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ABSTRACT

The standard active learning setting assumes a willing labeler, who provides labels1

on informative examples to speed up learning. However, if the labeler wishes to be2

compensated for as many labels as possible before learning finishes, the labeler3

may benefit from actually slowing down learning. This incentive arises for instance4

if the labeler is to be replaced by the ML model, once it is learned. In this paper,5

we initiate the study of learning from a strategic labeler, who selectively abstains6

from labeling to slow down learning. We first prove that strategic abstention can7

prolong learning, and propose novel complexity measures to analyze the query cost8

of the learning game. Next, we develop a near-optimal deterministic algorithm,9

prove its robustness to strategic labeling, and contrast it with other active learning10

algorithms. We also provide extensions that encompass other learning setups/goals.11

Finally, we characterize the query cost of multi-task active learning, with and12

without abstention. Our first exploration of strategic labeling aims to add to our13

theoretical understanding of the imitative nature of ML in human-AI interaction.14

1 INTRODUCTION15

Over the past few years, the rapid growth of Machine Learning (ML) capabilities has raised the16

possibility of wide-ranging automation, and consequent worker replacement. Taking a step back from17

when these ML models are phased in, we ask a basic question on how they first come about.18

Where will the training data for these ML models come from?19

In many industries, domain-specific knowledge is required to perform the job. Much of this expertise20

is proprietary (e.g. as trade secrets), and not made publicly available (e.g. on the internet). Thus, for21

these industries, the answer to our question is paradoxically that: the training data can only come22

from the workers themselves. Evidently, at this point, we arrive at a clear conflict of interest.23

On the one hand, corporations wishes to automate tasks through ML models. On the other hand, the24

data needed to train these models can only come from the domain experts — the workers in this case,25

who know full well that these models, when trained, will replace them at their jobs. Thus, this line of26

thinking raises the possibility that we may see domain experts label to actually slow down learning,27

and in this case, to delay replacement and be compensated for as many labels as possible before then.28

Phenomenon: We point out that the conflict of interest described above applies more broadly29

whenever the labeler wishes to maximize payment from labeling. Consider more generally the30

interaction between a data provider (e.g. a data labeling company) and a learner (e.g. company31

needing ML models). The more informative the data labeled by the provider, the faster the learner32

learns, the fewer the examples the learner needs to query the provider, and the lower the provider’s33

total payment. To comment on the generality of this phenomenon, the automation setting is one (of34

many) instance(s) where this phenomenon arises: the labelers wish to maximize their payment from35

labeling before the models are fully trained and render their expertises redundant.36

In this paper, we study the learning game that arises when the labeler and learner’s objective are37

at odds. The learner wants to learn quickly, but the labeler wants to learning slowly. This departs38

from the standard assumption that the labeler readily labels any example queried, especially the39

informative ones. We term this game the Human-AI Substitution game, since typically the labeler40
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is human, and the more the model is trained, the less the learner needs the labeler (to label). To study41

the rate of learning, we turn to learning theory to analyze how the labeler can slow down learning.42

1.1 ACTIVE LEARNING WITH A SIMPLE TWIST43

We begin our investigation by adopting the standard active learning setup (Hanneke et al., 2014), with44

the only twist that the labeler aims to maximize the learner’s query cost. Since we know of no prior45

work on this, we focus on perhaps the most fundamental setting: exact learning through membership46

queries (Angluin, 1988; Hegedűs, 1995). As we will see, this setup is fairly general, and one may use47

standard reductions to relate the PAC and noisy setting to this setting.48

Setup of the Learning Game:49

• The learner is interested in learning a hypothesis h∗ ∈ H ⊂ (X → {+1,−1}) in hypothesis50

classH over a finite pool of unlabeled data X , collected by the learner.51

• The labeler knows h∗.52

• The learner (adaptively) queries the labeler on unqueried example x.53

• The labeler (adaptively) responds using labeling strategy T with response T (x) ∈54 {
h∗(x),⊥

}
, where ⊥ denotes abstention.55

In this paper, we model the labeler as being able to strategically abstain on queried data, to slow down56

learning. Being the domain expert with specialized expertise, the labeler is assumed to be able to use57

this leverage to selectively decide which data points to label. As noted in Section 1, some data points58

are particularly informative, and naturally the labeler would wish to decline labeling these so that59

more data would need to be labeled. We also add that this strategy of slowing down the transfer of60

expertise is not a novel conception. It has been well-documented that in apprenticeships, for instance,61

teachers (master) strategically slow down the training of their apprentices (Garicano & Rayo, 2017).62

The interaction finishes when the termination condition is met, or the learner’s querying strategy63

halts. Based on the learner’s desired learning outcome, the termination condition is defined as when64

h∗ ∈ H is identified, which we formalize in the following section. If the termination condition is65

met, the labeler gets a payoff of 1 for every labeled data provided. If the termination condition is not66

met, the labeler gets a payoff of 0. In this game, the learner aims to minimize the total payoff needed67

to learn h∗, while the labeler aims for the opposite and to maximize the total payoff.68

Guaranteeing Learning Outcome: Before proceeding, we note that the labeler can always satisfy69

the learner’s objective — by using the non-strategic labeling strategy T (x) = h∗(x) as in the70

standard active learning setup. Since the labeler can realize the learning outcome, we assume that the71

learner has this guarantee (of the learning outcome) written into the contract; no payment is awarded72

otherwise. Indeed, if the labeler cannot guarantee the learning outcome, it seems unlikely that the73

learner would have chosen to contract the labeler in the first place.74

Prolonging Learning through Abstention: The key tension in this interaction is that the labeler75

has to label in order to be paid, but any labeling results in less data that subsequently need to be76

labeled. With the labeler only allowed to abstain besides labeling, it is natural to ask: can abstention77

significantly enlarge the query complexity? Our investigation is motivated by the affirmative answer78

below, where we find that abstention can exponentially enlarge query complexity in some settings.79

Proposition 1.1 (Abstention induces exponentially higher query complexity). There exists a hypothe-80

sis classH, instance domain X such that: the query complexity is O(log |X |) if the labeler is unable81

to abstain, and Ω(|X |) for any learning algorithm if the labeler is allowed to abstain.82

2 THE MINIMAX LEARNING GAME83

2.1 REPRESENTATION OF THE LEARNING GAME STATE84

To study this learning game, we first develop an useful, succinct representation of the game state,85

which is a key contribution of our paper and allow us to formalize the termination condition/protocol.86

We start by defining the canonical state representation, the version space (VS) (Mitchell, 1982).87
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Protocol 1 Human-AI Substitution game inter-
action protocol

Require: Instance domain X , hypothesis class
H, queried examples SX , queried dataset S

1: V ← H, SX ← ∅, S ← ∅
2: Nature chooses some h∗ ∈ H given to the

labeler ▷ throughout, labeler maintains
that h∗ is identifiable: h∗ ∈ E(V, SX).

3: while |E(V, SX)| ≥ 2 do
4: Learner adaptively queries example x ∈

X \ SX using learning algorithm A
5: Labeler adaptively gives label feedback

y ∈
{
h∗(x),⊥

}
using labeling oracle T

6: Learner updates the VS: V ←
V [(x, y)] ▷ denote V [(x, y)] ={
h ∈ V : h(x) = y

}
7: SX ← SX ∪ {x}, S ← S ∪

{
(x, y)

}
8: if |E(V, SX)| = 1 then
9: Learner makes total payment to the la-

beler:
∑

(xi,yi)∈S 1 {yi ̸=⊥}

H
X

x1 x2 x3

h1 +1 −1 +1
h2 −1 −1 +1
h3 +1 +1 −1
h4 −1 +1 −1
h5 +1 +1 +1

Table 1: Consider an example hypothesis class
H = {h1, h2, h3, h4, h5} and instance space
X = {x1, x2, x3}. The interaction history is
S =

{
(x1,⊥)

}
. Let us use SX to index just

the instances in S, here SX = {x1}. Un-
der S, we have that the VS (Definition 2.1),
V = H[S] = {h1, h2, h3, h4, h5}.
We observe that h1 and h2 make identical pre-
dictions on X \ SX = {x2, x3}. Likewise, h3

and h4 make identical predictions on X \ SX .
Therefore, effective version space is actually
E(V, SX) = {h5}. If the game reaches this
stage, the learner can already identify that the
target h∗ must be h5.

Definition 2.1. Given a queried dataset S and a set of classifiers V , define version space V [S] =88 {
h ∈ V : ∀(x, y) ∈ S ∧ y ̸=⊥, h(x) = y

}
as the subset of classifiers in V consistent with S.89

Some queried examples in S will not have binary labels, due to abstention. And so, we observe90

that certain hypotheses may be consistent, but indistinguishable from other hypotheses, even if all91

the remaining unqueried data is labeled. This motivates defining a new notion of identifiability of a92

hypothesis under queried dataset S. Let the set of all queried examples be SX =
{
x : (x, y) ∈ S

}
.93

Definition 2.2. Given the set of queried examples and their label responses S, and the queried94

examples SX , classifier h ∈ H is said to be identifiable with respect to S if:95

• h is consistent with S, h ∈ H[S].96

• for all other consistent h′ ∈ H[S]: h′(X \ SX) = h(X \ SX) =⇒ h′ = h, where for97

brevity we denote h1(U) = h2(U) ⇐⇒ ∀x ∈ U � h1(x) = h2(x).98

With this, we may develop a new representation of the state of the game, effective version space (E-99

VS). The E-VS is a refinement of VS, and comprises of only identifiable models given the examples100

queried. Please see Table 1 for an illustration.101

Remark: The key insight here is that abstention can in fact reveal information. This is despite that102

abstention is used by the labeler precisely to prevent releasing information about h∗. The reason103

why one can gleam information from labeler’s abstention is that hypotheses could be rendered104

unidentifiable by abstention on a data point, and thus be ruled out without needing any further105

queries. We operationalize this insight to develop the effective version space representation, which106

we formalize below.107

Definition 2.3. Given a set of classifiers V and a set of examples SX , define108

E(V, SX) =
{
h ∈ V : ∀h′ ∈ V \ {h} : h′(X \ SX) ̸= h(X \ SX)

}
as the effective version space with respect to V and SX .109

Definition 2.4. h∗ ∈ H is identified by queried dataset S if the E-VS, E(H[S], SX) = {h∗}.110

With the interaction termination condition defined, we now formalize the interaction in Protocol 1.111
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2.2 THE MINIMAX LEARNING GAME112

In this paper, we analyze the minimax query complexity — that of the worst-case h∗ ∈ H to learn113

under Protocol 1. Towards this, we formulate the minimax learning game, where both the learner114

queries and the labeler labels adaptively, depending on the interaction in previous rounds.115

CC(V, SX) =


−∞ E(V, SX) = ∅
0 |E(V, SX)| = 1

minx∈X\SX
maxy∈Y

(
1(y ̸=⊥) + CC(V [(x, y)], SX ∪ {x})

)
|E(V, SX)| ≥ 2

Here, the termination states are defined as either |E(V, SX)| = 1 (a hypothesis is identified and the116

learning outcome is met), or E(V, SX) = ∅ (no hypothesis can be identified). In the case of non-117

identifiability, we use a base-case payoff of −∞ to encode that the labeler must ensure identification.118

As noted in Section 1, the labeler will never end up in such a state, because a positive payoff can119

always be achieved. There is at least one strategy in Th∗ , namely T = h∗, that results in a positive120

payoff. Thus, the labeler’s minimax labeling strategy in this game must be identifiable, as only these121

strategies lead to a positive payoff. We now turn to formalizing what an identifiable strategy is.122

Definition 2.5. Given h ∈ H, define the set of labeling oracles consistent with h, as:

Th = {T : X → {+1,−1,⊥} |∀x ∈ X s.t T (x) ̸=⊥, T (x) = h(x)}.

For subset SX ⊆ X , let T (SX) =
{
(x, T (x)) : x ∈ SX

}
be the labeled examples provided by123

labeling oracle T on the examples SX .124

Definition 2.6. A labeling strategy T ∈ Th is an identifiable oracle if the VS,H[T (X )] = {h}.125

In the learning game, the labeler’s strategy is some labeling oracle, while the learner’s strategy corre-126

sponds to some deterministic, querying algorithm: A : (X × Y)∗ → X , where Y = {+1,−1,⊥}.127

Define CCA,T (V, SX) to be the learning game under querying strategy A and labeling strategy T .128

The key result of this subsection is that the game value CC(H, ∅) can serve as a useful measure129

of minimax query complexity. CC(H, ∅) lower bounds the worst-case query complexity of any130

deterministic learning algorithm in Protocol 1.131

Proposition 2.7. For any deterministic, exact learning algorithm A,

max
h∈H,T∈Th

CCA,T (H, ∅) ≥ CC(H, ∅)

This means that for every exact learning algorithmA, there is some worst-case labeling oracle Th that132

induces at least CC(H, ∅) labeled queries by A. Please see Appendix C for all proofs in this section.133

3 E-VS BISECTION ALGORITHM ANALYSIS134

In this section, we design an efficient algorithm based on E-VS bisection, Algorithm 2, which we135

prove achieves query complexity O(CC(H, ∅) ln |H|). Proving this guarantee allows us to use the136

lower bound result, Proposition 2.7, from the previous section to conclude that Algorithm 2’s minimax137

query complexity is optimal up to log factors. Towards analyzing the algorithm performance (and138

inspired by a related measure in Hanneke (2006) for the non-abstention setting), we introduce a new139

complexity measure, GIC, that will allow us to bridge Algorithm 2’s performance to CC.140

Definition 3.1. GivenH,X , define the global identification cost of version space V , instance set SX

and label cost c:

GIC(V, SX) = min{t ∈ N : ∀T : X \ SX → {+1,−1,⊥} ,

∃Σ ⊆ X \ SX s.t.
∑
x∈Σ

c(T (x)) ≤ t ∧ |E(V [T (Σ)], SX ∪ Σ)| ≤ 1}.

Intuitively, GIC represents the worst-case sample complexity of a clairovyant querying algorithm141

that knows ahead of time the labeling oracle that is used by the labeler.142

The key lemma behind Algorithm 2 is that there always exists a point that significantly bisects the143

current E-VS. This justifies greedily querying the point that maximally bisects the E-VS. The lemma144

below shows this results in an E-VS size reduction of at least a constant
(
1− 1

GIC(V,SX)

)
factor.145
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Algorithm 2 E-VS Bisection Algorithm

Require: Data pool X , hypothesis classH
1: V ← H, S ← ∅ ▷ VS, queried dataset
2: while

∣∣E(V, SX)
∣∣ ≥ 2 and SX ̸= X do

3: Query: ▷ Maximal E-VS bisection
point

x = argmin
x∈X\SX

max
y∈{−1,+1}

∣∣E(V, SX)[(x, y)]
∣∣

4: Labeler T provides label response: y ∈
{−1,+1,⊥}

5: S ← S ∪
{
(x, y)

}
6: if y ̸=⊥ then
7: V ← V [(x, y)]
8: return h, the unique element in E(V, SX)

Algorithm 3 Bisection Point Search Sub-routine

Require: Unqueried examples U = X \ SX ,
abstained examples S⊥, Version Space V ,
sampling oracle O

1: for sample h ∼ O(V ) do
2: Construct Z1 =

{
(x,¬h(x)) : x ∈ S⊥},

Z2 =
{
(x, h(x)) : x ∈ X \ S⊥}

3: Run C-ERM to obtain: ĥ ∈
argmin

{
err(h′, Z1) : h

′ ∈ H, err(h′, Z2) = 0
}

4: if ĥ ̸= h then continue
5: else ▷ h ∈ E(V, SX) in this case
6: r−x ← r−x +1 if h(x) = −1 else r+x ←

r+x + 1 for x ∈ U , n← n+ 1
7: return x∗ = argminx∈U |r+x /n− r−x /n|

Lemma 3.2. For any V, SX such that GIC(V, SX) is finite, ∃x ∈ X \ SX such that:146

max
y∈{−1,+1}

(
|E(V [(x, y)], SX ∪ {x}))| − 1

)
≤ (|E(V, SX)| − 1)

(
1− 1

GIC(V, SX)

)
.

