T)(U ·⌃ ·V

T)+ . . .

Note that AT = �A, hence

(U · ⌃ · V
T)T = �U · ⌃ · V

T = V · ⌃ · U
T

Consequently, 8k � 1

A
k =

⇢
(�1)k/2U · ⌃k

· U
T
, k is even;

(�1)(K+1)/2
V · ⌃k

· U
T
, k is odd.

In line with the above, we have

exp(A) =
1X

k=0

(�1)k

(2k)!
U · ⌃2k

· U
T
�

1X

k=0

(�1)k

(2k + 1)!
V · ⌃2k+1

· U
T

= U ·

2

64
cos(~�(1)) 0 0

0
. . . 0

0 0 cos(~�(n))

3

75 · U
T
� V ·

2

64
sin(~�(1)) 0 0

0
. . . 0

0 0 sin(~�(n))

3

75 · U
T

= U · ⌃c · U
T
� V · ⌃s · U

T

This proves Proposition 2.

APPENDIX D

This appendix presents a proof of Proposition 3. Following the assumption that exp(A) = ⌦̂ · ⌃c ·

⌦̂T
� �̂ · ⌃s · ⌦̂T , for any vector ~a, we have

exp(A) · ~a = ⌦̂ · ⌃c · ⌦̂
T
· ~a� �̂ · ⌃s · ⌦̂

T
· ~a

Using Fourier transformation, we can re-write vector ~a in the Fourier series form below:

~a
(j) = ⌘0 +

r
2

n

nX

i=1


⌘icos

✓
2⇡i

n
j

◆
+ ⌘̃isin

✓
2⇡i

n
j

◆�

Hence,

⌦̂T
· ~a =

2

64
⌘1
...
⌘n

3

75

where ⌘i = (~̂⌦(i))T · ~a. Subsequently,

⌃c · ⌦̂
T
· ~a =

2

64
cos(~�(1))⌘1

...
cos(~�(n))⌘n

3

75 and ⌃s · ⌦̂
T
· ~a =

2

64
sin(~�(1))⌘1

...
sin(~�(n))⌘n

3

75

15

Therefore,

⌦̂ · ⌃c · ⌦̂
T
· ~a = [~̂⌦(1)

, . . . ,
~̂⌦(1)] ·

2

64
cos(~�(1))⌘1

...
cos(~�(n))⌘n

3

75

=
nX

j=1

cos(~�(j))⌘j
~̂⌦(j)

�̂ · ⌃c · ⌦̂
T
· ~a = [~̂�(1)

, . . . ,
~̂�(1)] ·

2

64
sin(~�(1))⌘1

...
sin(~�(n))⌘n

3

75

=
nX

j=1

sin(~�(j))⌘j
~̂�(j)

We can now re-write exp(A) · ~a as

exp(A) · ~a =
nX

i=1

⌘i

⇣
cos(~�(i))~̂⌦(i)

� sin(~�(i))~̂�(i)
⌘

=

r
2

n

nX

i=1

⌘i

2

64
cos(~�(i))cos

�
2⇡i
n j
�
|j=0 � sin(~�(i))sin

�
2⇡i
n j
�
|j=n�1

...
cos(~�(i))cos

�
2⇡i
n j
�
|j=0 � sin(~�(i))sin

�
2⇡i
n j
�
|j=n�1

3

75

=

r
2

n

nX

i=1

⌘i

2

64
cos
�
2⇡i
n j + ~�

(i)
�
|j=0

...
cos
�
2⇡i
n j + ~�

(i)
�
|j=n�1

3

75

In other words,

(expA · ~a)(j) =

r
2

n

nX

i=1

⌘icos

✓
2⇡i

n
j + ~�

(i)

◆

This concludes that, upon multiplying exp(A) with vector ~a, it will lead to independent phase shifts
of all frequency components of ~a. In other words, rotating the i-th frequency component is equivalent
to a phase shift of ~�(i) on that frequency component. This ends the proof of Proposition 3.

