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Abstract
Estimating the conditional average treatment ef-
fect (CATE) from observational data is rele-
vant for many applications such as personalized
medicine. Here, we focus on the widespread
setting where the observational data come from
multiple environments, such as different hospi-
tals, physicians, or countries. Furthermore, we al-
low for violations of standard causal assumptions,
namely, overlap within the environments and un-
confoundedness. To this end, we move away from
point identification and focus on partial identifi-
cation. Specifically, we show that current assump-
tions from the literature on multiple environments
allow us to interpret the environment as an in-
strumental variable (IV). This allows us to adapt
bounds from the IV literature for partial identifica-
tion of CATE by leveraging treatment assignment
mechanisms across environments. Then, we pro-
pose different model-agnostic learners (so-called
meta-learners) to estimate the bounds that can be
used in combination with arbitrary machine learn-
ing models. We further demonstrate the effective-
ness of our meta-learners across various experi-
ments using both simulated and real-world data.
Finally, we discuss the applicability of our meta-
learners to partial identification in instrumental
variable settings, such as randomized controlled
trials with non-compliance.

1. Introduction
Estimating conditional average treatment effects (CATEs)
from observational data is relevant for many applications.
Examples include medicine (Glass et al., 2013; Feuerriegel
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et al., 2024), economics (Angrist, 1990; Kuzmanovic et al.,
2024), or marketing (Varian, 2016). For example, medical
professionals are interested in leveraging electronic health
records to personalize care by understanding the estimated
CATE of treatments.

In this paper, we are interested in the CATE in a setting
where we have access to observational data, that are col-
lected from multiple environments. Furthermore, we allow
for violations of standard causal assumptions, namely, over-
lap within the environments and unconfoundedness. Our
setting is particularly relevant for medical applications for
two reasons.

First, CATE estimation in practice often involves settings
where the observational data come from multiple environ-
ments (Shi et al., 2021). Common examples in medicine are
settings where patient data come from multiple hospitals,
multiple physicians, or multiple countries (e.g., Huang et al.,
2022). As a result, each environment is characterized by
unique patient demographics (e.g., a specialized hospital
may have more severe cases of disease) and/or unique treat-
ment policies (e.g., the default treatment option may vary
across countries).

Second, identification of the CATE from observational data
is challenging and typically requires strong assumptions
such as (i) overlap (within environments) and (ii) uncon-
foundedness (Wager & Athey, 2018). (i) Overlap ensures
that each individual has a positive probability of receiving
any treatment (D’Amour et al., 2021) within each envi-
ronment. (ii) Unconfoundedness implies that all potential
confounders that influence both the treatment assignment
and the outcome of interest are contained within the ob-
servational data. Under violations of these assumptions,
the CATE is generally unidentifiable and can not be esti-
mated consistently from observational data (Pearl, 2009).
Notwithstanding, violations are likely to occur in settings
with multiple environments. (i) When patient characteristics
and/or treatment policies vary across environments, then it
is likely that certain patient characteristics and/or certain
treatments are rarely or even never observed in some envi-
ronments (e.g., certain treatments are only administered by
specialized physicians). As such, overlap is often violated.
(ii) Confounders such as socioeconomic status are often
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Figure 1. Intuition for our bounds. Left: Two propensity scores πe
1(x) = P(Ae = 1 | Xe = x) and πj

1(x) = P(Aj = 1 | Xj = x)
corresponding to different environments e and j are plotted over observed confounders X . Large values of πe

1(x) and πj
1(x) correspond

to a high probability of receiving treatment and vice versa. Right: CATE τ(x) together with bounds depending on violations of overlap
and unconfoundedness. In region A1, no overlap violations occur, leading to wide bounds for the CATE τ due to potential unobserved
confounding. In region A2, overlap violations occur at opposite ends across environments, leading to tight bounds for τ . In region A3,
overlap violations occur on the same end across environments, leading to wide bounds for τ due to a lack of data for treated individuals.

not recorded in medical studies (Adler & Stead, 2015). As
such, unconfoundedness is often violated. Consequently,
standard CATE estimators may be biased and thus unre-
liable, motivating the need for methods to relax standard
assumptions.

To address the challenges of the setting above, we move
away from point identification and focus on partial identifi-
cation. Partial identification means that one relaxes assump-
tions on the underlying data-generating process to estimate
bounds for a causal query of interest (Jesson et al., 2021).
Knowing that the bounds are above or below zero is often
sufficient for consequential decision-making (Kallus et al.,
2019). For example, knowledge about a positive treatment
effect may be sufficient for a physician to prescribe a treat-
ment. To the best of our knowledge, our work is unique in
two ways. First, while there is rich literature on partial iden-
tification (e.g., Manski, 1990; Kilbertus et al., 2020; Padh
et al., 2023), no previous works allow for observational
datasets from multiple environments. Second, the derivation
of bounds for specific settings is a common theme in the
partial identification literature (e.g., Duarte et al., 2023),
yet the effective estimation of such bounds is often not the
focus. Here, a novelty of ours is that we provide flexible
meta-learners that can be combined with arbitrary machine
learning models for estimating such bounds in our setting.

In this paper, we make three contributions:1 (1) We show
that under similar assumptions as in related work (Kallus
et al., 2018), the variable representing the environment can
be interpreted as an instrument variable (IV). Then, we
generalize previous results from the partial identification lit-
erature for binary IVs (Balke & Pearl, 1997; Swanson et al.,
2018) to our setting to obtain bounds for CATE. (2) We
propose novel meta-learners to estimate the bounds from ob-
servational data. Importantly, our meta-learners are model-

1Code is available at https://github.com/
JSchweisthal/BoundMetaLearners.

agnostic and can be used in combination with any machine
learning model. (3) We provide theoretical results for our
meta-learners by showing consistency and double robust-
ness properties. Finally, we confirm the effectiveness of
our meta-learners by performing various experiments using
both simulated and real-world data.

We now give an intuition behind our bounds, and, thereby,
we explain that access to a discrete variable representing
the environment can indeed help with partial identification
of the CATE, even under violations of overlap and unob-
served confounding. Fig. 1 shows two different environ-
ments, namely, hospital e and hospital j. Both have different
treatment assignment mechanisms (i.e., πe

1 and πj
1, respec-

tively), which are plotted against some patient characteristic
X (e.g., patient age). Let us highlight three regions: In A1

and A3, the treatment assignments are similar, because of
which, unfortunately, we have wide bounds for the CATE.
However, in A2, the overlap assumption is violated in both
environments, but at opposite ends: in hospital e, middle-
aged patients are almost always treated, while, in hospital j,
they are rarely treated. Hence, we can overcome the limited
overlap by combining data across both environments. Fur-
thermore, we can deduce claims regarding the “strength” of
unobserved confounding in the region A2, as there can not
exist an unobserved variable with a strong influence on the
treatment assignment because this would imply more ob-
served variation in the prescribed treatments. Our intuition
is that violations of overlap and unconfoundedness exclude
each other, so that we obtain tight bounds for the CATE.