To analyze the algorithm’s query complexity, we lower bound CC(V, SX) using GIC(V, SX).147

Lemma 3.3. For any V ⊂ H and SX ⊂ X : GIC(V, SX) ≤ CC(V, SX).148

With this, we can prove that Algorithm 2 a) has query complexity O(CC(H, ∅) ln |H|) b) identifies149

when h∗ is identifiable. Please see Appendix D for all the proofs.150

Theorem 3.4 (Algorithm 2’s query complexity guarantee). If Algorithm 2 interacts with a labeling151

oracle T , then it incurs total query cost at most GIC(H, ∅) ln |H|+ 1. Furthermore, if Algorithm 2152

interacts with an identifiable oracle T consistent with some h∗ ∈ H, then it identifies h∗.153

3.1 ACCESSING THE E-VS154

Algorithm 2 may be viewed as the E-VS variant of the well-known, VS bisection algorithm (Tong &155

Koller, 2001), an “aggressive” active learning algorithm that greedily queries the point that maximally156

bisects the VS. The canonical approach for accessing the VS is via sampling, by assuming access157

to a sampling oracle O. For example, if H is linear, the VS is a single polytope and one can use a158

polytope sampler O to evaluate and search for the point x that maximally bisects the VS.159

E-VS Structure: Maximal E-VS bisection point search is less straightforward by contrast. The160

following structural lemma shows that there exists a linear setting with X and S such that the E-VS161

comprises of an exponential number of disjoint polytopes. This means that it is computationally162

infeasible to access the E-VS as polytopes, if one is to use the sampling approach as in VS-bisection.163

Proposition 3.5. There exists an instance spaceX ⊂ Rd and query response S such that the resultant164

E-VS comprises of an exponential in d number of disjoint polytopes.165

Towards tractable maximal E-VS bisection point search: To overcome this issue, we develop a166

novel, oracle-efficient method for accessing the E-VS. We observe that a structural property of the167

E-VS can be used to check membership given access to a constrained empirical risk minimizaton168

(C-ERM) oracle (Dasgupta et al., 2007). This allows us to design an oracle-efficient subroutine,169

Algorithm 3 for any general hypothesis classH, which we prove is sound.170

Definition 3.6. A constrained-ERM oracle for hypothesis classH, C-ERM, takes as input labeled171

datasets Z1 and Z2, and outputs a classifier: ĥ ∈ argminh′∈H
{
err(h′, Z1) : err(h

′, Z2) = 0
}

,172

where for dataset Z, err(h′, Z) =
∑

(x,y)∈Z 1(h
′(x) ̸= y).173

Proposition 3.7. Given some h ∈ H and access to a C-ERM oracle, one can verify h ∈ E(V, SX)174

with one call to the C-ERM oracle.175
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Figure 1: Geometric view of the linear hypothesis class in dual space (as in Tong & Koller (2001)),
with examples as hyperplanes and hypotheses as cells, illustrates: (i) Abstention on example x1

(hyperplane in black) renders hypotheses wi1 and wi2 (cells of the same color) indistinguishable from
each other. In this way, abstentions can carve up the VS (single polytope) into multiple polytopes, as
in Proposition 3.5. (ii) In the approximate identifiability game (Subsection 4.1), if x1 is not in pool
Xm, then it induces clusters of merged {wi1, wi2} for i ∈ [4]. The goal then is to only identify up to
clusters (e.g. the blue cluster of {w21, w22}), instead of the exact hypothesis (e.g. cell w21).

3.2 COMPARING WITH THE VS BISECTION ALGORITHM176

Labeling without identifiability: An advantage of the E-VS algorithm is its robustness to strategic177

labeling. Theorem 3.4 states that the E-VS algorithm has provable guarantees, even when the labeler178

does not guarantee identification. By contrast, VS-bisection is not robust this way. To concretely179

compare the two, we construct a learning setup without identification, wherein Algorithm 2 incurs a180

much smaller number of samples.181

Theorem 3.8. There exists aH and X such that the number of labeled examples queried by the E-VS182

bisection algorithm is O(log |X |), while the VS bisection algorithm queries Ω(|X |) labels.183

Remark: The key insight is that, by optimistically assuming identifiability (even when this is not184

guaranteed), Algorithm 2 can minimize the number of examples queried. It does so by using the185

E-VS cardinality to detect when the labeling strategy is non-identifiable and halt the interaction.186

3.3 COMPARING WITH EPI-CAL187

EPI-CAL (Huang et al., 2016) is a “mellow” active learning algorithm that can handle labeler absten-188

tion in a streaming setting, wherein the learner cannot control the query order (unlike Algorithm 2),189

and performs PAC learning (Valiant, 1984). Despite the two differences, we can nevertheless analyze190

what happens when the labeler can strategically abstain. Our finding is that a strategic labeler can191

again hold up learning and induce an arbitrarily large query complexity, when the data pool size192

is not finite and the query order cannot be decided by the learner. This may be evidenced in the193

simple setting of learning thresholds, where we note that the stream samples are drawn i.i.d, and not194

adversarially, from a continuous distribution satisfying a standard regularity condition.195

Proposition 3.9. Fix some constant ϵ > 0. Consider a PAC-learning task, where the learner seeks to196

learn a 1D threshold with at most ϵ−risk with respect to continuous distribution D. For any m i.i.d197

samples with m sufficiently large and D probability density bounded away from 0, there is a labeling198

strategy under which EPI-CAL queries Ω(
√
m) labeled samples, with probability at least 1/2.199

Please refer to Appendix E for all proofs in these three subsections.200

4 EXTENSIONS TO OTHER LEARNING SETTINGS201

The prior sections have assumed that the labeler (e.g. data labeling company) is resourcefully202

providing non-noisy, labeled data that exactly identifies h∗. In this section, we examine a few ways203

in which the labeler (e.g. a human worker) may be imperfect in labeling, and extend our guarantees204

to show how the learner may learn in such settings.205
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4.1 APPROXIMATE IDENTIFIABILITY206

A relaxation of the goal of exact learning is PAC learning: learning some ĥ such that inaccuracy207

Prx∼D(ĥ(x) ̸= h∗(x)) ≤ ϵ, with probability (w.p.) greater than 1− δ on distribution D supported208

on X . This learning goal can arise when the learner wishes to relax the learning outcome/termination209

criterion, or wishes to weaken the assumption that the labeler knows h∗, to only knowing a fairly210

accurate hypothesis h′ ∈ H with Prx∼D(h
′(x) ̸= h∗(x)) ≤ ϵ.211

Reduction: To study the PAC setting, one may use the standard PAC to exact learning reduc-212

tion (Vapnik, 1999). PAC learning is equivalent to exact learning on a sub-sampled set, Xm ⊆ X , of213

m = O(VC(H)
ϵ (ln 1

ϵ + ln 1
δ )) i.i.d points from D (VC(H) denotes the VC dimension ofH).214

Then, Xm partitions H into clusters of equivalent hypotheses. Let the projection of H on Xm be215

H|Xm =
{
h(Xm) : h ∈ H

}
. For y ∈ H|Xm , a cluster C(y) of equivalent hypotheses may then be216

defined as C(y) =
{
h ∈ H : h(Xm) = y

}
. The reduction guarantees that, w.p. over 1− δ over the217

samples Xm, identifying h∗’s cluster C(h∗(Xm)) is sufficient for finding a hypothesis ĥ such that218

Prx∼D(ĥ(x) ̸= h∗(x)) ≤ ϵ.219

Approximate Identifiability: Using this reduction, we may analyze the query complexity of approx-220

imate identifiability in the resulting learning game. In this game, the learner sets the data pool to be221

Xm (can be much smaller than X ) and aims to only learn the cluster h∗ belongs to, C(h∗(Xm)).222

We demonstrate how our E-VS representation can be adapted to apply Algorithm 2 in this approximate223

identifiability game. We first note that the original E-VS, defined overH and Xm will no longer suffice224

as state representation. Consider some h ∈ H such that |C(h(Xm))| ≥ 2 with
{
h′, h

}
⊆ C(h(Xm)).225

Then, h(Xm) = h′(Xm)⇒ h′(Xm \ ∅) = h(Xm \ ∅), which results in the premature elimination226

of the entire C(h(Xm)) cluster at the very start.227

To address this, we define a refinement of E-VS, Xm-E-VS. This fix follows from observing that in228

this game, we should only consider non-identifiability with respect to hypotheses from other clusters.229

EXm

(V, SX) =
{
h ∈ V : ∀h′ ∈ V \

{
h̄ : h̄(Xm) = h(Xm), h̄ ∈ V

}
: h′(Xm \ SX) ̸= h(Xm \ SX)

}
With this, we note that the Xm-E-VS bisection algorithm attains analogous near-optimal guarantees.230

Corollary 4.1. Consider Algorithm 2 instantiated with data pool Xm and state representation Xm-E-231

VS. When interacting with a labeling oracle T , it incurs total query cost at most GIC(H, ∅) ln |H|+1.232

Furthermore, if the Xm-E-VS bisection algorithm interacts with an identifiable oracle T consistent233

with some h∗ ∈ H, then it identifies h∗.234

The only remaining consideration is how to efficiently search for the point that maximally bisects235

clusters in Xm-E-VS. Here, we show that we may adapt the membership check implemented in236

Algorithm 3 (with the data pool set to Xm) to check hypothesis membership in the coarser Xm-E-VS.237

That is, we still have an oracle-efficient way of accessing the Xm-E-VS, without needing to explicitly238

compute and iterate through the clusters.239

Proposition 4.2. h ̸∈ EXm

(V, SX) iff ĥ(Xm) ̸= h(Xm), where ĥ is the minimizer of the C-ERM240

output on Algorithm 3, Line 3 with X = Xm.241

4.2 NOISED LABELING242

In some cases, a labeler can make honest mistakes simply due to human error. We can model this by243

assuming noised queries (Castro & Nowak, 2008): querying example x returns h∗(x) w.p. 1− δ(x),244

and −h∗(x) w.p. δ(x). In this setup, we may use the common approach of repeatedly query a datum245

to estimate its label w.h.p. (e.g. as in Yan et al. (2016)). This approach thus reduces the noised-label246

setting to cost-sensitive exact learning, where each x incurs differing cost c(x) dependent on δ(x). In247

Appendix D, we prove the generalized version of the results in Section 3 that factors in example-based248

cost, showing that Algorithm 2 can be applied in this setting with near-optimal guarantees.249
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4.3 ARBITRARY LABELING250

Thus far, we have assumed a labeler who can (approximately) identify h∗. Here, we touch on when251

the labeler either does not know h∗ (h∗’s cluster), or myopically labels in a way that cannot guarantee252

the learning outcome. Since the labeler behaves arbitrarily, the learner now cannot be assured of any253

learning outcome guarantees. In this case, we note that the learner can use the E-VS to preemptively254

detect when the learning outcome cannot be realized, and halt the futile interaction. While the h∗255

is unknown, it is possible to detect when no hypothesis/cluster is learnable. This is when the E-VS256

is empty, certifying that the labeler cannot realize the learning outcome. Here, our Theorem 3.4257

provides guarantees on the maximum number of times that a non-identifiable oracle will be queried.258

Corollary 4.3 (of Theorem 3.4). Algorithm 2 guarantees bounded query complexity259

GIC(H, ∅) ln |H|+ 1 even when the labeling oracle is non-identifiabble.260

In closing, we note that our algorithm is sound in that if the labeler does turn out to be able to identify261

h∗, then our algorithm learns h∗. Thus, Algorithm 2 is both sample-efficient with respect to an262

identifiable labeler, and robust to a non-identifiable one. Please refer to Appendix F for more details263

on this section.264

5 MULTI-TASK LEARNING FROM A STRATEGIC LABELER265

Multi-task setting: In most jobs, workers in fact perform multiple roles. This motivates the study of266

multi-task exact learning from a strategic labeler, which we now outline:267

1. The learner is now interested in learning multiple h∗
i ∈ Hi, for tasks i ∈ [n]. The learner268

can query from instance domain X ⊆ ×n
i=1Xi, where Xi is the instance domain for task i.269

2. Labeler now provides multi-task labels y ∈ Yn = {+1,−1,⊥}n, and for the label cost:270

i) One natural extension of the single task payoff is: cone(y) = 1(∃i, yi ̸=⊥).271

ii) Another variant of the multi-task labeling payoff is: call(y) = 1(∀i, yi ̸=⊥).272

We are interested in asking: can the labeler use the multi-task structure to further amplify the query273

complexity? To answer this question, we relate the multi-task query complexity to that of single-task.274

Single-task setting:275

• Definition of Si
X : given queried data SX , define the queried data for task i, Si

X , as:276

Si
X = Xi \ (X \ SX)i, where (X \ SX)i =

{
x′ ∈ Xi : ∃x ∈ X \ SX , xi = x′}.277

In words, Si
X are examples in Xi, whose label can no longer be obtained. Note that in278

the multi-task setting, there may exist multiple points that can label some xi ∈ Xi. So279

abstention on one of those points does not necessarily mean that xi cannot be labeled.280

Example: X = {x11, x12} × {x21, x22}. SX =
{
[x11, x21], [x12, x22]

}
, then Si

X = {}281

for i = 1, 2. This is because it is still possible for the labeler to give labels on all points, i.e.282

x11, x22 through [x11, x22] and x12, x21 through [x12, x21].283

• Definition of Vi: given the current multi-task version space V , we can naturally define the284

single-task version space for task i as: (V )i = Vi = {hi : h ∈ V }285

5.1 UPPER BOUND286

To understand if multi-task structure can inflate query complexity, we upper bound the multi-task287

complexity in terms of the sum of the single-task complexities. Proving an upper bound would imply288

that the labeler cannot increase the query complexity through the multi-task structure. We find that289

upper bounds only arise under certain regularity assumptions. Thus, we first provide complementary290

negative results without these assumptions, showing settings where the labeler can amplify the291

multi-task query complexity. Please note that all proofs in this section may be found in Appendix G,292

where we also prove results in the non-abstention setting that may be of independent interest.293

Proposition 5.1. Under both label costs, there exists a non-Cartesian product version space V ⊆ H294

and query response S ⊆ (X × Y)∗ such that CC(Vi, S
i
X) ≥ 0 for all i, and: CC(V, SX) ≥295 ∑n

i=1 CC(Vi, S
i
X) + n− 1.296
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Remark: Below, we find that the choice of label cost matters in multi-task learning. If the (more297

generous) cone is used as label cost, the labeler can leverage this to increase the query complexity.298

Proposition 5.2. If the label cost is cone(y) = 1(∃i, yi ̸=⊥), there exists V and S such that299

CC(Vi, S
i
X) = 1, but CC(V, SX) = |X |. This implies that: CC(V, SX) >

∑n
i=1 CC(Vi, S

i
X).300

Through the two negative examples, we have that: in order for the labeler to be unable to amplify301

the multi-task query complexity, two necessary regularity conditions are a) the version space is a302

cartesian product b) the payoff cost is call (and cannot be cone). In the result below, we prove the two303

conditions are sufficient, providing a full characterization when the upper bound can be achieved.304

Theorem 5.3. For all V = ×i∈[n]Vi and SX ⊆ X , under labeling cost call(y) = 1(∀i, yi ̸=⊥) :305

CC(V, SX) ≤
∑n

i=1 CC(Vi, S
i
X).306

For the remainder of the section, we will prove results under the (more generous) label cost, cone.307

5.2 LOWER BOUND308

Through lower bounds, we illustrate that the multi-task version space structure can in fact speed up309

learning as well. The intuition is that the structure in V may make it so that the multi-task E-VS310

shrinks faster due to unidentifiability. The following negative example evidences this.311

Proposition 5.4. There exists a non-Cartesian product version space V and query response S such312

that CC(Vi, S
i
X) ≥ 0 for all i, but: CC(V, SX) < maxi∈[n] CC(Vi, S

i
X).313

Proposition 5.5. There exists a Cartesian product version space V and query response S with314

CC(V, SX) < 0 such that: CC(V, SX) < maxi∈[n] CC(Vi, S
i
X).315

Thus, identifiability (CC(V, SX) ≥ 0), and Cartesian product are needed to prove a lower bound.316

Theorem 5.6. For all V = ×i∈[n]Vi and SX ⊆ X , if CC(V, SX) ≥ 0, then: CC(V, SX) ≥317

maxi∈[n] CC(Vi, S
i
X).318

6 RELATED WORKS319

The theory of Active Learning (Hanneke, 2009) (AL) has a rich history and began with the study of320

realizable learning (Angluin, 1988; Hegedűs, 1995; Freund et al., 1997; Dasgupta, 2004; Dasgupta321

et al., 2005). To the best of our knowledge, we are the first to consider a labeler whose objective is322

the opposite of the learner: the labeler wants to maximize, and not minimize, the query complexity.323

