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In this document, we provide additional details and insights that further support and expand upon the1

main contributions of our research, including more details on method implementation (Sec. B.), more2

experiment details and results (Sec. A., Sec. C., Sec. D.) and the discussion of boarder impacts (Sec.3

E.). See our project website https://tunemv3d.github.io/ for the video and more visulization4

results.5

A. More Results6

To supplement the findings presented in the main paper, we offer extensive visualizations available7

at Project Page, aiming to provide a more holistic understanding of our methodology. The website8

features a collection of qualitative results (§4.3), showing the quality and diversity of the 3D content9

generated by TuneMV3D. In addition, we have incorporated comprehensive 3D representation videos10

illustrating the effect of post-processing (§3.4). These supplementary resources strive to facilitate a11

visually enriched, immersive understanding of our research outcomes, thereby augmenting the overall12

grasp and influence of our work.13

Figure 1: Visualization of intermediate results during sampling via our diffusion model. Top:
Visualization of latent denoising. Bottom: Visualization of corresponding NeuS densities.
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B. Implementation Details14

This section provides more extensive details about the TuneMV3D architecture, composed of an15

interactive diffusion scheme and a multi-view modulation module. We first detail the implementation16

of interactive diffusion and multi-view modulation, then elaborate the detail of our loss functions and17

training settings.18

B.1 Interactive Diffusion19

Our interactive diffusion first utilizes a encoder E to translate n noisy input views {xt
i}

n
i=1 into20

latent features
{
f t
i

}n

i=1
, where n is set to 8 across all experiments. The encoder, E , employs the21

architecture of ResBlock [1] and AttentionBlock [6]. It accepts the noisy view xt
i, noise level t, and22

text c as input, incorporates the t embeddings into each ResBlock and exchanges text information23

by attending the CLIP [5] features that have been extracted from c. Subsequent to this, a NeuS is24

implemented to enable multi-view information interaction. As discussed in the main paper, instead of25

predicting high dimensional features in one go, we make the NeuS predict the low dimensional x0
i .26

Specifically, we first apply positional encoding γ to the each query point p:27

γ(p) = (sin(20ωp), cos(20ωp), sin(21ωp), cos(21ωp), ..., sin(2M−1ωp), cos(2M−1ωp)). (1)

We adopt M = 6 in all experiments and also concatenate the input coordinates p and view directions28

d along with the encodings. Note that we do not apply positional encoding to the view directions. ω29

is a scaling factor, set to 1.5 for ShapeNet-Chair and 2.0 for mini-Objaverse respectively.30

After aggregating the features for each query point from multi-view features
{
f t
i

}n

i=1
(§3.1), we feed31

the point encodings and aggregated features into the NeuS to predict x0
i for each view. Following32

SparseNeuS, our NeuS network is built upon a series of ResNetFC [1, 7] layers. We also ensure33

the NeuS is aware of the noise level by inputting t embeddings. Benefit from the x0
i prediction, we34

can copy a same encoder O from the original 2D diffusion to map the low dimensional predictions35

to hierarchical L features
{
gt
i,k

}L

k=1
. This encoder, O, mirrors the 2D diffusion encoder O∗ in36

architecture and initial weights, incorporating four main encoder blocks and one middle block. Note37

that all the rendered views x0
i are passed through the same encoder O, therefore the mapped features38

gt
i,k from O still maintain 3D consistency. In addition, we also feed the information of raw input39

xt
i into O. In more detail, an extra lightweight encoder is applied to xt

i to extract a noisy feature,40

which is subsequently added to the initial encoder layer in O. This procedure not only integrates the41

original noisy information but also facilitates the learning of modulation feature residuals.42

Moreover, as shown in Fig. 1, we find that the NeuS progressively reveals a shape that aligns with43

the multi-view images over the course of the diffusion process, solely supervised by the original44

single-view image denoising targets. To enhance the quality and convergence speed of the NeuS, we45

further supervise the rendered prediction with an additional loss, Lneus. Specifically, we randomly46

render extra n′ (set to 8 in our experiment) novel views through the NeuS, together with the n input47

views, we then apply a L1 loss to all the n+ n′ predicted x0
i and ground truth x̃0

i .48

B.2 Multi-view Modulation49

As mentioned in the main paper, we apply zero convolutions to interactive features
{
gt
i,k

}L

k=1
50

before integrating them into the decoder. We implement these zero convolutions as 1x1 convolutions,51

following the methodology of ControlNet [8]. Both the weights and bias of the zero convolution are52

initialized as zeros, implying that in the initial training step, we have53

ZeroConv(gt
i,k) = 0, (2)

and the overall framework degrades back to a combination of independent single-view 2D diffusion54

models. As posited by [8], given that the feature gt
i,k is non-zero, the weight and bias of the55

zero convolution can be optimized into a non-zero matrix in the first gradient descent iteration.56