2. Related work
Our work draws from multiple streams of related literature,
which we list in the following. Additional literature is in
Appendix A.

Treatment effect estimation across different environ-
ments: Several works focus on treatment effect estimation
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from different environments. (i) One stream focuses on
randomized data, typically to combine randomized and ob-
servational datasets (e.g., Kallus et al., 2018; Athey et al.,
2020; Ghassami et al., 2022; Hatt et al., 2022; Imbens et al.,
2022). (ii) Another stream uses purely observational data
from different environments. For example, previous works
offer a theory for the transportability of causal effects across
different environments (Bareinboim & Pearl, 2016) or meth-
ods for transfer learning (Bica & van der Schaar, 2022) and
for detecting unobserved confounding (Karlsson & Krijthe,
2023). However, none of these works estimates bounds for
the CATE across multiple environments under violations of
assumptions.

Meta-learners for CATE estimation: Model-agnostic
meta-learners, in particular two-stage learners, are com-
monly used in the standard setting for CATE estimation
without unobserved confounding and achieve state-of-the-
art performance both theoretically and empirically (Foster
& Syrgkanis, 2019; Curth & van der Schaar, 2021a). The
basic idea of two-stage learners is to estimate the CATE
directly via an additional second-stage regression using a
constructed pseudo-outcome. Several learners have been
developed, which primarily differ in terms of the pseudo-
outcome used: (i) the regression-adjustment learner (called
RA- or X-learner) (Künzel et al., 2019; Curth & van der
Schaar, 2021a); the inverse-propensity weighted learner
(IPW-learner) (Curth & van der Schaar, 2021a); the doubly
robust learner (DR-learner) (Kennedy et al., 2023); and the
R-learner (Nie & Wager, 2021). There also exist some ef-
forts to generalize the standard meta-learners to different
causal inference settings (e.g., with instrumental variables,
Syrgkanis et al., 2019; Frauen & Feuerriegel, 2023). How-
ever, these meta-learners are all designed for estimating
CATE under point identification but not partial identifica-
tion.

We are only aware of one work that proposes a meta-learner
for partial identification of CATE, namely, the B-learner
(Oprescu et al., 2023). However, the B-learner has been
proposed for causal sensitivity analysis, a setting with a
fundamentally different set of assumptions: the B-learner
requires prior knowledge that limits the maximum strength
of the confounding. In contrast, we do not make assump-
tions that limit the strength of the confounding but instead
assume that observational data is collected from multiple en-
vironments. Because of that, the B-learner is not applicable
in our work.

Partial identification of treatment effects: In the con-
text of causal inference from a single observational dataset
with unobserved confounding, several works have proposed
procedures for partial identification of treatment effects.

Manski (1990) was the first to obtain bounds for (condi-
tional) average treatment effects under the assumption of

bounded outcomes. Balke & Pearl (1997) derived tighter
bounds for average treatment effects in a similar setting than
ours, but with binary variables. Duarte et al. (2023) pro-
posed a general procedure for deriving bounds in discrete
structural causal models. In settings with continuous vari-
ables, recent works leverage machine learning approaches
to learn bounds (Kilbertus et al., 2020; Hu et al., 2021; Bal-
azadeh et al., 2022; Chen et al., 2023; Padh et al., 2023).
Note that these methods focus primarily on identification re-
sults (i.e., deriving bounds), while we develop meta-learners
for estimating bounds. An exception is the estimator from
(Levis et al., 2023), which however targets bounds for aver-
age treatment effects.

Finally, a related but distinct stream of literature leverages
machine learning for causal sensitivity analysis to obtain
bounds under so-called sensitivity models, which make as-
sumptions that limit the strength of unobserved confounding
(Jesson et al., 2021; Dorn & Guo, 2022; Dorn et al., 2022;
Yin et al., 2024; Frauen et al., 2023; Jin et al., 2023; Frauen
et al., 2024). Again, we do not make an assumption that
limits the strength of unobserved confounding, because of
which the tasks/bounds are not comparable. On top of that,
to the best of our knowledge, none of these works considers
effective estimation of bounds for CATE via meta-learners.

Research gap: We focus on CATE estimation from obser-
vational data across multiple environments under violations
of standard assumptions. To the best of our knowledge, we
are the first to study partial identification in settings with
multiple environments. Further, we are the first to develop
effective meta-learners in our partial identification setting
to estimate bounds.

3. Problem setup
Setting: We consider a setting with multiple environments
(e.g., different hospitals, different physicians, or different
countries), which, for simplicity, we denote by a discrete
environment variable E ∈ {0, . . . , k}. We further have
access to an observational dataset D = {ei, xi, ai, yi}ni=1

of size n. The data are sampled i.i.d. from a population
(E,X,A, Y ) ∼ P, with patient covariates X ∈ X ⊆ Rp,
discrete treatments A ∈ A ⊆ N, and bounded outcomes
Y ∈ Y ⊆ [s1, s2] ⊆ R. The causal structure is shown in
Fig. 2. In particular, we assume that E is an instrumental
variable that has an effect on the treatment A but no direct
effect on the outcome Y that is not mediated via A.

Our setting is relevant for a variety of practical applications
where observational data are collected from different en-
vironments. Consider electronic healthcare records from
patients, where X includes patient characteristics such as
age and gender, A is an indicator of whether a patient has
been prescribed medical treatment, and Y is a health out-
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come such as heart rate or blood pressure. Further, let E
correspond to an environment in which the electronic health
records are collected such as the hospital. Such settings are
common in medical research to understand the effectiveness
of treatments (e.g., Huang et al., 2022).

Figure 2. Causal graphs for different environments e and j. We
assume that the causal structure between e and j remains un-
changed but we allow for different treatment assignment mecha-
nisms (propensity scores) πe

a(x) and πj
a(x). The dotted arrows

indicate potential unobserved confounding.

Notation: We define the environment-specific propensity
score as πe

a(x) = P(A = a | X = x,E = e), which de-
notes the treatment assignment mechanism that is observed
in environment e. Furthermore, we define the environment-
specific response surfaces via µe

a(x) = E[Y | X = x,A =
a,E = e]. Importantly, we assume that both the propensity
scores and the response surfaces may differ across envi-
ronments, i.e., πe

a(x) ̸= πj
a(x) and µe

a(x) ̸= µj
a(x) for

environments e ̸= j. For example, the standard of care
might vary across countries, leading to different treatment
policies and thus propensity scores. Finally, we define the
environment probability as δe(x) = P(E = e | X = x).

Assumptions: We use the potential outcomes framework to
formalize our causal inference problem (Rubin, 1974). Let
Y e(a) ∈ Y denote the potential outcome in environment
E = e for a treatment intervention A = a. In this paper, we
impose the following assumptions on the data-generating
process across environments.
Assumption 3.1 (Consistency across environments). For
each environment e, observing A = a implies Y e(a) = Y .
Assumption 3.2 (Environment-agnostic oracle response sur-
faces). We assume that E[Y e(a) | X = x,E = e] =
E[Y j(a) | X = x,E = j] holds for all environments
0 ≤ e, j ≤ k, treatments a ∈ A, and covariates x ∈ X .
Assumption 3.3 (Common support). We assume that
δe(x) > 0 holds for all environments 0 ≤ e ≤ k and
covariates x ∈ X .