Our work also initiates the study of this setup by focusing on the fundamental setting of realizable324

learning. In face of such a strategic labeler, we develop an active learning algorithm with near-optimal325

query complexity guarantees.326

Abstaining Labeler: The closest two papers to our work are Yan et al. (2016); Huang et al. (2016),327

who also study learning from a labeler that can abstain. In Yan et al. (2016), the labeler can abstain328

or noise, where the rate of an incorrect label/abstention is fixed apriori. Our work differs from that329

of Yan et al. (2016; 2015) in that the labeler can adaptively label (e.g. abstain) based on the full330

interaction history so far, thus allowing for more complex, sequential labeling strategies. In Huang331

et al. (2016), the labeler abstains when uniformed, and after a number of abstentions in a region,332

learns to label the region (an “epiphany”). Our setting differs in that the labeler does know the labels333

for all regions, but instead strategically abstains to enlarge query complexity.334

Other related AL works: Our technical results are inspired by the minimax results on exact learning335

in Hanneke (2006). The noisy setup we consider is similar to that of e.g. Castro & Nowak (2008).336

Our algorithm belongs the class of “aggressive” learning algorithms (Dasgupta, 2004; Golovin &337

Krause, 2010), which has been of interest for their sample-efficiency. As in (Sabato et al., 2013), we338

also study label-dependent cost. Please refer to Appendix I for further discussion on related works.339

7 DISCUSSION340

In this paper, we provide the first set of theoretical evidence that labelers can slow down learning,341

making even active learning algorithms sample-inefficient. With this, we explore and characterize the342
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resultant minimax learning game, in the single and multi-task setting. This theoretical investigation343

was motivated by the broader observation that a labeler’s objective may be at odds with the learner’s,344

which applies for instance in the setting where workers slow down model training to delay replacement345

and to maximize labeling payment before being replaced.346

Limitations/Future Work: Our work takes a first step into understanding what labelers can do to347

slow down learning. We hope that our results can pave the way for analyzing more complicated348

learning settings. One such setting is agnostic learning (Balcan et al., 2006; Dasgupta et al., 2007).349

Societal/Broader Impact: Zooming further out, workers have this incentive to slow down training350

— if they lack financial security after being replaced. ML offers tremendous potential in bettering351

our lives, automating away jobs people do not want to do. However, it can also automate away jobs352

that people do want to do. It is our hope that this paper adds to the important discussion on whether353

we should always automate, once we have the ability to automate, as well as the discussion on fair354

labeler compensation during the automation process (De Vynck, 2023).355
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A EXPERIMENTS419

p = 0.0 p = 0.15 p = 0.3

p = 0.45 p = 0.6

Figure 2: Plots the average number of examples queried by each algorithm across 50 randomly
generated instances, along with its standard deviation (shaded region). For this set of plots, the
labeling oracle is random (and may not ensure identifiability), with varying amount of abstention p.
In the plots, the lower the average, the better the algorithm (needing fewer samples).

p = 0.0 p = 0.15 p = 0.3

p = 0.45 p = 0.6

Figure 3: Plots the average number of examples queried by each algorithm across 50 randomly
generated instances, along with its standard deviation (shaded region). For this set of plots, the
labeling oracle is identifiable, with varying amount of abstention p. In the plots, the lower the average,
the better the algorithm (needing fewer samples).
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To supplement our theoretical minimax analysis in the main section, we examine the performance of420

three learning algorithms, E-VS bisection, VS-bisection and randomly query (a point), in “average-421

case” settings by randomly generating learning instances.422

Experiment Setup: We consider five sizes for the hypothesis class ranging from 15 to 40. Given a423

particular hypothesis class size |H|, we generate 50 random learning instances by randomly generating424

the binary labels of hypotheses on examples x ∈ X , where the number of data points |X | is varied425

from 5 to 30. Given a learning instance, we consider setting (the underlying hypothesis) h∗ to be426

every h ∈ H, and thus average the query complexity across random instances as well as across H.427

This is done to explore the average-case query complexity, where we do not focus on the query428

complexity of one particular h∗ = h ∈ H (as was done in some of the worst-case analyses).429

We investigate two possible labeling strategies, with varying amounts of abstention p =430

0.0, 0.15, 0.3, 0.45, 0.6. The first strategy is that given the underlying hypothesis h∗ ∈ H, it abstains431

on labeling a point x with probability p, and outputs h∗(x) otherwise (w.p. 1 − p). This labeling432

strategy may be viewed as one that abstains arbitrarily, and may compromise identifiability. This433

models the labeling strategy of a myopic labeler. The second strategy is a more careful, adaptive434

labeling strategy that always ensures identifiability. Given the underlying h∗, when x is queried, it435

computes the resultant E-VS if x was abstained upon. If abstention leads to non-identifiability, it436

labels x and returns h∗(x). Otherwise, it abstains with probability p and provides the label otherwise.437

This may be viewed as a more shrewed labeling strategy that always ensures identifiability, while438

using some abstention.439

Results: We have a few observations. First, as a sanity check, we observe that in the absence of440

abstention (p = 0.0), the E-VS and VS algorithm behave exactly the same and thus their performance441

should match, which they do as in the first plot of both Figure 2 and Figure 3.442

Next, we observe the general trend that the E-VS algorithm attains the lowest query complexity,443

followed by the VS algorithm and then the random querying algorithm. Moreover, the gap becomes444

more pronounced with the amount of abstention. This makes sense because the E-VS representation445

is designed to handle abstention, while the VS is not. This trend thus illustrates the effectiveness of446

using the E-VS representation in face of an abstaining labeler.447

Finally, we see that the gap is most significant in face of a non-identifying labeler (as in plots of448

Figure 2). This is because the E-VS algorithm can do early detection of non-identifiability and449

aptly halt the interaction, while the VS bisection and random querying algorithm cannot detect450

non-identifiability due to the use of the VS representation. We proved that the query complexity can451

be significantly larger in a worst-case setup in Theorem 3.8. And here, we see that in addition to the452

worst-case setting (as in Theorem 3.8), the E-VS also fares better in the average-case. Thus, this453

again affirms the robustness of the E-VS algorithm in face of a non-identifying labeler.454
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Notation
S S =

{
(x1, y1), (x2, y2), ...

}
, query responses in the interaction history

SX SX =
{
x : (x, y) ∈ S

}
, indexes the queried examples in S

S⊥ S⊥ =
{
x : (x, y) ∈ S, y =⊥

}
, queried examples that were given abstention

V y
x , V [(x, y)] V y

x , V [(x, y)] =
{
h ∈ V : h(x) = y

}
, updated VS (used interchangeably)

E(V, SX) E(V, SX) =
{
h ∈ V : ∀h′ ∈ V \ {h} : h′(X \ SX) ̸= h(X \ SX)

}
, effective VS

SA,T Interaction history between A and T
Si
X Si

X = Xi \ (X \ SX)i, where (X \ SX)i =
{
x′ ∈ Xi : ∃x ∈ X \ SX , xi = x′}

(V )i (V )i = Vi = {hi : h ∈ V }
cone(y) cone(y) = 1(∃i, yi ̸=⊥)
call(y) call(y) = 1(∀i, yi ̸=⊥)

Table 2: Table of commonly used notation.

Figure 4: The setup behind Proposition 1.1 is that of learning an one-to-one threshold-interval
hypothesis class H =

{
(hi, h

′
i)
}
i∈[n]

. The learner seeks to identify (hi∗ , h
′

i∗). The labeler can
abstain on X1, and prevent the learner from learning through this sample-efficient part of the instance
space. This forces the learner to learn the interval h

′∗
i (instead of threshold h∗

i ) through X2, and incur
much larger sample complexity.

B PROOFS FOR SECTION 1455

B.1 TECHNICAL RESULTS456

Proposition B.1. There exists a hypothesis classH, instance domain X such that the exact learning457

sample complexity is O(log |X |) if the labeler is unable to abstain, and Ω(|X |) for any learning458

algorithm if the labeler is allowed to abstain.459

Proof. Let the hi : [0, 1] → {+1,−1} for i ∈ [n] denote intervals of length 1/n centered at460

(2i − 1)/2n for i ∈ [n], and h′
i : (1, 2] → {+1,−1} for i ∈ [n] denote thresholds at 1 + i/n for461

i ∈ [n]. Define hybrid-hypothesis classH of threshold-intervals,H = {f1, ..., fn}, where:462

fi(x) =

{
hi(x) x ∈ [0, 1]

h′
i(x) x ∈ (1, 2]

Let X = X1 ∪ X2, where X1 =
{

1
2n , ...,

2n−1
2n

}
and X2 =

{
1 + 3

2n , ..., 1 +
2n−1
2n

}
.463

1) When the labeler is not allowed to abstain, the learner may binary search on X2 to identify h′
i∗ ,464

which identifies fi∗ . The required sample complexity is O(log n).465

2) When the labeler is allowed to abstain, consider the following labeling strategy T :466

i) T (x) =⊥ for all x ∈ X2467

ii) T (x) = hi∗(x) for all x ∈ X1.468

Note T is a labeling strategy that allows for identification. H[T (X )] = H[T (X1)] = {fi∗}.469

Interacting with T is equivalent to learning one of n disjoint intervals, which requires Ω(n) samples470

under any learning algorithm Dasgupta (2004). And so, T induces Ω(n) samples, which in turn lower471

bounds the sample complexity induced by the minimax labeling strategy.472

Remark B.2. We note that one may be generalize the above result to any cross-space learning473

setting (Tao et al., 2022) with significant differences in query complexity among the instance spaces.474
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Protocol 4 Minimax strategic slow learning game

Require: Instance domain X , hypothesis classH
S ← ∅, V ← H
▷ Throughout, the labeler needs to maintain that there is at least one classifier consistent with all

labels so far and is identifiable
while |E(V, SX)| ≥ 2 do

Learner queries example x ∈ X \ SX

Labeler provides label feedback y ∈ {−1,+1,⊥}
Learner incurs cost c(y), and updates its version space V ← V y

x

S ← S ∪
{
(x, y)

}
Nature sets h∗ to be the only model in E(V, SX) if |E(V, SX)| = 1 ▷ Nature sides with the
labeler, sets h∗ to be the remaining model at the end

The labeler’s optimal strategy here is simple: label only through the instance space that leads to the475

highest query complexity, and abstain on all other (more informative) instance spaces.476

Remark B.3. We also add that the labeling strategy need not be identifiable for this result to hold.477

One can simply define T to still abstain on all of X2 and output −1 on all of X1, which still induces478

Ω(|X |) query complexity.479

C PROOFS FOR SECTION 2480

C.1 THE MINIMAX LEARNING GAME481

The game strategy for the labeler and learner now corresponds to a labeling oracle, and a querying482

algorithm.483

Labeling Oracle Notation: Given h ∈ H, define the set of labeling oracles consistent with h as,

Th = {T : X → {+1,−1,⊥}|∀x ∈ X s.t Th(x) ̸=⊥, T (x) = h(x)}

Given subset SX ⊆ X , let us define T (SX) to be the set of labeled examples induced by oracle T on484

the examples SX .485

Suppose V ⊆ H, let us define:

V [T (SX)] =
{
h ∈ V |h(x) = T (x),∀x ∈ SX ∧ T (x) ̸=⊥

}
A labeling strategy T ∈ Th is an identifiable oracle ifH[T (X )] = {h}.486

Querying Algorithm Notation: Formally, a learning algorithm consists of the following:487

• Query function fquery : (X × Y)∗ → X488

• Termination function fterm : (X × Y)∗ → {TRUE,FALSE}489

• Output function fout : (X × Y)∗ → H490

A interacts with the labeler by:491

S ← ∅492

while fterm(S) = FALSE do493

Query x← fquery(S)494

Receive label y495

S ← S ∪
{
(x, y)

}
496

return fout(S)497

Properties of fterm:498

• If A is an exact learning algorithm, fterm(S) = TRUE if |E(V, SX)| ≤ 1.499
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• If A has a fixed budget N , fterm outputs TRUE when S is such that:500

|
{
(x, y) ∈ S : y ̸=⊥

}
| = N501

CCA,T (V, SX) Learning Game: Denote CCA,T (V, SX) as the learning game under querying502

strategy A, labeling strategy T . Formally, let point xA,S be queried by A after seeing interaction503

history S (corresponding to some sequentially labeled dataset) induced by labeling oracle T . With504

this, the value function of the learning game with strategies A and T may be recursively defined as505

follows:506

CCA,T (V, SX) =


−∞ E(V, SX) = ∅
0, |E(V, SX)| = 1

1(T (xA,S) ̸=⊥) + CC(V [(xA,S , T (xA,S))], SX ∪
{
xA,S

}
) |E(V, SX)| ≥ 2,

C.2 TECHNICAL RESULTS507

Lemma C.1. Let the deterministic query algorithm A interact with labeling oracle508

T ∈ Th0 for M queries, generating the following interaction history: SM =509

(x1, T (x1)), (x2, T (x2)), ..., (xM , T (xM )). Suppose, there exists a classifier h1 and T ′ ∈ Th1510

such that for all x ∈ {x1, ..., xM}, T (xi) = T ′(xi). Then, A generates the same interaction history,511

when interacting with T ′ for M queries.512

Proof. As defined previously, algorithm A comprises of query function fquery , termination function513

fterm and output function fout. We show by induction that for steps i = 0, 1, ...,M , the interaction514

histories of A with T and T ′ agree on their first i elements for i ≤M .515

Base Case: For step i = 0, both interaction histories are empty and thus agree.516

Induction Step: Suppose the statement holds up until step i for some i < M . That is, when A
interacts with T and T ′ generates the same set of queried examples:

Si =
{
(x1, y1), ..., (xi, yi)

}
Consider step i+ 1. Firstly, A continues to make a query and does not terminate, since fterm(Si) =517

FALSE for i < M .518

Now, for the i+1th query,A applies function fquery and queries xi+1 = fquery(Si). Since T ′(xj) =
T (xj) for all j and in particular for j = i + 1, we have that (xi+1, T

′(xi+1)) = (xi+1, T (xi+1)).
And so, with this and the induction hypothesis, we have that A when interacting with T ′ and T
generates the same set of queried examples:

Si+1 =
{
(x1, y1), ..., (xi+1, yi+1)

}
up to step i+ 1.519

Using this, we can conclude that the interaction histories after M steps of A with T ′ and T are520

identical.521

Remark C.2. Suppose, after the M th step, we have that TRUE = fterm(SA,T ) = fterm(SM ).522

And so, we have that SM = SA,T ′ , and the interaction of A with T ′ also terminates at the M th step.523

Thus, for model output, we have SA,T = SM = SA,T ′ ⇒ fout(SA,T ) = fout(SA,T ′).524

Proposition C.3. Let N denote the labeling budget. Let SA,T
N be the interaction history of a525

deterministic algorithm A with oracle T up until the N th label is given, or at termination (without526

using all of the budget). Let (SX)A,T
N be the examples queried during the interaction. For any527

deterministic algorithm A, if N < CC(H, ∅), there exists some h ∈ H and identifiable oracle528

T ∈ Th such that |E(H[SA,T
N ], (SX)A,T

N )| ≥ 2.529

Proof. Fix a deterministic algorithm A. We will show the following. If A has already obtained an530

ordered sequence of queried examples S, and has a remaining label budget N ≤ CC(H[S], SX)− 1,531

then there exists h ∈ H[S] and Th such that, A, when interacting with Th:532

1. obtains a sequence of queried examples S in the first |S| rounds533

16
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2. when the interaction terminates, the E-VS has cardinality at least two:534

|E(H[SA,Th

N ], (SX)A,Th

N )| ≥ 2.535

The theorem follow from the second point of this claim by taking S = ∅.536

We now turn to proving the above claim by induction on A’s remaining label budget N .537

Base Case: If N = 0, then CC(H[S], SX) ≥ 1. By Lemma D.6, we know that |E(H[S], SX)| ≥ 2.538

Construction of Th:539

Let h ∈ E(H[S], SX).540

Define Th to be such that for (xi, yi) ∈ S, Th(xi) = yi = h(xi) (the latter equality holds by541

definition of h) if yi ̸=⊥ and Th(xi) =⊥ if yi =⊥.542

Define Th(x) = h(x) for all x ∈ X \ SX .543

Since h ∈ E(H[S], SX), we know that h(X \ S⊥) ̸= h′(X \ S⊥),∀h′ ̸= h ∈ V . And so,544