APPENDIX E

This appendix presents a proof of Proposition 4. Any geodesic that passes through ✓ in manifold
(Rn

, gab) and has Ja
|✓ as its tangent vector at ✓ can be uniquely determined by the geodesic equation

below Kreyszig (2013):

d2✓(µ)(t)

dt2
+

nX

⌫=1

nX

�=1

�µ
⌫�

d✓(⌫)(t)

dt

d✓(�)(t)

dt
= 0, µ = 1, . . . , n

where t stands for the geodesic parameter such that ✓(µ)(0) = ✓
(µ). �µ

⌫� or �a
bc in the abstract index

notation is the Christoff symbol. Therefore,

d2✓(µ)(t)

dt2
= �

nX

⌫=1

nX

�=1

�µ
⌫�

d✓(⌫)(t)

dt

d✓(�)(t)

dt

subject to the conditions ✓
d✓(⌫)(t)

dt

◆
|t=0 = ~J

(⌫)
, ⌫ = 1, . . . , n

16

Hence, updating ✓ along the direction of the geodesic can be approximated by the following learning
rule:

✓
(µ)
 ✓

(µ) + ↵

✓
d✓(µ)(t)

dt

◆
|t=0 � ↵�t

nX

⌫=1

nX

�=1


�µ

⌫�

✓
d✓(⌫)(t)

dt

◆
|t=0

✓
d✓(�)(t)

dt

◆
|t=0

�

where ↵ is the learning rate. �t refers to a small increment of the geodesic parameter at t = 0. In
view of the above, the geodesic regularized policy gradient can be approximated as

~T
(µ)
⇡ ~J

(µ)
��t

nX

⌫=1

nX

�=1

�µ
⌫�

~J
(⌫) ~J

(�)

Because

��
µ⌫ = �c

ab(d✓
�)c

✓
@

@✓(µ)

◆a✓
@

@✓(⌫)

◆b

=
1

2

nX

⇢=1

g
�⇢

✓
@g⌫⇢

@✓(µ)
+

@gµ⇢

@✓(⌫)

◆
�

1

2

nX

⇢=1

g
�⇢

✓
@gµ⌫

@✓(⇢)

◆

We can study the two summations in the above equation separately. Let us denote

P1(��
µ⌫) =

1

2

nX

⇢=1

g
�⇢

✓
@g⌫⇢

@✓(µ)
+

@gµ⇢

@✓(⌫)

◆

P2(��
µ⌫) =

1

2

nX

⇢=1

g
�⇢

✓
@gµ⌫

@✓(⇢)

◆

Consequently,
nX

µ=1

nX

⌫=1

P1(��
µ⌫)

d✓(µ)(t)

dt

d✓(⌫)(t)

dt
=

1

2

nX

µ=1

nX

⌫=1

nX

⇢=1

g
�⇢

✓
@g⌫⇢

@✓(µ)
+

@gµ⇢

@✓(⌫)

◆
d✓(µ)(t)

dt

d✓(⌫)(t)

dt

=
1

2

nX

⇢=1

g
�⇢

nX

µ=1

nX

⌫=1

✓
@g⌫⇢

@✓(µ)
+

@gµ⇢

@✓(⌫)

◆
d✓(µ)(t)

dt

d✓(⌫)(t)

dt

!

Note that
nX

µ=1

nX

⌫=1

✓
@g⌫⇢

@✓(µ)
+

@gµ⇢

@✓(⌫)

◆
d✓(µ)(t)

dt

d✓(⌫)(t)

dt
= 2

nX

⌫=1

nX

µ=1

@g⌫⇢

@✓(µ)

d✓(µ)(t)

dt

!
d✓(⌫)(t)

dt

In fact
Pn

µ=1
@g⌫⇢

@✓(µ)
d✓µ

dt captures the change of gab along the direction of the geodesic. In view of
this, because gab is assumed to change smoothly and stably along the geodesic, we have

�t

nX

µ=1

@g⌫⇢

@✓(µ)

d✓(µ)(t)

dt
⇡ �⇣1 · g⌫⇢, ⇣1 > 0

Following the above,

�t

nX

µ=1

nX

⌫=1

P1(��
µ⌫)

✓
d✓µ(t)

dt

◆
|t=0

✓
d✓⌫(t)

dt

◆
|t=0 ⇡

nX

⇢=1

g
�⇢

nX

⌫=1

(�⇣1 · g⇢⌫)

✓
d✓⌫(t)

dt

◆
|t=0

= �⇣1

✓
d✓�(t)

dt

◆
|t=0

= �⇣1 ~J
(�)

Accordingly,

~T
(�)
⇡ ~J

(�) + ⇣1
~J
(�) +

�t

2

nX

⇢=1

g
�⇢

nX

µ=1

nX

⌫=1

✓
@gµ⌫

@✓(⇢)

◆✓
d✓µ(t)

dt

◆
|t=0

✓
d✓⌫(t)

dt

◆
|t=0

17

Let ⇣2 = �t
2 , we have

~T
(�)
⇡ ~J

(�) + ⇣1
~J
(�) + ⇣2

nX

⇢=1

g
�⇢

nX

µ=1

nX

⌫=1

✓
@gµ⌫

@✓(⇢)

◆
~J
(µ) ~J

(⌫)

This proves Proposition 4. We can also re-write the above equation in the form of a matrix expression
below for easy implementation by a deep learning library.