Assumption 3.1 (consistency) excludes spillover effects
across individuals and is a standard assumption in the causal
inference literature (Shalit et al., 2017; Wager & Athey,
2018). Assumption 3.2 implies that a treatment results in
the same expected potential outcome across environments.2

2Prior literature often defines instrumental variables E via

In particular, the outcome-generating causal mechanisms
coincide in expectation for each environment. Similar as-
sumptions are commonly made in the literature to ensure
the transferability of treatment effect estimates. Finally,
Assumption 3.3 ensures that the populations of all environ-
ments are supported on a common domain, i.e., there are
no types of patients that only exist in certain environments.
Thus, we are consistent with prior literature on causal infer-
ence using combined datasets (Kallus et al., 2018; Shi et al.,
2021; Hatt et al., 2022).

Target estimand: Using Assumption 3.2, we can define the
oracle response surface as µ̃a(x) = E[Y e(a) | X = x,E =
e], which is independent of the environment e. We are
interested in the (environment-agnostic) conditional average
treatment effect (CATE)

τa1,a2(x) = µ̃a1(x)− µ̃a2(x), (1)

which quantifies the difference in expected potential out-
comes for two treatments a1, a2 ∈ A. The CATE is of
interest in various applications, e.g., personalized medicine
(Feuerriegel et al., 2024), because it captures treatment ef-
fect heterogeneity by conditioning on the covariates x.

Violations of standard causal inference assumptions: The
standard causal inference literature imposes the following
two additional assumptions to identify the CATE τa1,a2(x)
from the observational data distribution (Wager & Athey,
2018; Curth & van der Schaar, 2021a):

(i) Overlap within envionments: πe
a(x) > 0; and

(ii) Unconfoundedness: Y e(a) ⊥⊥ A | X = x

for all x ∈ X and a ∈ A.

Overlap implies that each individual with covariates x must
have a non-zero probability of receiving every treatment
a. Unconfoundedness implies that the observed covariates
X capture all confounding between the treatment A and
outcome Y . Under overlap and unconfoundedness, the
oracle response functions are identified via µ̃a(x) = µe

a(x)
and, hence, coincide with their observed counterparts for all
environments e (Shalit et al., 2017). In particular, the CATE
is identified via τa1,a2(x) = µe

a1
(x)− µe

a2
(x).

However, both overlap and unconfoundedness are violated
in many practical settings. (i) The overlap violation is
almost always violated in settings with high-dimensional
covariates X , which is common in modern settings with
available text/image data, or other electronic healthcare
records (D’Amour et al., 2021; Schweisthal et al., 2023).
(ii) The unconfoundedness assumption is highly unrealis-
tic in medical settings, where confounders such as socio-
economic status are rarely recorded in electronic health

Y (a) ⊥⊥ E | X (Pearl, 2009). Note that this assumption is
stronger than our Assumption 3.2. Hence, our results can be
applied to any setting where E is a discrete instrument in the
classical sense, e.g., RCTs with non-compliance.
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records (Adler & Stead, 2015). If either overlap or uncon-
foundedness (or both) are violated, neither response func-
tions µ̃a(x) ̸= µe

a(x) nor the CATE are identified. Then,
unbiased estimation is impossible (Pearl, 2009).

In the following, we relax assumptions related to overlap
and unconfoundedness and focus on partial identification.

4. Partial identification of CATE
We now leverage the idea that the environment variable E
acts as an instrumental variable (IV) and generalize results
from the literature on partial identification for IVs (Balke &
Pearl, 1997; Swanson et al., 2018) that hold for binary vari-
ables and average treatment effects. To do so, we first recall
a known result from the literature on bounding treatment
effects without multiple environments.

Lemma 4.1. (Manski, 1990) For any environment e, the
oracle response surfaces are bounded under Assumption 3.1
via

µ̃a(x) ≤ πe
a(x)µ

e
a(x) + (1− πe

a(x)) s2 (2)

and
µ̃a(x) ≥ πe

a(x)µ
e
a(x) + (1− πe

a(x)) s1, (3)

where [s1, s2] denotes the support of Y .

Proof. See Appendix B.

The intuition behind Lemma 4.1 is as follows: Whenever we
have overlap violations and the propensity score πe

a(x) is
large for a treatment a, most of the randomness in the treat-
ment is removed by conditioning on the observed covariates
x. Hence, there can not be unobserved confounders that
have a strong influence on the treatment assignment. This
is reflected in the bounds from Lemma 4.1, which become
tighter whenever πe

a(x) becomes larger.

Previously, Manski (1990) proposed to obtain an upper
bound for the CATE τa1,a2

(x) = µ̃a1
(x)− µ̃a2

(x) by com-
bining the upper and lower bound from Lemma 4.1 for the
different treatments a1 and a2. This results in

τa1,a2
(x) ≤ πe

a1
(x)µe

a1
(x) + (1− πe

a1
(x)) s2

− πe
a2
(x)µe

a2
(x)− (1− πe

a2
(x)) s1 (4)

for the upper bound. An analogous result can be obtained
for the lower bound by swapping the support points s1 and
s2.

One drawback of the Manski bound in Eq. (4) is that it is not
particularly tight. When subtracting the lower bound from
the upper bound, we obtain a constant tightness of s2 − s1,
which does not depend on the covariates x and not on the
propensity score πe

a(x). In particular, the tightness equals
the full support of the outcome variable Y .

Extending the Manski bounds: The above motivates us to
leverage the different propensity scores across environments
to obtain tighter bounds (see Fig. 1). By combining the
bounds from Lemma 4.1 for the oracle response functions
across environments, we derive the following result.
Theorem 4.2. Under Assumptions 3.1 and 3.2, the CATE is
bounded via

b−(x) ≤ τa1,a2
(x) ≤ b+(x), (5)

where

b+(x) = min
e,j

b+e,j(x) and b−(x) = max
e,j

b−e,j(x) (6)

with

b+e,j(x) = πe
a1
(x)µe

a1
(x) + (1− πe

a1
(x))s2

− πj
a2
(x)µj

a2
(x)− (1− πj

a2
(x))s1, (7)

b−e,j(x) = πe
a1
(x)µe

a1
(x) + (1− πe

a1
(x))s1

− πj
a2
(x)µj

a2
(x)− (1− πj

a2
(x))s2. (8)

Proof. See Appendix B.

The bounds from Theorem 4.2 are a generalization of the
so-called natural bounds from the literature on partial iden-
tification with IVs and discrete variables (Swanson et al.,
2018). Unlike other bounds such as the ones from Balke
& Pearl (1997), these can be straightforwardly extended to
continuous outcomes and thus our multiple environments
setting via Theorem 4.2. We refer to Swanson et al. (2018)
for a detailed overview on bounds in instrumental settings
(with discrete variables). Finally, another advantage of the
natural bounds is that they are in closed-form and thus allow
for estimation via meta-learners (see Sec. 5).