H[T (X )] = H[T (X \ S⊥)] = {h}, which implies that T is an identifiable oracle for h.545

By construction and using Lemma C.1, Th’s interaction with A results in S, satisfying the first point.546

Moreover, since N = 0, SA,Th

0 = S. And so, |E(H[SA,Th

0 ], (SX)A,Th

0 )| = |E(H[S], SX)| ≥ 2547

Induction Step: Suppose the claim holds for all N ≤ n for some 0 < n < CC(H, ∅)− 1.548

Now, suppose during the interaction, algorithmA has remaining budget N = n+1, and the obtained549

queried examples history S is such that CC(H[S], SX) ≥ N + 1 = n+ 2.550

Our goal is to show the existence of h and Th that satisfy the two listed properties under these two551

assumptions.552

Define x′
j for index j ≥ 1 to be the next example A queries such that a binary label y′j is given (i.e553

y′j ̸=⊥), as we recursively unroll the CC expression, via the querying procedure below.554

L← S, LX ← SX , j ← 1555

repeat556

Query x′
k ← f(L) using A557

Labeler return y′k = argmaxy∈{−1,+1,⊥}

(
1(y ̸=⊥) + CC(H[L ∪

{
(x′

k, y)
}
], LX ∪

{
x′
k

})
558

L← L ∪
{
(x′

k, y
′
k)
}

559

LX ← LX ∪
{
x′
k

}
560

until yj ̸=⊥ or fterm(L) = TRUE561

There are two cases:562

• If j exists (i.e. the final j satisfies yj ̸=⊥), then after querying
{
(x′

i, y
′
i)
}
1:j

, the learner has563

remaining budget of N − 1 = n.564

Next, we see that with each abstention, the CC value is non-decreasing, as justified in the565

first three steps:566

We have that:

CC(H[S], SX) ≤ max
y1∈{+1,−1,⊥}

1(y1 ̸=⊥) + CC(H[S ∪
{
(x′

1, y1)
}
], SX ∪

{
x′
1

}
)

= 1(y′1 ̸=⊥) + CC(H[S ∪
{
(x′

1, y
′
1)
}
], SX ∪

{
x′
1

}
)

= CC(H[S ∪
{
(x′

1, y
′
1)
}
], SX ∪

{
x′
1

}
)

≤ ... (unroll from j − 1 to 1, using 1(y′i ̸=⊥) = 0 for i < j and ⋄)
≤ 1(y′j ̸=⊥) + CC(H[S ∪

{
(x′

i, y
′
i)
}
1:j

], SX ∪
{
x′
i

}
1:j

)

= 1 + CC(H[S ∪
{
(x′

i, y
′
i)
}
1:j

], SX ∪
{
x′
i

}
1:j

)
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(⋄) : We may use the non-decreasingness property to unroll, because from non-567

decreasingness, for all l ≤ j, CC(H[S ∪
{
(x′

i, y
′
i)
}
1:l
], SX ∪

{
x′
i

}
1:l
) ≥ n + 2 ≥ 2.568

Therefore,
∣∣∣E(H[S ∪

{
(x′

i, y
′
i)
}
1:l
], SX ∪

{
x′
i

}
1:l
)
∣∣∣ ≥ 2, and we have that:569

CC(H[S ∪
{
(x′

i, y
′
i)
}
1:l
], SX ∪

{
x′
i

}
1:l
) =

min
x

max
y

1(y ̸=⊥) + CC(H[S ∪
{
(x′

i, y
′
i)
}
1:l
∪
{
(x, y)

}
], SX ∪

{
x′
i

}
1:l
∪ {x})

From this, we get that:

n ≤ CC(H[S], SX)− 2 ≤ (CC(H[S ∪
{
(x′

i, y
′
i)
}
1:j

], SX ∪
{
x′
i

}
1:j

) + 1)− 2

By induction hypothesis, there exists h ∈ H[S ∪
{
(x′

i, y
′
i)
}
1:j

] and Th, such that when A
interacts with Th (after obtaining query history S ∪

{
(x′

i, y
′
i)
}
1:j

) and with label budget n,
the final version space is of cardinality at least two:

|E(H[SA,Th

N ], (SX)A,Th

N )| ≥ 2

In addition, when interacting with Th,A obtains history S ∪
{
(x′

i, y
′
i)
}j
i=1

in its first |S|+ j570

rounds of interaction, which implies that it obtains example sequence S in its first |S| rounds571

of interaction with Th. This proves the first property also holds and completes the induction.572

• Now, we consider the case when j does not exist. This means that the other exit condition573

must hold: fterm(L) = TRUE. And so, A terminates with all abstentions: y′i =⊥ for574

i ∈ [j].575

As above, we iteratively use the non-decreasingness of CC with abstention y′i =⊥ to get
that:

n+ 2 ≤ CC(H[S], SX) ≤ ... ≤ CC(H[L], LX)

for the final stateH[L], LX .576

From this, we have that |E(H[L], LX)| ≥ 2.577

Pick some h ∈ E(H[L], LX). As in the prior Th construction, define Th so that: Th(x) = y578

for all (x, y) ∈ L, and Th(x) = h(x) for all x ∈ X \ LX .579

By construction and Lemma C.1, Th’s interaction with A induces L.580

Since fterm(L) = TRUE, SA,T
N = L. And so, |E(H[SA,Th

N ], (SX)A,Th

N )| =581

|E(H[L], LX)| ≥ 2, satisfying the second condition.582

Finally, since A’s interaction with Th generates L, the first |S| steps also matches S. This583

satisfies the first property.584

585

Proposition C.4. For any deterministic, exact learning algorithm A,

max
h∈H,T∈Th

CCA,T (H, ∅) ≥ CC(H, ∅)

Proof. From Prop. C.3, we know that for N = CC(H, ∅)− 1, there exists some h ∈ H and T ∈ Th586

such that |E(H[SA,T
N ], (SX)A,T

N )| ≥ 2.587

We construct a labeling strategy T ′ that yields at least N + 1 labeled samples as follows:588

1. Let T ′(x) = T (x) for x ∈ SA,T
N .589

2. Let T ′(x) = h(x) for x ∈ X \ SA,T
N .590

18
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Note that T ′ is an identifiable oracle for h, sinceH[T ′(X )] ⊆ H[T (X )] = {h}, and h ∈ H[T ′(X )]591

by construction.592

And so, we have that:

max
h∈H,T∈Th

CCA,T (H, ∅) ≥ CCA,T ′(H, ∅)

= N + CCA,T ′(H[SA,T ′

N ], (SX)A,T ′

N ) (⋄)

= CC(H, ∅)− 1 + CCA,T ′(H[SA,T ′

N ], (SX)A,T ′

N ) (⋄⋄)
≥ CC(H, ∅)− 1 + 1

(⋄) : Since T ′(x) = T (x) for x ∈ SA,T
N , by Lemma C.1, we must have that SA,T ′

N = SA,T
N , and593

(SX)A,T ′

N = (SX)A,T
N .594

In particular, note that this implies |E(H[SA,T ′

N ], (SX)A,T ′

N )| = |E(H[SA,T
N ], (SX)A,T

N )| ≥ 2.595

(⋄⋄) : Since A is an exact learning algorithm, it does not terminate at the |SA,T ′

N |th step, because596

|E(SA,T ′

N , (SX)A,T
N ))| ≥ 2.597

And so,Awill make at least one more query on some x ∈ X\SA,T ′

N . Since T ′(x) ̸=⊥ for any x ∈ X\598

SA,T ′

N , and T ′ is identifiable (yielding terminal cost 0), we have that CCA,T ′(H[SA,T ′

N ], (SX)A,T ′

N ) ≥599

1.600

601
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D PROOFS FOR SECTION 3602

D.1 DEFINITIONS603

Definition D.1. GivenH,X , define the global identification cost of version space V and example set604

S as605

GIC(V, SX) = min{t ∈ N : ∀T : X \ SX → {−1,+1,⊥} ,

∃Σ ⊆ X \ SX s.t.
∑
x∈Σ

c(x, T (x)) ≤ t ∧ |E(V [T (Σ)], SX ∪ Σ)| ≤ 1}.

Remark D.2. Denote by ΓV,SX
: N→ {TRUE,FALSE} as:606

ΓV,SX
(t) =

∀T : X \ SX → {−1,+1,⊥} ,∃Σ ⊆ X \ SX s.t.
∑
x∈Σ

c(x, T (x)) ≤ t ∧ |E(V [T (Σ)], SX ∪ Σ)| ≤ 1


Note that ΓV,SX

is monotonic increasing: for t1, t2 ∈ N, if t1 < t2, then ΓV,SX
(t1) → ΓV,SX

(t2).607

With this notation,608

ΓV,SX
(t) =

{
TRUE t ≥ GIC(V, SX)

FALSE t ≤ GIC(V, SX)− 1

A good way to visualize this is that, on the axis of natural numbers, the value of ΓV,SX
(t)’s609

will have the pattern of {FALSE, , ...,FALSE,TRUE,TRUE...}, where the turning point is610

t = GIC(V, SX).611

As a consequence,
GIC(V, SX) ≥ N

⇐⇒ ΓV,SX
(N) = TRUE

⇐⇒ ∀T : X \ SX → {−1,+1,⊥} ,∃Σ ⊆ X \ SX s.t.
∑
x∈Σ

c(x, T (x)) ≤ N ∧ |E(V [T (Σ)], SX ∪ Σ)| ≤ 1

GIC(V, SX) ≤ N

⇐⇒ ΓV,SX
(N − 1) = FALSE

⇐⇒ ∃T : X \ SX → {−1,+1,⊥} ,∀Σ ⊆ X \ SX ,
∑
x∈Σ

c(x, T (x)) ≤ N − 1→ |E(V [T (Σ)], SX ∪ Σ)| ≥ 2

D.1.1 LEMMAS612

We prove several lemmas on the properties of E-VS and CC.613

Lemma D.3. We have the following:614

1. For any x ∈ X \ SX and y ∈ {−1, 1},
E(V [(x, y)], SX ∪ {x}) = E(V, SX)[(x, y)]

615

2. For any set of binary-labeled examples W ⊂ (X × {−1, 1}),616

E(V [W ], SX ∪W ) = E(V, SX)[W ]

617

Proof. 1.
h ∈ E(V [(x, y)], SX ∪ {x})

⇐⇒ h ∈ V [(x, y)] ∧ ∀h′ ∈ V [(x, y)] � h′ ̸= h→ h′(X \ (SX ∪ {x})) ̸= h(X \ (SX ∪ {x}))
⇐⇒ h ∈ V ∧ h(x) = y ∧ ∀h′ ∈ V [(x, y)] � h′ ̸= h→ h′(X \ SX) ̸= h(X \ SX)

⇐⇒ h ∈ V ∧ h(x) = y ∧ ∀h′ ∈ V � h′ ̸= h→ h′(X \ SX) ̸= h(X \ SX)

⇐⇒ h(x) = y ∧ h ∈ E(V, SX)

⇐⇒ h ∈ E(V, SX)[(x, y)]

20
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where the first equality uses the definition of effective version space; the second equality uses618

the fact that for h, h′ ∈ V [(x, y)], h′(X \ (SX ∪ {x})) ̸= h(X \ (SX ∪ {x})) is equivalent619

to h′(X \ SX) ̸= h(X \ SX); the third equality follows from that for h such that h(x) = y,620

for all h′ ∈ V such that h′(x) ̸= y, h′(x) ̸= h(x) and therefore h′(X \ SX) ̸= h(X \ SX)621

holds trivially; the fourth equality uses the definition of effective version space; the last622

equality uses the definition of version space with respect to labeled examples.623

2. The claim follows by induction:624

Base case. If |W | = 1, the claim follows from the previous item.625

Inductive case. Assume that E(V [W ′], SX ∪W ′) = E(V, SX)[W ′] holds for any W ′

such that |W ′| < n; Now consider any W of size n; W can be represented as
{
(x, y)

}
∪W ′

for some (x, y) ∈ X × {−1, 1} and |W ′| = n− 1. We have:

E(V [W ], SX ∪W ) =E(V [W ′][(x, y)], SX ∪W ′ ∪ {x}) (Definition of version space)

=E(V [W ′], SX ∪W ′)[(x, y)] (item 1)

=E(V, SX)[W ′][(x, y)] (Inductive hypothesis)
=E(V, SX)[W ] (Definition of version space)

This completes the induction.626

627

Lemma D.4. E(V, SX) ̸= ∅ iff CC(V, SX) ≥ 0628

Proof. (⇐) From the first terminal conditions, we know that E(V, SX) = ∅ =⇒ CC(V, SX) =629

−∞ < 0. So CC(V, SX) ≥ 0 =⇒ E(V, SX) ̸= ∅.630

(⇒) By backward induction on SX .631

Base case. If SX = X , |E(V, SX)| = 0 or 1. If |E(V, SX)| = 1, we have by the base case of the632

definition of CC, CC(V, SX) = 0. Therefore, E(V, SX) ̸= ∅ =⇒ CC(V, SX) ≥ 0.633

Inductive case. Suppose E(V, SX) ̸= ∅ =⇒ CC(V, SX) ≥ 0 holds for any dataset SX of size634

≥ j + 1. Consider SX of size j and V such that E(V, SX) ̸= ∅.635

• If |E(V, SX)| = 1, then CC(V, SX) = 0 ≥ 0.636

• Otherwise, |E(V, SX)| ≥ 2; take h1 ∈ E(V, SX); we have637

CC(V, SX) ≥ min
x

(
CC(V [(x, h1(x))], SX ∪ {x}) + 1)

)
By Lemma D.3, h1 ∈ E(V [(x, h1(x))], SX ∪ {x}), by inductive hypothesis,638

CC(V [(x, h1(x))], SX ∪ {x}) ≥ 0, and therefore CC(V, SX) ≥ 1 ≥ 0.639

In summary, CC(V, SX) ≥ 0.640

This completes the induction.641

Corollary D.5. CC(V, SX) = −∞ iff |E(V, SX)| = 0642

Lemma D.6. |E(V, SX)| ≥ 2 iff CC(V, SX) ≥ 1.643

Proof. (⇐) From the first two terminal conditions in the definition of CC, we know that if644

|E(V, SX)| ≤ 1⇒ CC(V, SX) ≤ 0 and so, CC(V, SX) ≥ 1⇒ |E(V, SX)| ≥ 2.645

(⇒) Let h1 ∈ E(V, SX), consider labeling strategy T (x) = h1(x) for all x ∈ X \ S (i.e. never646

abstains).647
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Following the definition of CC(V, SX), we have648

CC(V, SX) ≥ min
x

(
CC(V [(x, h1(x))], SX ∪ {x}) + 1)

)
Also, note that by Lemma D.3,649

E(V [(x, h1(x))], SX ∪ {x}) = E(V, SX)[(x, h1(x))] ∋ h1

Therefore, by Lemma D.4, for every x, CC(V [(x, h1(x))], SX∪{x}) ≥ 0, and thus CC(V, SX) ≥ 1.650

651

Corollary D.7. CC(V, SX) = 0⇔ |E(V, SX)| = 1652

Proposition D.8. For any V , |E(V,X )| ≤ 1.653

Proof. We consider three cases:654

1. If V = ∅, then E(V,X ) = ∅655

2. If |V | = 1, then E(V,X ) = V656

3. If |V | ≥ 2, then E(V,X ) = ∅.657

This is because for any h ∈ V , consider some h′ ∈ V \ {h}. h′ trivially agrees with h on658

X \ X = ∅. And so, h(∅) = h′(∅)⇒ h ̸∈ E(V,X ).659

In summary, in all three cases, |E(V,X )| ≤ 1.660

Lemma D.9. Algorithm 2 maintains the invariant that GIC(V, SX) ≤ GIC(H, ∅).661

Proof. It suffices to show that GIC(V, SX) is nonincreasing throughout. In other words, after662

obtaining queried sample (x, T (x)) during an iteration of the algorithm,663

GIC(V [T (x)], SX ∪ {x}) ≤ GIC(V, SX) (1)

Denote by t = GIC(V, SX). It therefore suffices to show that, for any oracle T ′ : X \ (SX ∪{x})→664

{−1,+1,⊥}, there exists Σ′ ⊂ X \ (SX ∪ {x}) such that:665 ∑
x∈Σ′

c(x, T ′(x)) ≤ t ∧
∣∣E(V [T (x)][T ′(Σ′)], SX ∪ {x} ∪ Σ′)