~T ⇡ (1 + ⇣1) ~J + ⇣2G
�1
✓ ·r✓

⇣
NoGrad(~J)T ·G✓ ·NoGrad(~J)

⌘

Here, NoGrad(~J) indicates that vector ~J will not participate in the gradient calculation. r✓ stands
for the ordinary gradient operator w.r.t. ✓. Using the approximated ~T , we can build a new learning
rule below:

✓ ✓ + ↵~T

In line with this learning rule, ⇣2
1+⇣1

> 0 is treated as a hyper-parameter of the gab regularization
algorithm.

APPENDIX F

In this appendix, we first introduce the new gab regularization algorithm designed to train the metric
tensor DNN model of gab towards achieving close-to-zero divergence on J

a at any ✓ of manifold
(Rn

, gab). The pseudo-code of this algorithm is presented in Algorithm 1.

Algorithm 1 The Metric Tensor Regularization Algorithm

Based on the up-to-date ✓, compute conventional policy gradient r✓Es0 [v⇡✓ (s0)];
Using the metric tensor DNN, compute J

a
|✓ and Div(Ja)|✓ using equation 8 and Proposition 1;

while the maximum number of iterations has not been reached do

Update � of the metric tensor DNN towards minimizing (Div(Ja)|✓)2;
Re-compute J

a
|✓ and Div(Ja)|✓.

end while

Re-compute J
a
|✓ based on the trained metric tensor DNN;

Compute geodesic regularized policy gradient ~T |✓ using Proposition 4;
Return J

a
|✓ and ~T |✓.

Algorithm 2 The Metric Tensor Regularized Policy Gradient Algorithm
Initialize policy network ⇡✓ with randomly sampled ✓ 2 Rn;
for each sampled episode till the maximum number of episodes is reached do

Store all sampled state transitions into the replay buffer;
Randomly sample a mini-batch from the replay buffer;
Compute conventional policy gradient by using SAC, TD3 or other policy gradient algorithms;
Compute gab regularized and geodesic regularized policy gradients by using Algorithm 1;
Train policy network ⇡✓ by using regularized policy gradients.

end for

Return the trained policy network ⇡✓.

Algorithm 1 starts from calculating the conventional policy gradientr✓Es0 [v⇡✓ (s0)] w.r.t. the most
recently learned policy parameter ✓. This can be achieved by using various existing DRL algorithms
such as SAC and TD3. Afterwards, based on the metric tensor DNN, we compute the gab regularized
policy gradient vector J

a as well as its divergence at ✓ by using equation 8 and Proposition 1
respectively. Guided by the square of the computed divergence as the loss function, Algorithm 1
updates the trainable parameters � = {�1,�2} of the metric tensor DNN towards achieving close-
to-zero divergence at ✓3. Using the trained metric tensor DNN, the gab regularized policy gradient

3We set the maximum number of training iterations in Algorithm 1 to 20 in the experiments. We can further
increase this number but it does not seem to produce any noticeable performance gains.

18

Metric tensor DNN Parameters

...

...

...

...

Input

Output

Hidden
Layer 1

Hidden
Layer 2

1DCNN 1DCNN FC

2DCNN 2DCNN Flatten AvgPool FC

1DCNN 1DCNN FC

2DCNN 2DCNN Flatten AvgPool FC

1DCNN 1DCNN FC

2DCNN 2DCNN FC

FC

FC

Flatten AvgPool

Flatten AvgPool

Flatten AvgPool

Flatten

Policy network
DNN component

parameterized by

DNN component
parameterized by

Figure 3: The metric tensor DNN designed to learn the metric tensor field gab of the policy parametric
space. The metric tensor DNN processes a policy network ⇡✓ as its input and produces ~̃!(✓,�1)
and ~̃�(✓,�2) as its output. �1 and �2 together define the trainable parameters of the metric tensor
DNN. Specifically, we denote the parameters contained within the green hexagon as �1 and those
within the blue hexagon as �2. The intersection of these two hexagons corresponds to the common
parameters shared between �1 and �2 in the metric tensor DNN. Wi and bi refer respectively to the
weight matrix and the bias vector of the i-th layer of the policy network ⇡✓.

and the geodesic regularized policy gradient will be computed by Algorithm 1 as its output. These
gradients will be utilized subsequently to train the policy network ⇡✓.