Tightness of the bounds: Note that our bounds from Theo-
rem 4.2 satisfy

b+(x)− b−(x)

≤ min
e,j

{
(s2 − s1)(2− πe

a1
(x)− πj

a2
(x))

}
, (9)

which shows that they improve on the Manski bounds from
Eq. (4) in terms of tightness whenever πe

a1
(x)+πj

a2
(x) > 1.

Remark: Our bounds become tight whenever there exist
two environments e and j so that both πe

a1
(x) and πj

a2
are

large. In other words, we have a rather surprising implica-
tion: violations of overlap can be beneficial to increase the
tightness of our bounds as long as the respective treatment
assignments across environments change sufficiently.

Intuitively, the degree to which the propensity scores across
environments differ can also be viewed as the strength of de-
pendence between the environment variable E and the treat-
ment A. In the literature on IV regression, it is well-known

5



Meta-Learners for Partially-Identified Treatment Effects Across Multiple Environments

that so-called weak instruments E that are only weakly
correlated with A may lead to biased estimates (Angrist &
Pischke, 2008). Our bounds from Theorem 4.2 automati-
cally account for this issue and become wider whenever E
is a weak instrument and the propensity scores πe

a1
(x) and

πj
a2

across environments become similar.

5. Meta-learners for estimating the bounds
We now develop meta-learners for estimating our bounds
from Theorem 4.2, which denote quantities in population.
In the following, we thus propose model-agnostic meta-
learners that can be used in combination with any machine-
learning method. In this section, we describe the estimation
of our bounds for binary treatments A ∈ {0, 1}, so that
a1 = 1 and a2 = 0. We also provide a theoretical analysis
(Sec. 5.3) and an implementation using neural networks
(Sec. 5.4).

For simplicity, we will focus on obtaining estimators b̂+(x)
for the upper bound b+(x). Estimators for the lower bound
b−(x) can be obtained the same way by interchanging s1
and s2 (see Theorem 4.2).

5.1. Naı̈ve plug-in learner

A straightforward way to obtain an estimator for b+(x) is
the so-called naı̈ve plug-in approach. In this, we first obtain
estimators µ̂e

a(x) and π̂e
a(x) of the nuisance functions µe

a(x)
and πe

a(x) for all a, e ∈ {0, 1}. Note that estimating µe
a(x)

is a regression task and estimating πe
a(x) is a classification

task, which means that off-the-shelf machine-learning algo-
rithms can be applied. Then, we directly plug the estimated
nuisance functions into Eq. (6), which yields

b̂+(x) = min
e,j

{
π̂e
1(x)µ̂

e
1(x) + π̂e

0(x) s2

− π̂j
0(x) µ̂

j
0(x)− π̂j

1(x)s1

}
. (10)

We call the estimator from Eq. (10) the naı̈ve plugin-learner.

The general approach behind plug-in learners can suffer
from a so-called plug-in bias (Kennedy, 2022) that can limit
estimation performance. As a remedy, we develop novel
two-stage learners for our task in the following.

5.2. Two-stage learners

We now aim to address the drawbacks of plug-in learners
by proposing so-called two-stage learners that directly es-
timate the bounds from Theorem 4.2. While the plug-in
learner plugs the estimated nuisance function into Eq. (10)
to estimate b+e,j(x), we now aim to estimate b+e,j(x) directly
via a second-stage learner for all environment combinations
e, j ∈ {0, 1}. If the bounds b+e,j(x) are easier to estimate
directly than the corresponding nuisance functions (e.g., due

to cancellation effects), such an approach should perform
better than the plug-in learner. We do this by constructing
pseudo-outcomes that are equal to the bound we want to
estimate in expectation, which then can be used as a second-
stage regression objective. As a result, we obtain novel
two-stage learners for estimating b+e,j(x) and thus b+(x)
(instead of the non-identifiable CATE τ1,0(x)).

Types of learners: We distinguish between two different
cases: (1) within-environment bounds b+e,e(x), which com-
bine the response function bounds from Lemma 4.1 within
the same environment e, and (2) cross-environment bounds
b+e,j(x), which combine the response function bounds across
different environments e ̸= j. Consequently, we yield
two different approaches for the second-stage learners,
which we call (1) WB-learner and (2) CB-learner (where
the latter comes in different variants called CB-PI, CB-
RA-, CB-IPW-, and CB-DR-learner). Once all second-
stage learners b̂+e,j(x) are fitted, the within-environment
bounds and the cross-environment bounds are combined via
b̂+(x) = mine,j b̂

+
e,j(x) to obtain the final bound estimator

for CATE. The full procedure is shown in Algorithm 1.

5.2.1. WB-LEARNER

Whenever we consider a single environment e = j, we
define the pseudo-outcome

B̂+WB
e = 1{E = e} (AY + (1−A)s2 − (1−A)Y −As1) .

(11)
Then, we use the pseudo-outcome B̂+WB

e to estimate
b̂+e,e(x) = Ê[B̂+

e | X = x,E = e] via a second-stage
learner Ê conditional on E = e. That is, we only use the
data from environment e for the estimator b̂+e,e(x). We call
this the within-environment bound-learner (WB-learner).

5.2.2. CB-LEARNERS

Whenever e ̸= j, we need to combine data from different
environments e and j to estimate the cross-environment
bounds b+e,j(x). For this purpose, we show that the estima-
tion of b+e,j(x) can be cast into a standard CATE estimation
problem with a transformed outcome and treatment vari-
able Ỹ and using the environment E as a (multi-valued)
treatment. That is, we define

Ỹ +
e,j = 1{E = e} (AY + (1−A)s2)

+ 1{E = j} ((1−A)Y +As1) , (12)

and we denote the transformed response functions as
r+ℓ (x) = E[Ỹ +

e,j | X = x,E = ℓ] for ℓ ∈ {e, j}.

High-level approach: We proceed in two stages. In stage 1,
we obtain estimators r̂+ℓ and δ̂e(x) of the nuisance functions
r+ℓ and δℓ(x). In stage 2, we treat the estimation of b+e,j(x)
as a standard CATE estimation task using r̂+ℓ as estimated
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response functions and δ̂ℓ(x) as the estimated propensity
score. Then, we adopt the classical meta-learners (plugin-,
RA-, IPW-, and DR-learner (Curth et al., 2020; Kennedy,
2023)) for multi-valued treatments (Acharki et al., 2023)
(i.e., our environments). For guarantees on this approach,
we refer to Sec. 5.3.

(i) CB-PI-learner: The cross-environment-bound plugin-
learner is defined via

b̂+,PI
e,j (x) = r̂+e (x)− r̂+j (x), (13)

which is analogous to the plugin-learner for standard CATE
estimation (Curth et al., 2020).