∣∣ ≤ 1. (2)

Below we construct such a Σ′ for each T ′.666

First, define oracle T̃ : X \ SX → {−1,+1,⊥} as:667

T̃ (z) =

{
T (x) z = x

T ′(z) z ̸= x

By the definition of GIC(V, SX), for this T̃ , there exists Σ̃ such that:668 ∑
x∈Σ̃

c(x, T̃ (x)) ≤ t ∧
∣∣∣E(V [T̃ (Σ̃)], SX ∪ Σ̃)

∣∣∣ ≤ 1. (3)

We now construct Σ′ differently by considering two cases of Σ̃:669

1. If x ∈ Σ̃, we construct Σ′ := Σ̃\{x}. Note that
∑

x∈Σ′ c(x, T ′(x)) ≤
∑

x∈Σ̃ c(x, T̃ (x)) ≤670

t, and by the definition of T̃ , E(V [T (x)][T ′(Σ′)], SX ∪ {x} ∪ Σ′) = E(V [T̃ (x)][T̃ (Σ̃ \671

{x})], SX ∪ {x} ∪ (Σ̃ \ {x})) = E(V [T̃ (Σ̃)], SX ∪ Σ̃) and therefore has size ≤ 1.672
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2. If x /∈ Σ̃, we construct Σ′ = Σ̃. Note that
∑

x∈Σ′ c(x, T ′(x)) =
∑

x∈Σ̃ c(x, T̃ (x)) ≤ t,
and:

E(V [T (x)][T ′(Σ′)], SX ∪ {x} ∪ Σ′)

=E(V [T̃ (Σ̃)][T (x)], SX ∪ Σ̃ ∪ {x}) (since T ′(Σ′) = T̃ (Σ̃))

⊆E(V [T̃ (Σ̃)], SX ∪ Σ̃) (⋄)

and therefore has size ≤ 1.673

(⋄) : Here the last inequality uses Lemma D.3 (for when T (x) ∈ {+1,−1}) and674

Lemma D.10 (for when T (x) =⊥) which implies that for any set F ⊂ H and unlabeled675

examples U , E(F [T (x)], U ∪ {x}) ⊆ E(F , U).676

In summary, there always exists Σ′ that satisfies Eq. 2, and therefore Eq. 1 holds for every iteration.677

This concludes the proof of the lemma.678

Lemma D.10. For any V ⊂ H and SX ⊂ X ,

E(V, SX ∪ {x∗}) ⊆ E(V, SX)

Proof. It suffices to prove that h ∈ E(V, SX ∪ {x∗})⇒ h ∈ E(V, SX).679

To see this, let h ∈ E(V, SX ∪{x∗}). Then, ∀h′ ∈ V \ {h} , h((X \SX) \ {x∗})) ̸= h′((X \SX) \680

{x∗}))⇒ ∀h′ ∈ V \ {h} , h(X \ SX) ̸= h′(X \ SX). This implies that h ∈ E(V, SX).681

D.2 MAIN RESULTS682

In this section, we prove the generalized version of results in Section 3, in which examples may incur683

differing costs. Let us denote c(x) = c(x, 1) = c(x,−1).684

Lemma D.11. For any V, SX such that GIC(V, SX) is finite, ∃x ∈ X \ SX such that:685

max
y∈{−1,+1}

(
|E(V [(x, y)], SX ∪ {x}))| − 1

)
≤ (|E(V, SX)| − 1)

(
1− c(x)

GIC(V, SX)

)
.

Proof. Recall from Lemma D.3 that we have: E(V [(x, y)], SX ∪ {x})) = E(V, SX)[(x, y)], it686

suffices to prove that there exists x ∈ X \ SX such that687

max
y∈{−1,+1}

(
|E(V, SX)[(x, y)])| − 1

)
≤ (|E(V, SX)| − 1)

(
1− c(x)

GIC(V, SX)

)
.

Also, note that |E(V, SX)| = |E(V, SX)[(x,−1)]| + |E(V, SX)[(x,+1)]|, as E(V, SX)[(x,−1)]688

and E(V, SX)[(x,+1)] form a disjoint partition of E(V, SX).689

And so, equivalently, it suffices to show that there exists x ∈ X \ SX such that:690

min
(
|E(V, SX)[(x,−1)]|, |E(V, SX)|[(x,+1)]

)
≥ c(x)

|E(V, SX)| − 1

GIC(V, SX)

So, assume towards contradiction that the statement above does not hold. Then, we have that691

∀x ∈ X \ SX :692

min
(
|E(V, SX)[(x,−1)]|, |E(V, SX)|[(x,+1)]

)
< c(x)

|E(V, SX)| − 1

GIC(V, SX)
(4)

Define oracle T0 : X \ SX → {−1,+1,⊥} such that,

T0(x) = argmax
y∈{−1,1}

|E(V, SX)[(x, y)]|
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With this, for every subset Σ ⊆ X \ SX such that
∑

x∈Σ c(x, T0(x)) ≤ GIC(V, SX), we have:
|E(V [T0(Σ)], SX ∪ Σ)| = |E(V, SX)[T0(Σ)]| (Lemma D.3, item 2)

= |E(V, SX)| − |{h ∈ E(V, SX) : ∃x ∈ Σ, h(x) ̸= T0(x)}|
(Set algebra)

≥ |E(V, SX)| −
∑
x∈Σ

|E(V, SX)[(x,¬T0(x))]| (Union bound)

= |E(V, SX)| −
∑
x∈Σ

min
y∈{+1,−1}

|E(V, SX)[(x, y)]|

(by definition of T0(x))

> |E(V, SX)| −
∑
x∈Σ

c(x, T0(x))
|E(V, SX)| − 1

GIC(V, SX)

(by Equation 4 and c(x) = c(x, T0(x)) since T0(x) ∈ {−1,+1})
≥ |E(V, SX)| − (|E(V, SX)| − 1) = 1,

In summary, for any Σ ⊆ X \SX such that
∑

x∈Σ c(x, T0(x)) ≤ GIC(V, SX), |E(V [T0(Σ)], SX ∪693

Σ)| > 1. Therefore, ΓV,SX
(GIC(V, SX)) = FALSE, which contradicts the definition of694

GIC(V, SX).695

Lemma D.12. For any V ⊂ H and SX ⊂ X ,696

GIC(V, SX) ≤ CC(V, SX)

Proof. Let k = GIC(V, SX)− 1. By the definition of GIC, ΓV,SX
(k) = FALSE. That is:697

∃T : X \ SX → {−1,+1,⊥} ,∀Σ ⊆ X \ SX ,
∑
x∈Σ

c(x, T (x)) ≤ k ⇒
∣∣E(V [T (Σ)], SX ∪ Σ)

∣∣ ≥ 2

(5)
Let T be a labeling oracle that satisfies the properties in Equation 5. Let U be the output of executing698

the following algorithm that simulates the interaction between a specific label query strategy and the699

oracle T before a stopping criterion is reached:700

Protocol 5 Simulation process on letting T interacting with a targeted label query strategy

U ← ∅
while U ̸= X \ SX and

∑
x∈U c(x, T (x)) ≤ k − 1 do

Choose example

x = argmin
x∈X\(SX∪U)

c(x, T (x)) + CC
(
V [T (U ∪ {x})], SX ∪ U ∪ {x}

)
. (6)

U ← U ∪ {x}
return U

We first claim that
∑

x∈U c(x, T (x)) = k. Suppose not, we have
∑

x∈U c(x, T (x)) ≤ k − 1. By701

the stopping criterion of Algorithm 5, we must have that U = X \ SX . In this case, by Equation 5,702

|E(V [T (U)], SX ∪U)| = |E(V [T (U)],X )| ≥ 2. However, this contradicts Proposition D.8 that for703

any V , |E(V [T (U)],X )| ≤ 1. Therefore,
∑

x∈U c(x, T (x)) = k.704

Denote by x1, . . . , xm the sequence of m examples queried by Algorithm 5; with this notation,705

U = {x1, . . . , xm}. Also, for i ∈ {0, 1, . . . ,m}, denote by Ui := {x1, . . . , xi} the set of first i706

examples queried.707

We make two observations:708

• For any i ∈ {0, 1, . . . ,m− 1}, by the loop condition,
∑

x∈Ui
c(x, T (x)) ≤ k−1, therefore709

by Equation 5,
∣∣E(V [T (Ui)], SX ∪ Ui)

∣∣ ≥ 2, and therefore, by the definition of CC,710

CC(V [T (Ui)], SX∪Ui) = min
x∈X\(SX∪Ui)

max
y∈{−1,+1,⊥}

(
c(x, y) + CC(V [T (Ui)][(x, y)], SX ∪ Ui ∪ {x})

)
(7)
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• Since
∑

x∈U c(x, T (x)) = k, by Equation 5, we also have
∣∣E(V [T (U)], SX ∪ U)

∣∣ ≥ 2 and711

by Lemma D.6, CC(V [T (U)], SX ∪ U) ≥ 1.712

Based on these observations, we have:

CC(V, SX) = min
x∈X\SX

max
y∈{−1,+1,⊥}

(
c(x, y) + CC(V [(x, y)], SX ∪ {x})

)
(Eq. 7 with i = 0)

≥ min
x∈X\SX

(
c(x, T (x)) + CC(V [T ({x})], SX ∪ {x})

)
= c(x1, T (x1)) + CC(V [T (U1)]), SX ∪ U1) (Eq. 6)

= c(x1, T (x1)) + min
x∈X\(SX∪U1)

max
y∈{−1,+1,⊥}

(
c(x, y) + CC(V [T (U1)][(x, y)], SX ∪ U1 ∪ {x})

)
(Eq. 7 with i = 1)

≥ ...

≥
m∑
i=1

c(xi, T (xi)) + CC(V [T (U)], SX ∪ U)

(Repeated application of Eqs. 7 and 6)
≥ k + 1 = GIC(V, SX). (since CC(V [T (U)], SX ∪ U) ≥ 1)

713

Theorem D.13. If Algorithm 2 interacts with a labeling oracle T , then it incurs total query cost714

at most GIC(H, ∅) ln |H|+ 1. Furthermore, if Algorithm 2 interacts with an identifiable oracle T715

consistent with some h∗ ∈ H, then it identifies h∗.716

Proof. First, we show that Algorithm 2 terminates and correctly identifies h∗ when interacting with717

an identifiable oracle of h∗. Its termination can be seen by the fact that the size of SX is increasing718

by 1 for each iteration and SX ̸= X is part of the stopping criterion.719

We now show that when it returns, E(V, SX) = {h∗}. This can be seen by:720

• As T is an identifiable oracle that is consistent with h∗, the algorithm maintains the invariant721

that h∗ ∈ E(V, SX).722

This is because if at some point h∗ ̸∈ E(V, SX), then exists some h′ ̸= h such that723

h′(X \ SX) = h(X \ SX). Then, we combine with that h′ ∈ H[T (SX)] to get that724

h′ ∈ H[T (SX) ∪ h(X \ SX)] ⊆ H[T (SX) ∪ T (X \ SX)] = H[T (X )], which is in725

contradiction with that T is an identifiable oracle.726

• We claim that when it returns, |E(V, SX)| = 1. Since the E-VS always contains h∗, we727

must have |E(V, SX)| ≥ 1.728

And so, if it returns and |E(V, SX)| ≠ 1⇒ |E(V, SX)| ≥ 2, then we must have SX = X ,729

which contradicts Proposition D.8.730

Next we bound the query cost complexity of Algorithm 2, when interacting with any labeling oracle.731

Denote Vi and Si as the value of V and SX at the i-th iteration, and denote (xi, yi) by the example732

(x, y) obtained at the i-th iteration.733

Therefore, Vi+1 = V [(xi, yi)] and Si+1 = Si ∪ {xi}.734

We claim that735

(
∣∣E(Vi+1, Si+1)

∣∣− 1) ≤ (
∣∣E(Vi, Si)

∣∣− 1) · exp
(
− c(xi)

GIC(H, ∅)

)
. (8)

To see this, we consider two cases:736
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1. If yi ∈ {−1,+1}, then applying Lemma D.11 with V = Vi, SX = Si, x = xi, we have

(|E(Vi+1, Si+1)| − 1) ≤ max
y∈{−1,+1}

(∣∣E(Vi[(xi, y)], Si+1)
∣∣− 1

)
≤(|E(Vi, Si)| − 1)

(
1− c(xi)

GIC(Vi, Si)

)
(Lemma D.11 since yi ∈ {−1,+1})

≤(|E(Vi, Si)| − 1)

(
1− c(xi)

GIC(H, ∅)

)
(by Lemma D.9, GIC(Vi, Si) ≤ GIC(H, ∅))

≤(
∣∣E(Vi, Si)

∣∣− 1) · exp
(
− c(xi)

GIC(H, ∅)

)
. (since 1− x ≤ e−x)

2. If yi =⊥, c(xi, yi) = 0. Therefore, to show Equation 8, it suffices to show that737

E(Vi+1, Si+1) ⊆ E(Vi, Si). This follows from Lemma D.10.738

To summarize, Equation 8 holds for each iteration i.739

Consider the last iteration i0 before the termination condition is reached; note that by the termination740

criterion, the penultimate E-VS is such that |E(Vi0 , Si0)| ≥ 2. We now upper bound the total cost up741

to iteration i0 − 1. By repeatedly using Eq. 8 for i = 1, . . . , i0 − 1, we have:742

1 ≤
∣∣E(Vi0 , Si0)

∣∣− 1 ≤
∣∣E(H, ∅)

∣∣ · exp(−∑i0−1
i=1 c(xi, yi)

GIC(H, ∅)

)

Therefore,
∑i0−1

i=1 c(xi, yi) ≤ GIC(H, ∅) ln |H| (since E(H, ∅) = H) and:743

i0∑
i=1

c(xi, yi) = c(xi0 , yi0) +

i0−1∑
i=1

c(xi, yi) ≤ GIC(H, ∅) ln |H|+ 1.

744
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E PROOFS FOR SUBSECTIONS 3.1, 3.2 AND 3.3745

E.1 COMPARING VS VERSUS E-VS746

Consider the case when H is linear. In this setting, the (conventional) version space is a single747

polytope, which we may access by sampling using any polytope sampler. The structural lemma below748

illustrates that, by contrast, the E-VS can be a more complicated object to access.749

Proposition E.1. There exists an instance space X ⊂ Rd and query responses S such that the750

resultant E-VS includes an exponential in d number of disjoint polytopes.751

Proof. Defining the Learning Task: DefineH =
{
hw(x) = sign(wTx)|w = [w′, 1], w′ ∈ [0, 1]d

}
.752

We observe that, for any set of points X , X divide polytope
{
w = [w′, 1] : w′ ∈ [0, 1]d

}
into cells,753

where every point in the cell has the same labeling of X , and different cells have different labelings754

of X . Thus, without loss of generality, we can treat each cell formed by X as an element ofH, and755

H comprises of all the cells that lie in polytope
{
w = [w′, 1] : w′ ∈ [0, 1]d

}
.756

Now, we construct a X that allows us to easily reason about the E-VS. Consider any 3n positive reals757

ajk for j ∈ [n], k ∈ [3] such that 0 < a11 < a12 < a13 < ... < an3 < 1. Define xi
jk = [−ei, ajk] for758

i ∈ [d]. As a concrete example, x1
23 = [−1, 0, ..., a32].759

Define the instance space to be X =
{
xi
jk|i ∈ [d], j ∈ [n], k ∈ [3]

}
. With X defined, we see the760

cells formed by X consists of: ×d
i=1I , where I =

{
[0, a11], [a

1
1, a

1
2], [a

1
2, a

1
3], ..., [a

n
3 , 1]

}
.761

Now, define the interaction history S =
{
(xi

jk,⊥)|i ∈ [d], j ∈ [n], k = 2
}

. Note that then SX =762

S⊥ =
{
xi
jk|i ∈ [d], j ∈ [n], k = 2

}
.763

Characterizing the E-VS: We first claim that for any cell with one of its faces a subset of a hyperplane764

in S⊥ cannot be in the E-VS. Specifically, if there ∃i ∈ [d], j ∈ [n] such that wi ∈ [aj1, a
j
3], then the765

cell w belongs to is not in the E-VS.766

To see this, WLOG wi ∈ [aj1, a
j
2].767

Now, construct w̃ = [w1, ..., wi−1, w̃i, wi+1, ...1], for some w̃i ∈ [aj2, a
j
3]. Note that by construction,768

w′ does not lie in the same cell as w. Then, we see that sign(w′Tx) = sign(w′Tx), ∀x ∈ X \
{
xi
j2