Building on Algorithm 1, Algorithm 2 further presents a high-level description of gab regularized
DRL algorithms. Algorithm 2 is designed to be compatible with SAC, TD3 and many other policy
gradient algorithms. In fact, it is straightforward to extend SAC and TD3 to build their gab regularized
counterparts. Without modifying any existing operations of SAC and TD3, at every iteration of train-
ing ⇡✓, we can perform Algorithm 1 to train the metric tensor DNN and compute the corresponding
metric tensor regularized policy gradients. Subject to the algorithm variants, either the gab regularized
policy gradient or the geodesic regularized policy gradient will be computed and utilized to train
the policy network ⇡✓. The trained ⇡✓ is then exploited to collect new state-transition samples. The
above process is repeatedly executed until a certain number of state-transition samples have been
collected to train ⇡✓.

APPENDIX G

To learn the complex geometric structure of gab, we introduce a new architecture for the metric
tensor DNN. This is exemplified by an example metric tensor DNN for a policy network ⇡✓ with two
hidden layers, as depicted in Figure 3. The metric tensor DNN parameterized by �1 and �2 maps the
n-dimensional policy parameter ✓ = [W1, b1, ...,W3, b3] into two m̃-dimensional vectors ~̃!(✓,�1)
and ~̃�(✓,�2), which are used to build the scaling matrix S(✓,�1) and the rotation matrix R(✓,�2) in
equation 3 respectively4.

In particular, each layer of weight matrix Wi and bias vector bi of ⇡✓ is processed individually
through two consecutive convolutional kernels (2D kernels of size 3⇥3 for processing Wi or 1D
kernels of size 3 for processing bi), followed by the flattening and average pooling operations with
a pool size of 5 before passing through the first dense layer in Figure 3. It should be noted that the
bias vector for the output layer is exempt from the pooling operation due to its comparatively low
dimensionality5. The Softplus function serves as the activation mechanism for both the convolutional
and dense layers in the metric tensor DNN. We also used the ReLU activation function and obtained

4On LunnarLanderContinuous-v2, the input dimension n of the metric tensor DNN is 69124 for a policy
with two hidden layers described in Table 2 for SAC-T. The output dimension is 700, effectively yielding two
m̃-dimensional vectors (m̃=350).

5Note that the dimensionality of the bias vector for the output layer of the policy network ⇡✓ equals to the
dimensionality of the action space, which is usually small. For example, the dimensionality of the action space
is 2 for the LunnarLanderContinuous-v2 problem.

19

similar experiment results. The outputs of the first dense layer are concatenated and channeled
through two separate and additional dense layers in Figure 3, each of which yields an m̃-dimensional
vector.

While the performance of the metric tensor DNN could be further enhanced by fine-tuning the DNN
architecture in Figure 3, such an undertaking is beyond the scope of this paper. Consequently, we
reserve the exploration of more advanced network architecture designs and fine-tuning for our future
work. Moreover, the performance of the learned metric tensor DNN reported in Section 6 shows that
our proposed simple architecture for the metric tensor DNN can effectively learn gab|✓ w.r.t. any
policy parameter ✓ such that the absolute divergence at ✓ can be reduced.

APPENDIX H

This appendix presents the detailed experiment setup. We use the popular OpenAI Spinning Up
repository Achiam (2018) to implement gab regularized DRL algorithms proposed in this paper.
Our implementation follows closely all hyper-parameter setting and network architectures reported
in Haarnoja et al. (2018); Fujimoto et al. (2018) and summarized in Table 2. Since calculating the
Hessian trace precisely can pose significant computation burden on existing deep learning libraries
such as PyTorch, we adopt a popular Python library named PyHessian Yao et al. (2020), where
Hutchinson’s method Avron & Toledo (2011); Bai et al. (1996) is employed to estimate the Hessian
trace efficiently. All experiments were conducted on a cluster of Linux computing nodes with 2.5
GHz Intel Core i7 11700 processors and 16 GB memory. To ensure consistency, all experiments
were run in a virtual environment with Python 3.7.11 managed by the Anaconda platform. The main
Python packages used in our experiments are summarized in Table 3.