(ii) CB-RA-learner: The cross-environment-bound
regression-adjustment learner is defined via the pseudo
outcome

B̂
+RA
e,j = 1{E = e}

(
Ỹ

+
e,j − r̂

+
j (x)

)
+ 1{E = j}

(
r̂
+
e (x) − Ỹ

+
e,j

)
+ 1{E ̸= e}1{E ̸= j}

(
r̂
+
e (x) − r̂

+
j (x)

)
, (14)

and the second-stage pseudo-outcome regression b̂+e,j(x) =

Ê[B̂+RA
e,j | X = x].

(iii) CB-IPW-learner: The cross-environment-bound in-
verse propensity weighted learner is defined via

B̂
+IPW
e,j =

(
1{E = e}

δ̂e(x)
−
1{E = j}

δ̂j(x)

)
Ỹ

+
e,j , (15)

and the second-stage pseudo-outcome regression b̂+e,j(x) =

Ê[B̂+IPW
e,j | X = x].

(iv) CB-DR-learner: The cross-environment-bound doubly
robust learner is defined via

B̂
+DR
e,j = B̂

+IPW
e,j +

(
1−

1{E = e}
δ̂e(x)

)
r̂
+
e (x)−

(
1−

1{E = j}
δ̂j(x)

)
r̂
+
j (x)

(16)
and the second-stage pseudo-outcome regression b̂+e,j(x) =

Ê[B̂+DR
e,j | X = x].

(v) Further meta-learners: We emphasize that, in prin-
ciple, any existing meta-learner for CATE estimation can
be applied for estimating the cross-environment bounds.
Further learners not specifically discussed here include the
U-learner (Künzel et al., 2019) and the R-learner (Nie &
Wager, 2021) (in the case of a binary environmental variable
E).

5.3. Theoretical guarantees

The following result analyzes the consistency of our pro-
posed second-stage learners depending on whether the nui-
sance parameters are correctly specified.

Theorem 5.1 (Consistency and double robustness). The
meta-learners are consistent estimators of the within and
cross-environment bounds. For the WB-learner, it holds that

b+e,e(x) = E[B̂+WB
e,e | X = x,E = e] (17)

Algorithm 1: Two-stage learners for estimating bounds
Input : observational data (E,X,A, Y ), method m ∈ {RA, IPW,DR}
Output :estimated upper bound b̂+(x) (for b̂−(x), interchange s1 and s2)
// Stage 1 (nuisance estimation)

r̂+ℓ (x)← Ê[Ỹ +
e,j | X = x,E = ℓ]

δ̂ℓ(x)← P̂(E = ℓ | X = x)
// Stage 2
for e, j ∈ {0, . . . , k} do

if e = j then
b̂+e,e(x) = Ê[B̂+WB

e | X = x,E = e]

else
b̂+e,j(x) = Ê[B̂+m

e,j | X = x]

end
end
// Final bound

b̂+(x) = mine,j b̂+e,j(x)

for e ∈ {0, 1}. For the CB-m-learner with m ∈
{RA, IPW,DR}, we obtain

b+e,j(x) = E[B̂+m
e,j | X = x] (18)

for e, j ∈ {0, 1} whenever, for all e, a ∈ {0, 1}, one of the
following cases hold: (i) r̂+ℓ (x) = r+ℓ (x) for m = RA;
(ii) δ̂ℓ(x) = δℓ(x) for m = IPW; or (iii) either r̂+ℓ (x) =
r+ℓ (x) or δ̂ℓ(x) = δℓ(x) for m = DR.

Proof. See Appendix B.

Note that the CB-DR-learner satisfies a double robustness
property analogously to the standard DR-learner for CATE
estimation (Kennedy et al., 2023). In particular, it allows for
a misspecification of either r̂+ℓ (x) or δ̂ℓ(x) as long as the
other nuisance function is correctly specified. Furthermore,
the WB-learner is always consistent because the correspond-
ing pseudo-outcome from Eq. (11) does not depend on any
nuisance estimators but just on the observational data. This
is different for cross-environment bounds b+e,j(x), which
would require observing the same data in two different en-
vironments. In that sense, the problem of estimating the
b+e,j(x) gives rise to the fundamental problem of causal
inference: potential outcomes corresponding to different
environments are never observed simultaneously.

5.4. Implementation using neural networks

In general, our proposed meta-learners are model-agnostic
in both stages and thus work with arbitrary machine learning
models. Here, we provide a flexible implementation using
neural networks. Specifically, we adapt the implementations
used in previous works for evaluating meta-learners for
point-identified CATE estimation (Curth & van der Schaar,
2021a;b). Importantly, we use similar network architectures
and settings for all meta-learners. Thus, performance differ-
ences are decoupled from model choice, so that the source of
gain is given by the meta-learners. We report the implemen-
tation details in Appendix D. Here, we want to emphasize
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method Synthetic Data 1 Synthetic Data 2

WB naı̈ve 0.073 ± 0.031 0.075 ± 0.045
WB 0.142 ± 0.069 0.130 ± 0.077

CB naı̈ve 0.148 ± 0.098 0.156 ± 0.105
CB-PI 0.125 ± 0.059 0.127 ± 0.063
CB-RA 0.179 ± 0.089 0.119 ± 0.037
CB-IPW 0.117 ± 0.057 0.165 ± 0.072
CB-DR 0.132 ± 0.061 0.111 ± 0.069

Table 1. Mean and standard deviation of the RMSE over 5 random
runs for synthetic datasets 1&2.

that our experiments serve as a “proof-of-demonstration” to
show the behavior of the different meta-learners in differ-
ent settings, while the neural network architectures are not
optimized for the respective tasks. Instead, in practice, the
exact modeling choices can be flexibly adjusted to fit data
properties and desired inductive biases.

6. Experiments
We perform experiments on synthetic and real-world data
to demonstrate that our meta-learners can effectively learn
bounds in our setting with multiple environments. Synthetic
data are commonly used to evaluate causal inference meth-
ods as it ensures that the causal ground-truth is available
(Curth & van der Schaar, 2021a; Xu et al., 2021) and thus
allows us to examine the performance. Since, as in CATE es-
timation (Curth & van der Schaar, 2021a), the performance
of our different individual meta-learners depends strongly
on the exact data-generating process, we refrain from heavy
benchmarking. Instead, we show that our meta-learners
reliably learn valid bounds and give short intuition to their
behavior.

Synthetic data: For synthetic data, unlike for real-world
data, we have access to the ground-truth data-generating
process. Hence, we can compare our meta-learners against
the oracle CATE and the oracle bounds from Theorem 4.2
calculated with the ground-truth nuisance estimators. Here,
we consider two settings where we vary the complexity
of the environment probability δe(x) from rather simple
(dataset 1) to more complex (dataset 2). Details on the
data-generating mechanisms are in Appendix E. In both
cases, the treatment assignment tends to become more dif-
ferent across environments at the border of X , so that the
cross-environment bounds should become tighter and more
informative in these areas.