}
.769

And so, since X \ S⊥ ⊆ X \
{
xi
j2

}
, we have that w(X \ S⊥) = w′(X \ S⊥)⇒ w ̸∈ E(V, SX).770

This means that only the set of disjoint cells ×d
i=1I

′, where I ′ =
{
[0, a11], [a

1
3, a

2
1], . . . , [a

n
3 , 1]

}
, can771

be in the E-VS. Next, we will argue that the E-VS is all of ×d
i=1I

′.772

Consider a classifier corresponding to some cell c ∈ ×d
i=1I

′. Consider any other cell classifier773

corresponding to cell c′ ∈ ×d
i=1I . Since c ̸= c′, there must be at least one dimension, WLOG i, such774

that c and c′ belong to different sub-intervals, when projected onto coordinate i.775

We know that along dimension i, c’s sub-interval is either of the form [0, a11], [a
j
3, a

j+1
1 ] for some j,776

or [an3 , 1].777

We see that in the first case, xi
11 ∈ X \ S⊥ must separate c and c′, since c(x) = +1 ̸= −1 = c′(x).778

Analogously, in the second case, either xi
j3 or xi

(j+1)1 must separate c and c′ (with both such points779

are in X \ S⊥). Finally, in the last case, xi
n3 ∈ X \ S⊥ must separate c and c′.780

This shows that all of ×d
i=1I

′ is in the E-VS. And so, since I ′ comprises of n+ 1 disjoint intervals,781

there are in total (n+ 1)d number of disjoint cells, corresponding to distinct classifiers.782

E.2 E-VS MEMBERSHIP CHECK783

The key idea behind the membership check h ∈ E(V, SX) is that we want to find a hypothesis ĥ in784

V , different from h, that agrees on the rest of the unqueried samples. If we succeed in finding this785
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ĥ, then this means that even if all of the remaining unqueried samples X \ SX is labeled, h and ĥ786

cannot be distinguished from each other. This implies that h is non-identifiable and does not belong787

to the E-VS.788

Proposition E.2. Given some h ∈ H and access to a C-ERM oracle, one can verify h ∈ E(V, SX)789

with one call to the C-ERM oracle.790

Proof. Firstly, note that by definition, ∀h, h′ ∈ H, h ̸= h′ ⇒ h(X ) ̸= h′(X ).791

Now, we rewrite the definition of not being in the E-VS:

h ̸∈ E(V, SX)⇔ ∃h′ ∈ V \ {h} , h′(X \ SX) = h(X \ SX)

⇔ ∃h′, h′(SX \ S⊥) = ySX\S⊥ = h(SX \ S⊥) ∧ h′(X ) ̸= h(X ) ∧ h′(X \ SX) = h(X \ SX)

⇔ ∃h′, h′(SX \ S⊥) = ySX\S⊥ = h(SX \ S⊥) ∧ h′(S⊥) ̸= h(S⊥) ∧ h′(X \ SX) = h(X \ SX)

⇔ ∃h′,∃x⊥ ∈ S⊥, h′(SX \ S⊥) = ySX\S⊥ = h(SX \ S⊥) ∧ h′(x⊥) ̸= h(x⊥) ∧ h′(X \ SX) = h(X \ SX)

And so, we may check for the existence of such a h′ with one C-ERM call onH, given some h ∈ V792

(note that by construction h ∈ V ⇒ h(SX \ S⊥) = ySX\S⊥ ).793

We are interested in finding ĥ of the following program:794

min
h′∈H

∑
x′∈S⊥

1
{
h′(x′) = h(x′)

}
s.t h′(x) = h(x),∀x ∈ X \ S⊥

(9)

This may be emulated by defining data Z1 =
{
(x,¬h(x))

}
x∈S⊥ , Z2 =

{
(x, h(x))

}
x∈X\S⊥ , and795

calling C-ERM on Z1, Z2 to compute ĥ ∈ argmin
{
err(h′, Z1) : h

′ ∈ H, err(h′, Z2) = 0
}

.796

It suffices to test: if C-ERM output ĥ ̸= h⇒ h ̸∈ E(V, SX)797

E.3 CONTRASTING E-VS BISECTION ALGORITHM WITH VS BISECTION798

E.3.1 PAIRED INTERVAL-THRESHOLD HYPOTHESIS LEARNING SETTING799

Setup: Our example will revolve around the hybrid-hypothesis class of thresholds and intervals. Let800

n ≥ 8.801

Let the fi : [0, 2]→ {+1,−1} denote intervals of length 1/n, fi(x) = 1(x ∈ [(i− 1)/n, i/n]) for802

i ∈ [n− 1].803

Let f ′
i : [0, 2]→ {+1,−1} denote thresholds, f ′

i(x) = 1(x ≥ 1 + i/n) for i ∈ [n].804

DefineH =
⋃n−1

i=1

{
(fi, f

′
i), (fi, f

′
i+1)

}
.805

Let X = X1 ∪ X2, where X1 =
{
x1
1, ..., x

1
n−1

}
=
{
[ 1
2n , 0], ..., [

2n−4+1
2n , 0]

}
and X2 =806 {

x2
1, ..., x

2
n−1

}
=
{
[2, 1 + 3

2n ], ..., [2, 1 +
2n−1
2n ]

}
.807

So |X | = 2(n− 1).808

Note that for X1, the second coordinate gives no information on f ′
i (all −1 label), and for X2 the first809

coordinate gives no information on fi (all −1 label).810

E.3.2 ALGORITHM ANALYSIS811

Under the paired interval-threshold setup, we compare the algorithms based on the number of samples812

queried before termination.813

In the case of the VS-bisection algorithm, it queries the point that maximally bisects the VS each814

time. Accordingly, the algorithm terminates when there is no point that bisects the VS. This arises815

either because the set of unqueried points is non-empty but the VS agrees on all of the points’ labels,816

or the set of unqueried points is empty.817
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While for the E-VS bisection algorithm, it terminates either when the E-VS is of cardinality zero or818

of one.819

Lemma E.3 (E-VS bisection algorithm query complexity). In the paired interval-threshold hypothesis820

learning setting, the E-VS algorithm incurs O(log n) sample complexity against any labeling oracle.821

Proof. Define ρ(E(V, SX), x) = miny∈{+1,−1} |E(V, SX)[x, y]|.822

1. Let U2 ⊆ X2 denote the unlabeled part of X2 such that U2 =823 {
x : ρ(E(V, SX), x) > 0, x ∈ X2

}
(i.e. x ∈ X2 is in the disagreement region formed by824

the current E-VS).825

Definition E.4. A point x ∈ U2 is balanced if there exists a three-point segments with826

x2
i +2/n = x2

i+1+1/n = x2
i+2, x2

j+2/n = x2
j+1+1/n = x2

j+2 such that x2
i+2 < x < x2

j ,827

where points x2
i , x

2
i+1, x

2
i+2 ∈ U2, and x2

j , x
2
j+1, x

2
j+2 ∈ U2.828

We have that, if:829

a) x is a balanced point830

b) all queried points thus far have been in X2, then:

ρ(E(V, SX), x) ≥ 2 = max
x′∈X1

ρ(E(V, SX), x′)

This follows because if no points have been queried in X1, x2
i , x

2
i+1, x

2
i+2 ∈ U2 implies831

that (fi+1, f
′
i+1) and (fi+1, f

′
i+2) ∈ E(V, SX). Similarly, x2

j , x
2
j+1, x

2
j+2 ∈ U2 implies832

that (fj+1, f
′
j+1) and (fj+1, f

′
j+2) ∈ E(V, SX).833

Since x2
i+2 < x < x2

j , the two pairs of models disagree on x (in the second coordinate).834

And so, if there is some point x ∈ U2 that is balanced, and all points queried thus far835

have been in X2, then the E-VS algorithm will query a point in U2 (we assume that in a836

tie-breaker, the E-VS algorithm will select the point in X2).837

2. From Lemma E.5, we have that the E-VS algorithm will query some point in U2 ⊆ X2 so838

long as |U2| ≥ 7.839

The number of binary labeled samples needed to reach |U2| < 7 is at most log n. This840

because abstention decreases |U2| by 1, while a binary label removes ⌊|U2|/2⌋ points from841

U2.842

And so, since |U2| = n, there can be at most log n binary labeled examples before |U2| < 7.843

3. It remains to count the number of binary label samples needed when |U2| < 7 before the844

interaction finishes.845

We note that if |U2| < 7, then the size of the |E(V, SX)| ≤ 2 · 6.846

As each binary label point removes at least one hypothesis from the E-VS, at most 11 more847

binary label points are needed.848

In summary, we have that the E-VS algorithm incurs O(log n) samples.849

Below are the deferred lemmas:850

Lemma E.5. If |U2| ≥ 7, then the E-VS algorithm will query some point x ∈ U2 ⊆ X2.851

Proof. We will show the following properties about U t
2, which is U2 at the tth step.852

If |U t
2| ≥ 7, then:853

i) U t
2 is of the form {a1 : b1} ∪ {b2 : a2}, where b1 ≤ b2 ( {a1 : b1} is used to abbreviate854 {

a1, a1 + 1/n, ..., b1 − 1/n, b1
}

).855

ii) Some x ∈ {b1, b2} satisfies the following: ||
{
x′ ∈ U t

2 : x′ < x
}
| − |

{
x′ ∈ U t

2 : x′ > x
}
|| ≤ 1.856
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iii) No points x1, ..., xt−1 will have been queried from X1.857

iv) E-VS will query some point x ∈ U t
2 at step t.858

We will see that, at step t, proving property i), ii), iii) proves iv), which is the desired result.859

We prove by induction on j, the number of queries, that i), ii), iii) and thus iv) holds.860

Base Case: When j = 0, no points have been queried from X1. And so, properties i)-iii) are true with861

U2 =
{
1 + 3/2n : 1 + (2n− 1)/2n

}
. Since n ≥ 8, |U2| = |X2| = 7, and so Lemma E.6 applies,862

meaning iv) is satisfied.863

Induction Step: Suppose that if |U j
2 | ≥ 7, properties i)-iv) holds for time step j = 0, ..., k − 1.864

Now consider time step j = k. Suppose |Uk
2 | ≥ 7.865

This means that, at time step k−1, |Uk−1
2 | ≥ |Uk

2 | ≥ 7 (since the disagreement region only decreases866

in size).867

From induction hypothesis, we know Uk−1
2 satisfies i)-iv). Let Uk−1

2 =
{
a′1 : b′1

}
∪
{
b′2 : a′2

}
.868

Since iv) holds at time j = k − 1 (xk−1 ∈ X2), combined with that iii) applies at time k − 1869

(x1, ..., xk−2 ∈ X2) implies property iii) holds at time j = k (x1, ..., xk−1 ∈ X2)).870

Since iv) is satisfied at time step k − 1, we may WLOG xk−1 = b′1. There are two cases to consider:871

• If a label is given for xk−1, then we know that Uk
2 is either

{
a′1 : b′1 − 1/n

}
or {b2 : a2},872

in either case, both i) and ii) are satisfied at step j = k.873

• If an abstention is given for xk−1, then we know that Uk
2 =

{
a′1 : b′1 − 1/n

}
∪
{
b′2 : a′2

}
,874

which proves i).875

Since xk−1 = b′1, we have that ||
{
a′1 : b′1

}
| − |

{
b′2 : a′2

}
|| ≤ 1.876

If |
{
b′2 : a′2

}
| ≥ |

{
a′1 : b′1

}
|, picking b′2 satisfies the property, else picking b′1 − 1/n877

satisfies the property. And so, property ii) for Uk
2 holds.878

Finally, since iii), i) and ii) holds for Uk
2 , using Lemma E.6, we have that xk ∈ X2, which means that879

iv) holds at j = k.880

881

Lemma E.6. If |U t
2| ≥ 7, and i)-iii) holds at step t: the E-VS algorithm will query one of b1, b2 ∈ U t

2.882

Proof. Due to ii), we know at least one of b1, b2 satisfies ||
{
x′ ∈ U t

2 : x′ < x
}
| −883

|
{
x′ ∈ U t

2 : x′ > x
}
|| ≤ 1.884

WLOG let this be b1 (assume that b1 wins the E-VS algorithm tie-breaker if both b1, b2 satisfy this885

condition). We claim the E-VS algorithm will query b1.886

• For points in X2 \ U t
2, they are not in the disagreement region and ρ(E(V, SX), x) = 0,887

which means they will not be queried.888

• For points in U t
2, we have the following observation.889

Due to i) and iii):

ρ(E(V, SX), x) = min(2 · |
{
x′ ∈ U t

2 : x′ < x
}
|+ 1, 2 · |

{
x′ ∈ U t

2 : x′ > x
}
|+ 1)

= 2 ·min(|
{
x′ ∈ U t

2 : x′ < x
}
|, |
{
x′ ∈ U t

2 : x′ > x
}
|) + 1

From this, we can see that from ii),

b1 = argmax
x∈Ut

2

min(|
{
x′ ∈ U t

2 : x′ < x
}
|, |
{
x′ ∈ U t

2 : x′ > x
}
|)

= argmax
x∈Ut

2

ρ(E(V, SX), x)
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• For points x ∈ X1.890

We know that |U t
2| ≥ 7⇒ min(|

{
x′ ∈ U t

2 : x′ < b1
}
|, |
{
x′ ∈ U t

2 : x′ > b1
}
|) ≥ 3.891

Due to i), we know that
{
x′ ∈ U t

2 : x′ < b1
}

and
{
x′ ∈ U t

2 : x′ > b1
}

are contiguous. And892

so, one can find three-point segments to the left and right of b1, which means that b1 is893

balanced.894

And so, ρ(E(V, SX), b1) ≥ 2 = maxx∈X1
ρ(E(V, SX), x).895

In conclusion, b1 is the point that maximally bisects the E-VS out of all unqueried points, and will896

thus be queried by the E-VS bisection algorithm.897

898

Theorem E.7. There exists a H and X such that the number of labeled examples queried by the899

E-VS bisection algorithm is O(log |X |), while the VS bisection algorithm queries Ω(|X |).900

Proof. From Lemma E.3, we have shown the first part of the theorem. It remains to analyze the VS901

bisection query complexity.902

VS bisection algorithm complexity: By contrast, we show that there exists a labeling oracle that903

induces Ω(n) sample complexity from the VS algorithm.904

This labeling oracle T is as follows:905

i) T (x) =⊥ for all x ∈ X2906

ii) T (x) = −1 for all x ∈ X1907

Under T , we have that labeling each point x ∈ X1 removes two hypotheses from the version space at908

any step in time. Namely, labeling x1
i = [ 2i−1

2n , 0] removes (fi, f ′
i), (fi, f

′
i+1).909

And so, |X1| − 1 samples x ∈ X1 will be queried. Because if there exists two unqueried points910

x1
i , x

1
j ∈ X1, then (fi, f

′
i) and (fj , f

′
j) are both in the VS. This means that the disagreement region is911

non-empty, and in particular contains both x1
i , x

1
j .912

Since each x ∈ X1 is given a binary label by T , the VS bisection algorithm incurs cost n− 1. We913

note that in the end the VS will be of size 2, but the remaining sample in X1 cannot distinguish914

between the two.915

916

We may also obtain a corresponding result for an identified setting, by tweaking the above setting917

slightly. In this setting, we still find that the VS-bisection algorithm still incurs an exponentially918

larger sample complexity relative to E-VS bisections.919

Proposition E.8. There exists a H, X , and a labeling oracle that leads to identification, and the920

number of labeled examples queried by the E-VS bisection algorithm is O(log |X |), while the VS921

bisection algorithm incurs Ω(|X |) samples.922

Proof. Setup:923

Let the fi : [−1, 2] → {+1,−1} denote intervals of length 1/n, fi(x) = 1(x ∈ [(i − 1)/n, i/n])924

for i ∈ [n− 1].925

Let f ′
i : [0, 2]→ {+1,−1} denote thresholds, f ′

i(x) = 1(x ≥ 1 + i/n) for i ∈ [n].926

DefineHpair =
⋃n−1

i=1

{
(fi, f

′
i), (fi, f

′
i+1)

}
.927

Let Xmain = X1 ∪ X2, where X1 =
{
x1
1, ..., x

1
n−1

}
=
{
[ 1
2n , 0], ..., [

2n−4+1
2n , 0]