Table 2: Hyper-parameter settings of all experimented algorithms.

Hyper-parameter SAC SAC-J SAC-T TD3 TD3-J TD3-T
Total training timesteps 300,000 300,000 300,000 300,000 300,000 300,000
Max episode length 1000 1000 1000 1000 1000 1000
Minibatch size 256 256 256 100 100 100
Adam learning rate 3e-4 3e-4 3e-4 1e-3 1e-3 1e-3
Discount (�) 0.99 0.99 0.99 0.99 0.99 0.99
GAE parameter (�) 0.995 0.995 0.995 0.995 0.995 0.995
Replay buffer size 1e6 1e6 1e6 1e6 1e6 1e6
Update interval (timesteps) 50 50 50 50 50 50
Network architecture 256x256 256x256 256x256 400x300 400x300 400x300

Table 3: Python packages.

Package name Version
cython 0.29.25
gym 0.21.0
mujoco-py 2.1.2.14
numpy 1.21.4
pybulletgym 0.1
python 3.7.11
PyHessian 0.1
torch 1.13.1

APPENDIX I

Figure 4 and Figure 5 present the divergence ratios obtained by SAC-J and TD3-J during the training
process on four benchmark problems. As evidenced by the figures, using the trained metric tensor
DNN, SAC-J and TD3-J can successfully reduce a significant portion of the divergence ratios to
below 1 during the training process on all benchmark problems. Meanwhile, Table 4 confirms that
over 70% of the divergence ratios obtained by SAC-J and TD3-J during policy training are less than
1 on all benchmark problems. The divergence ratios can be further reduced to below 50% with a
good probability on majority of the experimented benchmark problems. These results demonstrate

20

the effectiveness of our metric tensor regularization algorithm in training the proposed metric tensor
DNN towards achieving close-to-zero divergence on the manifold (Rn

, gab).

Table 4: The percentage of divergence ratios < 1 and < 50% for SAC-J and TD3-J on four benchmark
problems.

Benchmark problems Divergence ratio < 1 (%) Divergence ratio < 0.5 (%)
SAC-J TD3-J SAC-J TD3-J

InvertedDoublePendulum-v2 (Mujoco) 89 87 50 53
Walker2D-v3 (Mujoco) 76 79 0 23
Ant-v0 (PyBullet) 70 71 19 29
Walker2D-v0 (PyBullet) 97 93 64 72

(a) InvertedDoublePendulum-v2 (Mujoco) (b) Walker2D-v3 (Mujoco)

(c) Ant-v0 (PyBullet) (d) Walker2D-v0 (PyBullet)

Figure 4: Divergence ratios obtained by SAC-J during the training process, where the divergence
ratio is defined as the absolute ratio between Div(Ja) and the Hessian trace.

APPENDIX J

In this appendix, we present the Hessian trace observed during the policy training process for SAC and
TD3 respectively, as shown in Figure 6. The Hessian trace results clearly show that the Hessian trace
can differ substantially across different algorithms on the same benchmark problem. For example,
the Hessian trace obtained by SAC-T and SAC-J on InvertedDoublePendulum-v2 is mostly in the
value range between -1000 and 0. On the same benchmark, the Hessian trace obtained by TD3-T and
TD3-J is in a significantly different value range between -3 and 2.

Similarly, Figure 6 demonstrates that the Hessiance trace can vary hugely for the same algorithm
on different benchmarks. For instance, considering SAC-T and SAC-J, the Hessian trace obtained
by the two SAC variants is normally in the value range between -150 and 0 on Ant-v0. However,
the Hessian trace obtained by the same algorithms is in a substantially differed value range between
-2000 and -500 on the Walker2D-v3 benchmark.

Based on the above observation, we believe that the influence of the Hessian trace on the performance
of policy gradient algorithms should not be overlooked. It motivates us to develop gab regularzied
policy gradient algorithms in this paper.

21

(a) InvertedDoublePendulum-v2 (Mujoco) (b) Walker2D-v3 (Mujoco)

(c) Ant-v0 (PyBullet) (d) Walker2D-v0 (PyBullet)

Figure 5: Divergence ratios obtained by TD3-J during the training process, where the divergence
ratio is defined as the absolute ratio between Div(Ja) and the Hessian trace.