We report the results in terms of the root mean squared error
(RMSE) to the oracle bounds in Table 1. We further display
illustrative insights into the true and predicted bounds of
different meta-learners for dataset 2 in Figure 3. We can

observe the following: (i) All of our meta-learners learn
valid bounds reliably, as shown by low average and varia-
tion of the RMSE and comparable performances between
the meta-learners. (ii) Depending on the setting, different
meta-learners may perform better or worse. As expected, in
dataset 1 with simple δe(x), the CB-IPW learner performs
best, while, in the more complex dataset 2, the CB-DR-
learner shows the best performance. This is in line with
previous work around meta-learners for CATE estimation
(Curth & van der Schaar, 2021a), while we show that the
same holds true for meta-learners aimed at partial identifica-
tion. (iii) The cross-environment bounds can be especially
helpful for learning tight and informative bounds, as demon-
strated in the border regions of X in Figure 3. Hence, reli-
able estimation is particularly important in these areas, and,
in the considered settings, our CB-learners help to improve
performance over the naı̈ve plug-in learner.

Furthermore, in Figure 3, we can give an intuition into the
differences in bounds estimation between the naı̈ve plug-in
learner and the two-stage learners. For the latter, we use
the WB-learner in combination with the CB-DR-learner as
a representative example for illustration. While still per-
forming well, we can observe that the naı̈ve plugin-learner
yields slightly less stable estimates with higher stand de-
viations, which is expected due to estimation errors in the
nuisance estimation. The two-stage learners, in contrast,
are less prone to minor errors in the nuisance estimators
and, as expected, yield slightly smoother and more robust
estimates of the bounds, as shown by lower stand deviations.
This is also reflected by lower RMSE and lower variation in
Table 1. However, note that this can result in oversmoothing
when the ground-truth bounds have a rather complex form,
e.g., as for the within-environment bounds. Interestingly, as
stated above, also here a similar behavior was observed for
meta-learners for point identification. In sum, our results
show that, depending on the data properties, different learn-
ers can be preferable for estimating bounds, and we provide
a selection of different options with our novel meta-learners.

Real-world data: We now demonstrate the applicability
of our meta-learners to real-world data. Since the ground-
truth CATE is unobservable for real-world data, we refrain
from benchmarking, but, instead, our primary aim is to
demonstrate the practical value of our meta-learners. Here,
we perform a case study using a dataset with COVID-19
hospitalizations in Brazil across different regions (Baqui
et al., 2020). We are interested in predicting the effect of
comorbidity on the mortality of COVID-19 patients. For the
environments, we use the regions of the hospitals in Brazil,
which are split into North and Central-South. As observed
confounders, we include age, sex, and ethnicity.

We report the estimates of the CATE bounds wrt. to age
and averaged over the other confounders (mean ± std),
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Figure 3. Comparison of estimation methods for bounds based on synthetic dataset 2 (predicted bounds mean± 3std over 5 runs). Left:
Oracle bounds for within- (WB) and cross- (CB) environments. Center: Estimated bounds by the naı̈ve plug-in learner. Right: Estimated
bounds by our two-stage meta-learners (here: WB-learner with CB-DR-learner).

estimated by (i) the naı̈ve plug-in learner and (ii) the CB-PI-
learner as another example for the two-stage learners. The
results are displayed in Fig. 4. As expected, for both learn-
ers, the best lower bounds are closer to zero than the best
upper bounds for all ages, indicating that comorbidity has
no (large) negative effect on mortality (i.e., no large positive
effect on survival probability). However, given our data, we
cannot prove that comorbidity has an effect on mortality at
all. Further, we observe that the cross-environment bounds
help to tighten the bounds. In comparison, our two-stage
learners yield similar predictions to the naı̈ve plug-in learner,
indicating robust estimation. In sum, the results demonstrate
the applicability of our meta-learners to real-world data.

20 30 40 50 60 70 80
Age

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

C
AT

E

20 30 40 50 60 70 80
Age

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

C
AT

E

Bounds
CB: Env 1x2
CB: Env 2x1
WB: Env 1
WB: Env 2

Figure 4. Insights from real-world data: Effect of comorbidity on
mortality in COVID-19 patients in Brazil. Left: Estimated bounds
by naı̈ve plug-in learner. Right: Estimated bounds by our two-
stage meta-learners (here: WB-learner and CB-PI-learner).

7. Applicability to IV settings
Our meta-learners apply to any setting in which a discrete
instrumental variable (IV), E, is available, which does not
necessarily need to correspond to an environment indica-
tor. A prominent example are randomized controlled tri-
als (RCTs) with non-compliance. Note that RCTs with
non-compliance do not need multiple environments but can
have just a single environment. Then, E corresponds to
a randomized treatment prescription (e.g., by a physician)
and A indicates whether the patient complied and followed

the treatment decision. Here, the randomized treatment as-
signment automatically renders E independent of potential
unobserved confounders, thus fulfilling Assumption 3.2.

In settings with discrete IVs, there is again rich literature
on CATE estimation using point estimates (Syrgkanis et al.,
2019; Frauen & Feuerriegel, 2023). There are also different
efforts aimed at the derivation of bounds (Swanson et al.,
2018), but methods for estimation, such as meta-learners,
are scarce. To the best of our knowledge, our work is the
first to propose meta-learners for estimating such bounds.

8. Discussion
Conclusion: In this paper, we derive tight bounds for partial
identification of the CATE with data from multiple environ-
ments by showing the relation of our setting to IV settings.
Further, we propose novel model-agnostic meta-learners for
estimating these bounds from observational data. We find
that the cross-environment bounds are especially helpful for
learning tight bounds in areas where the treatment assign-
ment policy varies clearly between the environments, and
that the performance ranking of the respective meta-learners
depends on the data generating process. Hence, our pro-
posed meta-learners provide a valuable tool for tailoring the
estimation of bounds for the CATE with data from multi-
ple environments to the respective properties of different
settings.

Future directions: We envision that our ideas could be
used to develop meta-learners in other partial identification
settings, for which effective estimation procedures are often
lacking. Examples are meta-learners for settings with con-
tinuous instruments, leaky mediation, or sensitivity analysis.
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Impact statement
We acknowledge our meta-learners build on formal assump-
tions that are standard in the causal inference literature.
Hence, we recommend a cautious and responsible use of
our meta-learners to ensure that the assumptions are met, so
that reliable inferences can be made. Even though we aim
to relax standard assumptions such as unconfoundedness,
we still implicitly assume that the environmental variable E
acts as an instrument, i.e., is not correlated with any poten-
tial unobserved confounders. This assumption can generally
not be tested and must be justified by domain knowledge.
However, we note that there are many real-world scenar-
ios where this assumption holds, for example, RCTs with
non-compliance (Finkelstein et al., 2012).

Notwithstanding, our work aims to relax the (strict) assump-
tions of prior research by allowing for partial identification
(instead of point identification). This can help to make
causal inference more robust. As such, it can even help to
improve the reliability of inferences for marginalized groups.
For example, marginalized groups are different from the rest
of the population in terms of their socio-economic status,
which is a known confounder in medical studies, so that
causal inference that ignores such confounder may be bi-
ased, while our meta-learners can help to make more reliable
inferences.
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A. Extended related work
Causal inference using multiple datasets: A related stream of literature focuses on causal inference from multiple datasets
and can be roughly separated into works that leverage (i) randomized or (ii) purely observational data.