}
and X2 =928 {

x2
1, ..., x

2
n−1

}
=
{
[2, 1 + 3

2n ], ..., [2, 1 +
2n−1
2n ]

}
.929

Note that for X1, the second coordinate gives no information on f ′
i (all −1 label), and for X2 the first930

coordinate gives no information on fi (all −1 label).931
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Ensuring identifiability:932

Define an extra interval, f0 : [−1, 2] → {+1,−1}, f0(x) = 1(x ∈ [−1/n, 0]) and introduce one933

new data point x̃ = [−1/2n, 0].934

So |X | = 2(n− 1) + 1.935

Now define the extra model f̃ = (f0, f
′
1).936

LetH = Hpair ∪ {f0} and let X = Xmain ∪ {x̃}.937

Note that obtaining (x̃, [1,−1]) identifies f̃ .938

E-VS bisection algorithm complexity:939

Note that for any V, SX , ρ(E(V, SX), x̃) ≤ 1.940

And so, in the case analysis of Lemma E.6, we again find that as long as |U2| ≥ 7, the E-VS algorithm941

will query some point x ∈ U2.942

Thus, the E-VS algorithm will query at most log n labeled samples before reaching |U2| ≤ 6, at943

which point the E-VS contains at most 2 · 6 + 1 hypotheses and will thus require at most 12 more944

labeled examples before identification.945

VS bisection algorithm complexity: We show that there exists an identifiable labeling oracle that946

induces Ω(n) samples with the VS algorithm.947

This labeling oracle T goes as follows:948

i) T (x) =⊥ for all x ∈ X2949

ii) T (x) = −1 for all x ∈ X1950

iii) T (x̃) = 1951

It is clear thatH[T (X )] =
{
h̃
}

and T is an identifiable oracle.952

The main observation is that while |SX ∩ X1| < |X1| − 1, if a point in X \ X2 is queried, then it will953

be a point in X1, and not x̃.954

This is because x̃ for any V, SX , is such that ρ(E(V, SX), x̃) = 1. While for any x ∈ X1 \ SX ,955

ρ(E(V, SX), x) = 2.956

In more detail, if x1
i ̸∈ SX , then (fi, f

′
i), (fi, f

′
i+1) ∈ V [S], whose label for x1

i is [1,−1]. And when957

|SX ∩ X1| < |X1| − 1, there exists at least two other models in V [S] that label x1
i with [−1,−1].958

Hence, since T never abstains on x ∈ X1, |X1|−1 labels will be given, at which point the disagreement959

region is still non-empty. Then, the algorithm either queries the x̃ or the remaining element in X1960

depending on the tie-breaker, both of which identifies h̃.961

962

E.4 COMPARING WITH EPI-CAL963

We examine the sample complexity when the order of data points is not controlled by the learner,964

who is nevertheless learning using a “mellow” AL algorithm, EPI-CAL. Our finding is that: strategic965

labeling can lead to a large sample complexity for this setting as well.966

In the infinite-support case, even if the data stream is made up of i.i.d samples, EPI-CAL can incur967

large sample complexity, as the learner experiences an arbitrarily large “hold-up”. This may be968

evidenced even in the simple threshold example in the lemma below.969

Proposition E.9. Fix some constant ϵ > 0. Consider a PAC-learning task, where the learner seeks to970

learn a 1D threshold with at most ϵ−risk with respect to continuous distribution D. For any m i.i.d971

samples with m sufficiently large and D probability density bounded away from 0, there is a labeling972

strategy under which EPI-CAL queries Ω(
√
m) labeled samples, with probability at least 1/2.973
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Proof. Let h∗ = 0 for the 1D threshold hypothesis classH =
{
1(x ≥ θ) : θ ∈ [0, 1]

}
.974

Let D be some continuous distribution with supp(D) = [0, 1]. Let X1, .., Xm denote the m i.i.d975

samples from D.976

By assumption, the pdf of D is bounded away from zero: Pr(x) ≥ κ, ∀x ∈ supp(D) for some977

constant κ.978

Then, Prx∼D(x ∈ (ϵ, 1]) = β ≥ (1− ϵ)κ = Ω(1).979

Under m ≥ 6, consider some β0 with β0 ≤
ln 4

3

2m . Since the CDF is continuous, there exists r such
that Prx∼D(x ≤ r) < β0, which is such that:

Pr(∀i ∈ [m], xi ̸∈ [0, r]) ≥ (1− β0)
m ≥ exp(−2mβ0) ≥

3

4

using that 1− x ≥ exp(−2x) when x ∈ [0, 1/2].980

Define r̂ = min(r, ϵ), which also satisfies the condition above since [0, r̂] ⊆ [0, r].981

Now, we proceed to defining the labeling strategy:982

1. Let M =
√
m. Using the continuity of Prx∼D(x < r) in r, we can find 1 = r1 > ... >

rM > rM+1 with rM+1 = ϵ, such that:

Pr
x∼D

(x ∈ [ri+1, ri]) =
β

M

Let Si = (ri+1, ri] for i ∈ [M ].983

2. We make the observation that if EPI-CAL has only seen points from Si1 , ..., Sij , then any984

point xk ∈ Sk with k > max(i1, ..., ij) will be accepted (bigger index means close to θ∗).985

This is because with labeled points only from Si1 , ..., Sij , the resultant VS is a superset of986

[0, rmax(i1,...,ij)+1].987

And so, xk is in the disagreement region, since xk ≤ rmax(i1,...,ij)+1.988

3. Now, we describe the sequential labeling strategy.989

a) Abstain on the region: [r̂, ϵ].990

b) Label if Xi ∈ [0, r̂). Note that labeling [0, r̂) ensures that ϵ−PAC learning is possible.991

For Xi ∈ (ϵ, 1], sequentially label as follows:992

i) Divide the m samples into M stages of M samples for M =
√
m.993

ii) At the ith stage, abstain if on the jth sample of this stage, Xij ̸∈ Si.994

iii) The first time sample Xik for k ∈ [M ] is such that Xik ∈ Si, label it and abstain for the995

rest of this stage.996

Using our previous point, we know that any point Xik ∈ Si labeled will be accepted by997

EPI-CAL, since i is increasing.998

Intuitively, this labeling strategy slows down learning by only labeling points that shrink the999

VS by a little.1000

4. To analyze the total number of labeled points, let random variable Zi denote whether a point
is labeled at stage i. It is Bernoulli with probability:

p = Pr(∃j ∈ [M ], Xij ∈ [ri+1, ri]) = 1− (1− β/M)M ≥ 1− exp(−β) = Ω(1)

Using one-sided Chernoff’s for Binomial random variables for M sufficiently large (i.e. for
M ≥ 8 ln 4

p ) with p constant, we have:

Pr(

M∑
i=1

Zi ≤Mp/2) ≤ exp(−Mp/8) ≤ 1/4
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5. And so, using union bound, we have that:

Pr(xi ̸∈ [0, r̂],∀i ∈ [m] ∧
M∑
i=1

Zi ≥Mp/2)

≥ 1− Pr(∃i ∈ [m], xi ∈ [0, r̂])− Pr(

M∑
i=1

Zi < Mp/2)

≥ 1− 1/4− 1/4

= 1/2

And so, the probability that all m samples are seen (i.e. the interaction does not terminate1001

before all m), and that at least Mp/2 = Ω(
√
m) samples are labeled and accepted by1002

EPI-CAL occurs with probability at least 1/2.1003

1004

Remark E.10. We remark that:1005

• Consider when there is no labeler abstention. Let Z ′
i = 1(xi ≤ minj∈[i−1] xj). Then we

see that the expected sample complexity is:

E[
m∑
i=1

Z ′
i] =

m∑
i=1

1/i = O(logm)

Thus, we see that this is yet another setting, where labeler abstention can significantly1006

increase the sample complexity.1007

• From the Erdős–Szekeres theorem, the Θ(
√
m) result is tight in expectation.1008
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F ADDITIONAL MATERIAL ON SECTION 41009

In this section, we examine a few ways in which the labeler (e.g. a human worker) may be imperfect1010

in both labeling and strategy, and extend our guarantees to such settings. We elaborate on the content1011

covered in Section 4.1012

Note that in this paper, we make inroads into understanding the minimax strategies of the learning1013

game. Analyzing minimax strategies is the canonical way of characterizing games, studying how1014

players (e.g. a data provider company) may play rationally in the learning game. However, it has1015

been recognized that players with bounded rationality (e.g. a human worker) may play behavioral1016

strategies that are not minimax-optimal (Brown & Rosenthal, 1990). And so, we consider allow for1017

the labeler labeling in a way that is sub-optimal.1018

F.1 RELAXED LEARNING GOAL1019

In the previous section, it is assumed that the learner is interested in exact learning some h∗. One1020

may consider the relaxed goal of PAC learning some ĥ such that Prx∼D(ĥ(x) ̸= h∗(x)) ≤ ϵ w.p.1021

greater than 1− δ, for some distribution D supported on X .1022

Reduction: Then, following the standard realizable, PAC learning (with VC class) reduction (Vapnik,1023

1999), one may reduce the PAC setting to the exact learning by sampling m = O(V CD
ϵ (ln 1

ϵ + ln 1
δ ))1024

i.i.d samples from D.1025

More precisely, let this random subset be Xm ⊆ X . Xm partitions H into clusters of equivalent1026

hypotheses. If we let the projection ofH on Xm beH|Xm =
{
h(Xm) : h ∈ H

}
, then a cluster C(y)1027

of equivalent hypotheses is defined C(y) =
{
h(Xm) = y : y ∈ H|Xm , h ∈ H

}
.1028

The reduction guarantees that, with probability better than 1 − δ over the samples Xm,1029

identification of h∗’s cluster C(h∗(Xm)) is sufficient for ϵ−PAC learning. Xm is such1030

that w.h.p diam(C(h∗(Xm)) ≤ ϵ, where diameter of a set H is defined as diam(H) =1031

maxh,h′∈H Prx∼D(h(x) ̸= h′(x)). With this, picking any one model ĥ ∈ C(h∗(Xm)) satisfies1032

Prx∼D(ĥ(x) ̸= h∗(x)) ≤ ϵ, and PAC learning thus reduces to identifying cluster C(h∗(Xm)).1033

F.1.1 APPROXIMATE IDENTIFIABILITY GAME1034

Using this reduction, we may analyze the query complexity of PAC learning as an exact learning1035

game, where the learner chooses the data pool to be Xm (in place of X ). The goal is now only1036

approximate identifiability, and identifying the cluster h∗ belongs to, C(h∗(Xm)).1037

We demonstrate how our E-VS definition can be extended to develop a near-optimal algorithm under1038

this approximate identifiable game. Our first observation is that the original E-VS, defined overH1039

and Xm will no longer suffice:1040

E(V, SX) =
{
h ∈ V : ∀h′ ∈ V \ {h} : h′(Xm \ SX) ̸= h(Xm \ SX)

}
The issue is premature elimination. Consider some h ∈ H such that |C(h(Xm))| ≥ 2 with1041

h′ ∈ C(h(Xm)), h′ ̸= h. Then, h(Xm) = h′(Xm)⇒ ∃h′ ∈ H, h′(Xm \ ∅) = h(Xm \ ∅), which1042

results in the elimination of the entire C(h(Xm)) cluster at the very start. E(H, ∅) will not contain1043

any clusters with cardinality more than one.1044

To handle this, we define a modification of the E-VS, Xm-E-VS, with relaxed elimination condition.1045

This is a coarser E-VS, and so, we observe that we should only consider non-identifiability with1046

respect to hypotheses from other clusters:1047

EXm

(V, SX) =
{
h ∈ V : ∀h′ ∈ V \

{
h̄ : h̄(Xm) = h(Xm), h̄ ∈ V

}
: h′(Xm \ SX) ̸= h(Xm \ SX)

}
The added constraint of V \

{
h̄ : h̄(Xm) = h(Xm), h̄ ∈ V

}
means that two h, h′ within the same1048

cluster do not render each other un-identifiable. And so, we only consider h′’s from another cluster1049

(that differs on Xm) that can render h (h’s cluster) un-identifiable.1050

Remark F.1. Through this we see that either an entire cluster is in the Xm-E-VS or it is not.1051
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Under the new Xm−E-VS definition, we may prove that the Xm−E-VS bisection algorithm similarly1052

attains near-optimal guarantees. One may follow the same proof structure as in Lemma D.11 and1053

Theorem D.13 to show both results also hold under Xm-E-VS. Thus, it suffices to prove the following1054

two lemmas, which are used in the proofs of Lemma D.11 and Theorem D.13.1055

Lemma F.2. For any x ∈ X \ SX and y ∈ {−1, 1},

EXm

(V [(x, y)], SX ∪ {x}) = EXm

(V, SX)[(x, y)]

Proof. The proof is identical to the one for the fine-grain E-VS:

h ∈ EXm

(V [(x, y)], SX ∪ {x})
⇐⇒ h ∈ V [(x, y)] ∧ ∀h′ ∈ V [(x, y)] � h′(Xm) ̸= h(Xm)→ h′(Xm \ (SX ∪ {x})) ̸= h(Xm \ (SX ∪ {x}))
⇐⇒ h ∈ V ∧ h(x) = y ∧ ∀h′ ∈ V [(x, y)] � h′(Xm) ̸= h(Xm)→ h′(Xm \ (SX ∪ {x})) ̸= h(Xm \ (SX ∪ {x}))
⇐⇒ h ∈ V ∧ h(x) = y ∧ ∀h′ ∈ V � h′(Xm) ̸= h(Xm)→ h′(X \ SX) ̸= h(X \ SX)

⇐⇒ h(x) = y ∧ h ∈ EXm

(V, SX)

⇐⇒ h ∈ EXm

(V, SX)[(x, y)]

1056

Lemma F.3. For any V ⊂ H and SX ⊂ X ,

EXm

(V, SX ∪ {x}) ⊆ EXm

(V, SX)

Proof. It suffices to prove that h ∈ EXm

(V, SX ∪ {x})⇒ h ∈ EXm

(V, SX).1057

To see this, let h ∈ EXm

(V, SX ∪ {x}). Then if h is such that:

∀h′ ∈ V, h′(Xm) ̸= h(Xm), h((X \ SX) \ {x})) ̸= h′((X \ SX) \ {x}))
⇒ ∀h′ ∈ V, h′(Xm) ̸= h(Xm), h(X \ SX) ̸= h′(X \ SX)

⇒ h ∈ E(V, SX)

1058

Guarantee from learning from labeler with h′ that approximates h∗: Suppose the labeler labels
with h′ and Pr(h′(x) ̸= h∗(x)) ≤ ϵ/2. One may consider the approximate identifiability learning
game with precision ϵ/2. Approximately-identifying some ĥ ∈ C(h′(Xm)) will be such that
Pr(ĥ(x) ̸= h′(x)) ≤ ϵ/2. From this, we can conclude that:

Pr(ĥ(x) ̸= h∗(x)) = Pr(ĥ(x) = h′(x) ∧ h′(x) ̸= h∗(x)) + Pr(ĥ(x) ̸= h′(x) ∧ h′(x) = h∗(x))

≤ Pr(h′(x) ̸= h∗(x)) + Pr(ĥ(x) ̸= h′(x))

≤ ϵ

F.1.2 ACCESSING THE Xm−E-VS1059

After modifying the E-VS definition, the remaining issue is that we wish to find the maximal bisection1060

point for coarse, Xm-E-VS. Here, we show that for the coarsened E-VS, the membership check1061

implemented in Algorithm 3 (with the pool being Xm) is still sound. That is, we still have an1062

oracle-efficient way of accessing the coarser Xm-E-VS, and can can implicitly track clusters through1063

calls to the C-ERM oracle.1064

Proposition F.4. h ̸∈ EXm(V, SX) iff ĥ(Xm) ̸= h(Xm), where ĥ is the minimizer of the C-ERM1065

output below:1066

ĥ = argmin
h′∈H

∑
x′∈S⊥

1
{
h′(x′) = h(x′)

}
s.t h′(x) = h(x),∀x ∈ Xm \ S⊥

(10)

36



Under review as a conference paper at ICLR 2024

Proof.