APPENDIX K

In this appendix, we investigate the performance impact of three hyper-parameters. They are (1)
⇣2

1+⇣1
for estimating the geodesic regularized policy gradient ~T |✓ in Proposition 4; (2) the number

of iterations for the Hutchinson’s method to approximate the Hessian trace Avron & Toledo (2011);
Bai et al. (1996); and (3) the number of iterations for training the metric tensor DNN in Algorithm 1.
SAC-T and Walker2D-v3 will be utilized in this appendix to demonstrate the performance impact of
varied settings of these hyper-parameters. Similar observations have also been witnessed on other
algorithm variants and benchmark problems, and will not be reported further.

The estimation of ~T |✓ in Proposition 4: To investigate the performance impact of using the hyper-
parameter ⇣2

1+⇣1
to estimate ~T |✓ in Proposition 4, we tested 2 different settings of ⇣2

1+⇣1
, including

0.1 and 0.3. The respective learning curves are plotted jointly in Figure 7(a). As shown in the figure,
different settings of ⇣2

1+⇣1
can achieve similar cumulative returns where ⇣2

1+⇣1
= 0.1 obtained slightly

higher returns after 300k timesteps, in comparison to the case that ⇣2
1+⇣1

= 0.3. Therefore, we set
⇣2

1+⇣1
= 0.1 for the main experiment results reported in Section 6 of this paper.

The number of iterations for the Hutchinson’s method: As explained in Appendix H, our
implementation of Algorithm 1 adopted a Python library named PyHessian Yao et al. (2020) to
efficiently estimate the Hessian trace associated with the policy gradient in the Euclidean policy
parametric space. In particular, we used the Hutchinson’s method to estimate the Hessian trace in
an iterative manner Avron & Toledo (2011); Bai et al. (1996) where the number of iterations is a
hyper-parameter that controls the estimation accuracy.

We evaluated two different numbers of iterations, including 30 and 50. The corresponding perfor-
mance results are reported in Figure 7(b). We notice that the performance impact of different iteration
numbers appears to be small. Intuitively, a larger number of iterations can estimate the Hessian trace
more accurately, which may help to increase the cumulative returns and reduce the performance
variance. However, it comes at a cost of higher computation burden. Since 30 iterations can achieve
competitive final performance in our experiments, we recommend to set the iteration number for the
Hutchinson’s method to 30 in this paper to reduce the computation cost.

The number of iterations for training the metric tensor DNN: In this paper, a new metric tensor
DNN is designed to learn the complex geometric structure of gab. As summarized in Algorithm 1, we

22

(a) InvertedDoublePendulum-v2 (Mujoco) (b) Walker2D-v3 (Mujoco)

(c) Ant-v0 (PyBullet) (d) Walker2D-v0 (PyBullet)

(e) InvertedDoublePendulum-v2 (Mujoco) (f) Walker2D-v3 (Mujoco)

(g) Ant-v0 (PyBullet) (h) Walker2D-v0 (PyBullet)

Figure 6: Hessian trace trend during the training process for (a)-(d) SAC-J and SAC-T and (e)-(f)
TD3-J and TD3-T.

train the metric tensor DNN for a certain number of iterations with the goal of reducing the absolute
divergence of the policy gradient vector field J

a towards zero at any ✓ of the manifold (Rn
, gab).

Similar to the number of iterations for the Hutchinson’s method, the number of iterations for training
the metric tensor DNN also plays an important role of balancing the trade-off between the accuracy of

23

(a) Different ⇣2
1+⇣1

in Proposition 4 (b) Different numbers of iterations
for the Hutchinson’s method

(c) Different numbers of iterations for
training the metric tensor DNN

Figure 7: The impact of using different hyper-parameters on the performance of SAC-T.

estimating gab and the computation cost. In this appendix, we tested two different iteration numbers,
as presented in Figure 7(c). It can be easily verified that, after 300k timesteps, more iterations can
noticeably achieve higher cumulative returns and lower performance variance (brown shaded area).
Thus, in the main experiment results reported in Section 6, the iteration number for training the metric
tensor DNN is set to 20. Meanwhile, we notice that additional performance gains can be realized by
further increasing this iteration number. However, in view of the extra computation cost, we believe
20 is a good setting for this hyper-parameter.

24