Works from (i) often leverage small amounts of randomized data in combination with observational data to obtain unbiased
causal effect estimates. For example, Kallus et al. (2018) and Hatt et al. (2022) use the observational data to obtain a biased
CATE estimator, which is then subsequently debiased using the randomized data. Similar approaches exist for long-term
effects (Athey et al., 2020; Ghassami et al., 2022; Imbens et al., 2022). An estimation theory for more general causal effects
has been proposed by Jung et al. (2023). Finally, bounds for causal effects have been derived by Zhang et al. (2022) and Ilse
et al. (2023). Note that all of these works require randomized data, while our paper relies on purely observational data.

Works from (ii) include invariant causal prediction methods (Peters et al., 2016; Heinze-Deml et al., 2018; Mooij et al.,
2020) that aim to discover the causal predictors of a target variable. This idea has been adapted to CATE estimation to find a
valid adjustment set of covariates (Shi et al., 2021). Bareinboim & Pearl (2016) proposed a theory for identifiability and
transportability of causal effects across different environments under potential selection bias. Other works that leverage
observational datasets from different environments include transfer learning for CATE under unconfoundedness (Bica & van
der Schaar, 2022) and methods for detecting unobserved confounding (Karlsson & Krijthe, 2023). However, none of these
works learns bounds for the CATE under violations of assumptions.

Model-based CATE estimation: Another stream of literature focuses on adapting specific machine learning models for
CATE estimation. Examples include forest-based methods (Wager & Athey, 2018) and neural networks, which leverage
shared representations across response surfaces and propensity scores to improve finite-sample performance (Shi et al., 2019;
Curth & van der Schaar, 2021a). A complementary approach is to learn balanced representations that are unpredictable of
the treatment (Johansson et al., 2016; Shalit et al., 2017). These methods are in contrast to model-agnostic meta-learners,
which can be used with any arbitrary machine learning model.
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B. Proofs
B.1. Proof of Lemma 4.1

Proof. The result follows from decomposing the oracle response function into a factual and counterfactual part, which can
be bounded. That is,

µ̃a(x) = πe
a(x)E[Y (a) | X = x,A = a] + (1− πe

a(x))E[Y (a) | X = x,A ̸= a] (19)
= πe

a(x)µ
e
a(x) + (1− πe

a(x))E[Y (a) | X = x,A ̸= a] (20)
≤ πe

a(x)µ
e
a(x) + (1− πe

a(x))s2, (21)

where we used the definition of s1 and s2 as the support boundary of Y .

B.2. Proof of Theorem 4.2

Proof. Note that
τa1,a2

(x) = µ̃a1
(x)− µ̃a2

(x). (22)

Hence, Lemma 4.1 and Assumptions 3.1 and 3.2 imply that

b−e,j(x) ≤ τa1,a2(x) ≤ b+e,j(x) (23)

for all environment e and j. Hence, taking the minimum and maximum over e and j yields the result.

B.3. Proof of Theorem 5.1

Proof. Without loss of generality, we show the result for the upper bounds. For lower bounds, the proof works analogously
by interchanging the support points s1 and s2. We proceed by calculating E[B̂+

e,j | X = x] for each pseudo-outcome B̂+
e,j ,

which corresponds to an oracle second stage regression. We start with the WB-learner, which uses pseudo-outcomes defined
via

B̂+WB
e = 1{E = e} (AY + (1−A)s2 − (1−A)Y −As1) . (24)

Hence, we obtain

E[B̂+WB
e | X = x,E = e] = E[AY | X = x,E = e] + s2E[1−A | X = x,E = e] (25)

− E[(1−A)Y | X = x,E = e]− s1E[A | X = x,E = e] (26)

= πe
1(x)µ

e
1(x) + πe

0(x)s2 − πe
0(x)µ

e
0(x)− πe

1(x)s1 = b+e,e(x). (27)

as desired. The CB-RA-learner uses pseudo-outcomes defined via

B̂+RA
e,j = 1{E = e}

(
Ỹ +
e,j − r̂+j (x)

)
+ 1{E = j}

(
r̂+e (x)− Ỹ +

e,j

)
(28)

+ 1{E ̸= e}1{E ̸= j}
(
r̂+e (x)− r̂+j (x)

)
. (29)

Taking expectation conditional on X = x yields

E[B̂+RA
e,j | X = x] = δe(x)

(
E[AY | X = x,E = e] + s2E[1−A | X = x,E = e]− r̂+j (x)

)
(30)

+ δj(x)
(
r̂+e (x)− E[(1−A)Y | X = x,E = j]− s1E[A | X = x,E = j]

)
(31)

+ (1− δe(x)− δj(x))
(
r̂+e (x)− r̂+j (x)

)
(32)

= δe(x)
(
πe
1(x)µ

e
1(x) + πe

0(x)s2 − r̂+j (x)
)

(33)

+ δj(x)
(
r̂+e (x)− πj

0(x)µ
j
0(x)− πj

1(x)s1

)
(34)

+ (1− δe(x)− δj(x))
(
r̂+e (x)− r̂+j (x)

)
. (35)

Hence, whenever r̂+e (x) = r+e (x) = πe
1(x)µ

e
1(x) + πe

0(x)s2 and r̂+j (x) = r+j (x) = πj
0(x)µ

j
0(x)− πj

1(x)s1, we obtain

E[B̂+RA
e,j | X = x] = δe(x)b

+
e,j(x) + δj(x)b

+
e,j(x) + +(1− δe(x)− δj(x))b

+
e,j(x) = b+e,j(x). (36)
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The pseudo-outcomes of the CB-IPW-learner are defined via

B̂+IPW
e,j =

1{E = e}
δ̂e(x)

(AY + (1−A)s2)−
1{E = j}
δ̂j(x)

((1−A)Y +As1) , (37)

which yields

E[B̂+IPW
e,j | X = x] =

δe(x)

δ̂e(x)
(E[AY | X = x,E = e] + s2E[1−A | X = x,E = e]) (38)

− δj(x)

δ̂j(x)
(E[(1−A)Y | X = x,E = j] + s1E[A | X = x,E = j]) (39)

=
δe(x)

δ̂e(x)
(πe

1(x)µ
e
1(x) + πe

0(x)s2)−
δj(x)

δ̂j(x)

(
πj
0(x)µ

j
0(x) + πj

1(x)s1

)
. (40)

Hence, δ̂ℓ(x) = δℓ(x) implies
E[B̂+IPW

e,j | X = x] = b+e,j(x). (41)

Finally, the pseudo outcomes of the CB-DR-learner are defined via

B̂+DR
e,j = B̂+IPW

e,j +

(
1− 1{E = e}

δ̂e(x)

)
r̂+e (x)−

(
1− 1{E = j}

δ̂j(x)

)
r̂+j (x). (42)

Again, by taking expectation conditional on X = x, we obtain

E[B̂+DR
e,j | X = x] =

δe(x)