Consequently, this approach enables the smooth modulation of the fixed 2D diffusion without57

drastically disrupting the original 2D priors.58
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B.3 Loss Function and Training Details59

TuneMV3D is trained end-to-end with each single-view’s original denoising loss Ldenoise [3] and an60

additional NeuS loss Lneus:61

L = λ1
1

n

n∑
i=1

(Ldenoise) + λ2Lneus. (3)

At a specific training step with noise level t, Ldenoise computes the L2 distance between the denoised62

output xt−1
i from our modulated 2D diffsuion and the ground truth x̃t−1

i . We then average the losses63

across all views as our primary loss term. As discussed in B.1, we also supervise the prediction from64

NeuS with Lneus to improve the NeuS’s convergence speed and quality. In our experiments, both λ165

and λ2 are set to 1.0.66

We fine-tune TuneMV3D on ShapeNet-Chair and mini-Objaverse by AdamW [2] optimizer. We set67

batch size, learning rate, and weight decay to 4, 5× 10−5, 1× 10−3 for all the datasets. All models68

are trained on eight NVIDIA Tesla A40 GPUs, each equipped with 46 GB of memory.69

C. Quantitative Experiment Details70

Due to the lack of corresponding ground truth from our text to 3D results, we employ a CLIP71

R-precision [4] based method to quantitatively evaluate the generation effect, as mentioned in §4.4.72

We design 30 test prompts for the generative model trained on ShapeNet-Chair, of which 15 prompts73

are similar to the description of ShapeNet objects, such as "A blue office chair with an adjustable74

backlog and flip up arms for extra support." The other 15 tend to test the generation capability beyond75

the training data, such as "A chair that likes avocado, with the brown kernel as its cushion."76

For each object, we used CLIP [5] to retrieve the most relevant text from a pool of 100 text candidates77

for each view. The overall text for the object was determined by selecting the text associated with78

the view that had the highest number of matching views. In cases where multiple texts had an equal79

number of match views, we selected the text with the highest CLIP similarity score. Finally, we80

calculated the R-precision. This metric allows us to quantitatively assess the quality and fidelity of81

our generated 3D content.82

D. More Ablations83

In the section dedicated to additional ablation studies, we delve deeper into two critical factors as84

follows:85

The Impact of Raw Noisy Information. We analyze the effect of integrating raw noisy information86

from xit into the trainable encoder O, as detailed in section B.1. A comparison of samplings87

conducted with and without feeding raw noise information under identical training hyper-parameters88

and steps is presented in Fig. 2 (b) and (c). It is evident that the network convergence slows down89

when the encoder O does not receive the original noisy latent image input. However, upon providing90

raw noisy information, the generated shapes at identical training steps become more diverse and91

better align with the text prompt. We surmise that the information from xit assists the encoder in92

learning more suitable modulation residuals at the current noise level.93

The Impact of Interactive Methods. As mentioned in the main paper, we opted to predict a low94

dimensional x0
i then map it to high dimensional features, rather than predicting the high-dimensional95

features all at once. Fig. 2 (a) and (c) offer a comparison between these two strategies under identical96

sampling conditions. Our chosen method, depicted in Fig. 2 (c), shows view-consistency in the early97

3k training steps and can generate diverse objects after 10k steps. Conversely, the direct prediction of98

high-dimensional features, shown in Fig. 2 (a), struggles to achieve view-consistency at 10k steps99

and tends to sample simpler shapes after 20k steps. This comparison underscores the effectiveness of100

our chosen approach.101
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Figure 2: Results for ablation. (a) Results of method for directly predicting high dimensional features.
(b) Results without feeding raw information from xt

i into the trainbale encoder. (c) Baseline results.

E. Broader Impacts102

The broader impacts of this work are manifold and have implications both within and outside the103

academic community.104

Our work presents the potential to profoundly impact various industries, most notably in computer105

graphics, gaming, virtual and augmented reality, and robotics. By enhancing the ability of machines106

to generate 3D content from limited data in a scalable manner, industries that rely heavily on 3D107

modelling could stand to benefit greatly. For instance, gaming companies could potentially use108

our technology to quickly generate diverse and realistic 3D environments and characters, thereby109

reducing development time and costs.110

While our research has the potential for positive impact, it’s also important to consider possible111

ethical implications. As 3D content becomes easier to generate and manipulate, issues regarding the112

misuse of technology and the infringement of intellectual property could arise. Ensuring that this113

technology is used responsibly and that copyright laws are upheld is essential.114
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