δ̂e(x)
(πe

1(x)µ
e
1(x) + πe

0(x)s2)−
δj(x)

δ̂j(x)

(
πj
0(x)µ

j
0(x) + πj

1(x)s1

)
(43)

+

(
1− δe(x)

δ̂e(x)

)
r̂+e (x)−

(
1− δj(x)

δ̂j(x)

)
r̂+j (x). (44)

(45)

Under δ̂ℓ(x) = δℓ(x), this reduces to

E[B̂+DR
e,j | X = x] = (πe

1(x)µ
e
1(x) + πe

0(x)s2)−
(
πj
0(x)µ

j
0(x) + πj

1(x)s1

)
+ 0 r̂+e − 0 r̂+j (46)

= b+e,j(x). (47)

Under r̂+e (x) = r+e (x) = πe
1(x)µ

e
1(x) + πe

0(x)s2 and r̂+j (x) = r+j (x) = πj
0(x)µ

j
0(x)− πj

1(x)s1, the expression reduces to

E[B̂+DR
e,j | X = x] =

(
1 +

δe(x)

δ̂e(x)
− δe(x)

δ̂e(x)

)
(πe

1(x)µ
e
1(x) + πe

0(x)s2)−

(
1 +

δj(x)

δ̂j(x)
− δj(x)

δ̂j(x)

)(
πj
0(x)µ

j
0(x) + πj

1(x)s1

)
(48)

= b+e,j(x), (49)

which proves the result.
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C. Additional Insights
In Figures 3 and 4, we plot the learned bounds for (i) both within-environment bounds and (ii) both cross-environment
bounds to demonstrate the general performance of our learners. However, in practice, we are usually only interested in the
tightest bounds as stated in Theorem 4.2. Hence, for completeness, we plot the learned tightest bounds from Figures 3 and
4 separately in Figures 5 and 6. We observe the same patterns for the tightest bounds as for all possible bounds: For the
synthetic dataset, the CB-DR-learner results in valid and slightly more stable estimates with lower variation between runs
compared to the naı̈ve plugin learner.

For the real-world dataset, where we cannot compare with ground-truth bounds, both selected learners yield similar estimates.
Also, in both considered settings, almost solely our proposed cross-environment bounds result in the tightest bounds, while
the within-environment bounds are not helpful for yielding informative bounds. Here, this implies that one should focus
on proper estimation of the CB-bounds, which can be done by our different proposed two-stage CB-meta-learners. In
sum, this demonstrates that both contributions, (i) the bounds making use of data from different environments, and (ii) the
meta-learners, are useful for learning informative bounds robustly.
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Figure 5. Comparison of estimation methods for tightest predicted bounds based on synthetic dataset 2 (predicted bounds mean± 3std
over 5 runs). Left: Oracle bounds for within- (WB) and cross- (CB) environments. Center: Estimated bounds by the naı̈ve plug-in
learner. Right: Estimated bounds by our two-stage meta-learners (here: WB-learner with CB-DR-learner).
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Figure 6. Insights from real-world data: Effect of comorbidity on mortality in COVID-19 patients in Brazil. Left: Estimated tightest
bounds by naı̈ve plug-in learner. Right: Estimated tightest bounds by our two-stage meta-learners (here: WB-learner and CB-PI-learner).
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D. Implementation details
Model architecture and parameters: For our experiments, we adapt the implementations used in previous works for
evaluating meta-learners for point-identified CATE estimation (Curth & van der Schaar, 2021a;b). Importantly, we use
similar network architectures and parameter settings for all meta-learners. Thus, performance differences are decoupled
from model choice and can be explained by the meta-learners as the source of gain. In detail, we use the software
package https://github.com/AliciaCurth/CATENets and all of the default settings of the PyTorch CATE
meta-learners provided in this package. Here, the networks for the first- and second-stage models are simple MLPs with
2 hidden layers and hidden neuron size of 100. For the nuisance function estimation of our naı̈ve plugin estimator, we
implement similar architectures.

Implementation: By using our pseudo-outcomes for bound estimation as described in Sec. 5.2, we can learn the bounds as
follows: For the CB-learners, we define the pseudo-outcomes of Eq. (12) for each possible environment combination e, j
and for upper and lower bounds, respectively. Then, by simply replacing the factual outcomes with the pseudo-outcomes,
and the treatment assignment with the environment assignment, we can train the respective two-stage-learners by using
the above-mentioned implementation of the CATE meta-learners. We train an own meta-learner for each environment
combination and each upper and lower bound. For the WB-learner, we simply directly learn models to predict the pseudo-
outcomes of Eq. (11) for each environment e, and upper and lower bound, respectively. We provide a wrapper module for
our bound meta-learners in our code.3

3https://github.com/JSchweisthal/BoundMetaLearners
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E. Details regarding simulated data
Data-generating process: For our synthetic dataset 1, we simulate an observed confounder X ∼ Uniform[−1, 1] and an
unobserved confounder U ∼ Uniform[0, 1]. We define δ(x) = P(E = 1 | x) = σ(x), where σ(·) denotes the sigmoid
function σ(x) = 1

1+exp(−x) . Then, we simulate the environment E via

E = 1 | X = x ∼ Bernoulli (p = δ(x))) . (50)

We then sample our treatment assignments from the environment-specific propensity scores as

A = 1 | X = x, U = u,E = 1 ∼ Bernoulli (p = σ (2.5x+ u)) , (51)

and
A = 1 | X = x, U = u,E = 0 ∼ Bernoulli (p = (1− σ (2.5x+ u))) . (52)

We define the treatment effect as
τ(x) =

1

3
x. (53)

Finally, we simulate a continuous outcome

Y = τ(X)A+
1

3
(sin(12X) +X) +

1

60
cos(2X) + U + 0.3ε, (54)

where ε ∼ Laplace(0, 1).

For our synthetic dataset 2, we model a more complex environment probability. Here, we model δ(x) = 0.15 sin(5x) + 0.5,
while keeping the remaining process unchanged, such that we can isolate and show the effect of the environment probability
on the performance of the different meta-learners.

To create the simulated data used in Sec. 6, for both datasets, we sample n = 10000 from the data-generating process above.
We then split the data into train (70%), val (10%), and test (20%) sets.
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F. Details regarding real-world data
We perform a case study using a dataset with COVID-19 hospitalizations in Brazil across different regions (Baqui et al.,
2020). We are interested in predicting the effect of comorbidity on the mortality of COVID-19 patients. For the environments,
we use the regions of the hospitals in Brazil, which are split into North and Central-South. As observed confounders, we
include age, sex, and ethnicity. Further, we exclude patients younger than 20 or older than 80 years. To define comorbidity
as a binary variable, we define comorbidity as 1 if at least one of the following conditions were diagnosed for the patient:
cardiovascular diseases, asthma, diabetes, pulmonary disease, immunosuppression, obesity, liver diseases, neurological
disorders, renal disease. We then split the data into train (70%), val (10%), and test (20%) sets. For training, we use the
same settings as reported in Appendix D.
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