¬(h ∈ EXm(V, SX))⇔ ¬(∀h′ ∈ V \
{
h̄ : h̄(Xm) = h(Xm), h̄ ∈ V

}
� h′(Xm \ SX) ̸= h(Xm \ SX))

⇔ ∃h′ ∈ V \
{
h̄ : h̄(Xm) = h(Xm), h̄ ∈ V

}
� h′(Xm \ SX) = h(Xm \ SX)

⇔ ∃h′ ∈ V � h′(Xm) ̸= h(Xm) � h′(Xm \ SX) = h(Xm \ SX)

⇔ ∃h′ � h′(SX \ S⊥) = h(SX \ S⊥) � h′(Xm) ̸= h(Xm) � h′(Xm \ SX) = h(Xm \ SX)

⇔ ∃h′ � h′(SX \ S⊥) = h(SX \ S⊥) � h′(S⊥) ̸= h(S⊥) � h′(Xm \ SX) = h(Xm \ SX)

⇔ ∃h′ � h′(S⊥) ̸= h(S⊥) � h′(Xm \ S⊥) = h(Xm \ S⊥)

⇔ ∃h′ �
∑

x′∈S⊥

1
{
h′(x′) = h(x′)

}
< |S⊥| � h′(Xm \ S⊥) = h(Xm \ S⊥)

⇔ ĥ(Xm) ̸= h(Xm) � ĥ(Xm \ S⊥) = h(Xm \ S⊥)

1067

F.2 NOISED LABELING1068

It may be reasonable that in some cases, a labeler can make mistakes (even when they have tried1069

their best) due to differing opinion and/or human error. For example, for medical diagnoses, doctors1070

may hold differing opinions for the same case. This can be naturally modeled by the noised learning1071

setting, as in (Castro & Nowak, 2008): querying example x returns h∗(x) with known probability1072

1− δ(x), and −h∗(x) with noise rate δ(x).1073

In this setup, we may use the common approach of repeatedly query a datum to estimate its label1074

w.h.p. (e.g. as (Yan et al., 2016)). This approach reduces noised-label exact learning to cost-sensitive1075

exact learning, where for each x there is some known query cost c(x) — associated with determining1076

h∗(x) with high probability. With this, we may apply the results from Subsection D.2 to see that1077

E-VS bisection algorithm will have near-optimal guarantees in this setting with example-dependent1078

costs.1079

F.3 MYOPIC LABELING1080

Some labelers may want to enlarge the query complexity, but myopically may not have a near-optimal1081

identifiable strategy. Instead, the labeler may have only a heuristic, which is only h∗-labeling, and1082

can be non-identifiable. Non-identifiability is something neither parties want: the learner wants to1083

learn h∗, and the labeler wants to be paid, which can only happen if h∗ is learned.1084

In this light, we believe that the E-VS game representation is not only useful for the learner, but1085

also for a labeler to reason about the game’s state. For the labeler, there is an oracle-efficient way1086

through which identifiability can be checked without enumerating the entire E-VS: simply apply the1087

membership check on h∗ as in Line 3 of Algorithm 3.1088

So even if the labeler is using some sub-optimal heuristic that may lead to non-identifiability of h∗,1089

the labeler can prevent the next label from leading to non-identifiability by performing a membership1090

check with a single C-ERM call. We add that only verifying that h∗ is in E-VS, need not require1091

enumerating all of the E-VS, and is thus tractable provided access to a C-ERM oracle.1092
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G PROOFS FOR SECTION 51093

G.1 LEMMAS USED1094

Lemma G.1. For all V = ×n
i=1Vi and SX ,

E(V, SX) = ×n
i=1E(Vi, S

i
X)

Proof. We show both that:1095

1. For V = ×n
i=1Vi, ×n

i=1E(Vi, S
i
X) ⊆ E(V, SX):1096

It suffices to show that if hi ∈ E(Vi, S
i
X) for i ∈ [n], then h = (h1, .., hn) ∈ E(V, SX) for1097

V = ×n
i=1Vi.1098

Firstly, since hi ∈ Vi and V = ×i∈[n]Vi, we have that h ∈ V .1099

Now suppose there is some h′ ∈ V such that h′(X \ SX) = h(X \ SX); we would like to1100

show that h′ = h – proving this would conclude that h ∈ E(V, SX).1101

Indeed, consider any i; we have h′
i((X\SX)i) = hi((X\SX)i); equivalently, h′

i(Xi\Si
X) =1102

hi(Xi \ Si
X).1103

As hi ∈ E(Vi, S
i
X) and h′

i ∈ Vi, we have that h′
i = hi. Therefore h′ and h are equal in all1104

components, and h′ = h.1105

2. For V = ×n
i=1Vi, E(V, SX) ⊆ ×n

i=1E(Vi, S
i
X):1106

Consider any h ∈ E(V, SX); we would like to show that for any i, hi ∈ E(Vi, S
i
X).1107

Suppose not, then there exists i, h′ ∈ Vi and h′ ̸= hi such that h′(Xi \ Si
X) = hi(Xi \ Si

X).1108

This implies that h′((X \ SX)i) = hi((X \ SX)i), therefore, consider1109

h̃ = (h1, . . . , hi−1, h
′, hi+1, . . . , hn)

We have that h̃ ∈ V , h̃ ̸= h, and h̃ agrees with h on X \ SX , which contradicts the1110

assumption that h ∈ E(V, SX).1111

1112

Lemma G.2. For any data point (x1, y1) for x1 ̸∈ SX and y1 ∈ {+1,−1,⊥}:1113

CC(V [(x1, y1)], SX ∪ {x1}) ≤ CC(V, SX)

Proof. We prove this by induction on |SX |.1114

Base Case:1115

The base case is when |SX | = |X | − 1. Here SX ∪ {x1} = X . We have two subcases:1116

• E(V [(x1, y1)], SX ∪ {x1}) = ∅.1117

In this case, the inequality is satisfied.1118

• |E(V [(x1, y1)], SX ∪ {x1})| = 1.1119

We will show in general that E(V [(x1, y1)], SX ∪ {x1}) ⊆ E(V, SX):1120

i) If y ̸=⊥, we know from Lemma D.3 that E(V [(x1, y1)], SX ∪ {x1}) =1121

E(V, SX)[(x1, y1)] ⊆ E(V, SX).1122

ii) If y =⊥, then E(V [(x1, y1)], SX ∪ {x1}) = E(V, SX ∪ {x1}) ⊆ E(V, SX).1123

And so, |E(V, SX)| ≥ 1⇒ CC(V, SX) ≥ 0 = CC(V [(x1, y1)], SX ∪ {x1}).1124

38



Under review as a conference paper at ICLR 2024

Induction Step:1125

For the inductive case, suppose the induction hypothesis holds for |SX | = |X |− 1, .., j+1. Consider1126

some SX with |SX | = j.1127

We have three subcases:1128

• E(V [(x1, y1)], SX ∪ {x1}) = ∅1129

In this case, the inequality is satisfied.1130

• |E(V [(x1, y1)], SX ∪ {x1})| = 11131

As shown before, E(V [(x1, y1)], SX ∪ {x1}) ⊆ E(V, SX).1132

And so, we have that |E(V, SX)| ≥ 1⇒ CC(V, SX) ≥ 0 = CC(V [(x1, y1)], SX ∪{x1}).1133

• |E(V [(x1, y1)], SX ∪ {x1})| ≥ 2.1134

Using similar logic as before, |E(V [(x1, y1)], SX ∪ {x1})| ≥ 2⇒ |E(V, SX)| ≥ 2.1135

Define1136

x′ ∈ argmin
x∈X\SX

max
y

1(y ̸=⊥) + CC(V [(x′, y)], SX ∪
{
x′})

With this definition,

CC(V, SX) = max
y

1(y ̸=⊥) + CC(V [(x′, y)], SX ∪
{
x′})

If x′ = x1, then the result follows since CC(V, SX) ≥ 1(y1 ̸=⊥)+CC(V [(x1, y1)], SX ∪1137

{x1}).1138

If x′ ̸= x1, then x′ ∈ X \ S ∪ {x1}, and we can write:1139

CC(V [(x1, y1)], SX ∪ {x1}) ≤ max
y

1(y ̸=⊥) + CC(V [(x1, y1), (x
′, y)], SX ∪

{
x1, x

′})
(as |E(V [(x1, y1)], SX ∪ {x1})| ≥ 2 so we can unroll, and x′ ∈ X \ S ∪ {x1})

≤ max
y

1(y ̸=⊥) + CC(V [(x′, y)], SX ∪
{
x′})

(using induction hypothesis since |SX ∪
{
x′} | = j + 1)

= CC(V, SX)

1140

Lemma G.3. For y ̸=⊥, x ∈ X \ SX :

CC(V [(x, y)], SX) = CC(V [(x, y)], SX ∪ {x})

Proof. Firstly, we have that:

E(V [(x, y)], SX) =
{
h ∈ V [(x, y)] : ∀h′ ∈ V [(x, y)] \ {h} , h′(X \ SX) ̸= h(X \ SX)

}
=
{
h ∈ V [(x, y)] : ∀h′ ∈ V [(x, y)] \ {h} , h′(X \ (SX ∪ {x}) ̸= h(X \ SX ∪ {x})

}
= E(V [(x, y)], SX ∪ {x})

Hence the statement holds when SX = X \ {x}, or more generally, when CC(V [(x, y)], SX ∪ {x})1141

or CC(V [(x, y)], SX) is at its base case (one implies the other due to having the same E-VS).1142

Now, we will induct on the size of |SX |, since the base case of SX = X \ {x} is satisfied.1143

Base case: |SX | = |X | − 1.1144

If E(V, SX) = E(V, SX ∪ {x}) = ∅, then LHS = RHS = −∞;1145

If |E(V, SX)| = |E(V, SX ∪ {x})| = 1, then LHS = RHS = 0.1146
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Induction Step: Suppose the statement holds for when |SX | = |X |, ..., j + 1. Let |SX | = j.1147

We first handle the base cases:1148

If E(V, SX) = E(V, SX ∪ {x}) = ∅, then LHS = RHS = −∞;1149

If |E(V, SX)| = |E(V, SX ∪ {x})| = 1, then LHS = RHS = 0.1150

Finally, it remains to consider when |E(V, SX)| = |E(V, SX ∪ {x})| ≥ 2. In this case,

CC(V, SX) = min
x′∈X\SX

max
y′∈{+1,−1,⊥}

1(y′ ̸=⊥) + CC(V [(x′, y′)], SX ∪
{
x′}).

Define x∗ ∈ argminx′∈X\SX
maxy′∈{+1,−1,⊥} 1(y

′ ̸=⊥) + CC(V [(x′, y′)], SX ∪
{
x′}).1151

We will show that x∗ ̸= x.1152

In fact, for any x′ ∈ X \ S, x′ ̸= x∗ (which exists because {x} ⊂ X \ SX ) we have:

max
y′∈{+1,−1,⊥}

1(y′ ̸=⊥) + CC(V y
x [(x, y

′)]], SX ∪ {x})

= max(1 + CC(V y
x , SX ∪ {x}), 1 + CC(∅, SX ∪ {x}), CC(V y

x , SX ∪ {x}))
= 1 + CC(V y

x , SX ∪ {x}) (maximized at when y′ = y)

≥ max
y′∈{+1,−1,⊥}

1(y′ ̸=⊥) + CC(V y
x [(x

′, y′)], SX ∪
{
x, x′})

(using 1 ≥ 1(y ̸=⊥) and Lemma G.2)

= max
y′∈{+1,−1,⊥}

1(y′ ̸=⊥) + CC(V y
x [(x

′, y′)], SX ∪
{
x′})

(using induction hypothesis since |SX ∪
{
x′} | = j + 1)

And so,

CC(V [(x, y)], SX) = min
x′∈X\SX

max
y′∈{+1,−1,⊥}

1(y′ ̸=⊥) + CC(V y
x [(x

′, y′)]], SX ∪
{
x′})

= min
x′∈X\(SX∪{x})

max
y′∈{+1,−1,⊥}

1(y′ ̸=⊥) + CC(V y′

x′ [(x, y)]], SX ∪
{
x′})

(since we have just shown that x∗ ̸= x)

= min
x′∈X\(SX∪{x})

max
y′∈{+1,−1,⊥}

1(y′ ̸=⊥) + CC(V y′

x′ [(x, y)]], (SX ∪
{
x′}) ∪ {x})

(using induction hypothesis since |SX ∪
{
x′} | = j + 1)

= min
x′∈X\(SX∪{x})

max
y′∈{+1,−1,⊥}

1(y′ ̸=⊥) + CC(V y
x [(x

′, y′)]], (SX ∪ {x}) ∪
{
x′})

(rearranging)
= CC(V [(x, y)], SX ∪ {x})

1153

G.2 UPPER BOUND1154

G.2.1 NEGATIVE RESULTS1155

Upper Bound when there is Identifiability:1156

We first observe that without assumptions on the structure of V , there exists a setting, in which the1157

upper bound does not hold.1158

Proposition G.4. There exists a non-Cartesian product version space V ⊆ H and query response
S ⊆ (X × Y)∗ such that CC(Vi, S

i
X) ≥ 0 for all i, but:

CC(V, SX) ≥
n∑

i=1

CC(Vi, S
i
X) + n− 1

Proof. We will construct a V and S such that CC(V, SX) ≥ n− 1, but CC(Vi, S
i
X) = 0.1159
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Hypothesis Class: Define thresholds functions f1 = 1(x ≥ 1/4), f2 = 1(x ≥ 1/2), f3 = 1(x ≥1160

3/4) for x ∈ [0, 1].1161

DefineH′ as:
H′ =

{
(f1, f2, ..., f2), (f2, f1, ..., f2), ..., (f2, f2, , ...., f1)

}
where the jth model has its jth task model as f1 instead of f2.1162

Define the non-Cartesian product hypothesis class as:

H = H′ ∪
{
(f2, f2, ..., f2), (f3, f3, ..., f3)

}
We have thatHi = {f1, f2, f3}.1163

Data: Let X1 = {xi1}ni=1 and X2 = {xi2}ni=1, where xi1 = 1/3ei and xi2 = 2/3ei. Let X =1164

X1 ∪ X2.1165

Query Responses: Suppose S =
{
(xi2, [⊥, ...,⊥]) : i ∈ [n]

}
.1166

This means that SX =
{
xi2 : i ∈ [n]

}
, and that Si

X =
{
2/3
}

, since the only x ∈ X such that1167

xi = 2/3 is xi2 and xi2 ∈ SX .1168

Define V = H[S] = H. And so, Vi = {f1, f2, f3}.1169

We have that E(Vi, S
i
X) = {f1}, and so, CC(Vi, S

i
X) = 0.1170

Now, it remains to show that E(V, SX) = H′.1171

Firstly, since V = H[S] = H, we examine each model inH.1172

The model (f2, f2, ..., f2) and (f3, f3, ..., f3)’s predictions on xi1 (for any i) are both1173

(−1,−1, . . . ,−1). Thus, they have the same predictions on {xi1}i∈[n] = X \ SX , and so,1174

(f2, f2, ..., f2), (f3, f3, ..., f3) ̸∈ E(V, SX).1175

With this, we see that E(V, SX) = H′, because for the ith element of H′, it disagrees with every1176

other element on xi1.1177

Finally, we will show that CC(V, SX) ≥ n− 1.1178

Consider a labeling strategy that returns label (−1, ...,−1) for any xi1 queried.1179

This strategy identifies some h ∈ H, since each point in X1 that is queried removes one model from1180

E-VS. And so, after n − 1 queries on points in X1, the E-VS has one hypothesis and the learning1181

interaction finishes since the identification condition is met.1182

We note that any querying algorithm will require n− 1 labeled queries. Each binary labeled example1183

removes only one model from the E-VS, thus n− 1 labels are required for identification under any1184

querying algorithm. And so, we have that CC(V, SX) ≥ n− 1.1185

1186

Upper Bound when there is no Identifiability:1187

Proposition G.5. For non-Cartesian product hypothesis class V , there exists V, S such that1188

CC(Vi, S
i
X) = −∞ for some i, but CC(V, SX) ≥ 1.1189

Proof. ConsiderH =
{
(h1, h2), (h3, h4)

}
.1190

X =
{
[x1, 0], [0, x2]

}
, where for x1, x2 ̸= 0, h1(x1) ̸= h3(x1) and h2(x2) ̸= h4(x2). h1(0) =1191

h3(0) and h2(0) = h4(0).1192

Consider query response S =
{
([x1, 0], [⊥,⊥])

}
. SX =

{
[x1, 0]

}
, S1

X = {x1} , S2
X = {0}.1193

V = H[S] = H. V1 = {h1, h3} and V2 = {h2, h4}.1194

E(V1, {x1}) = E({h1, h3} , {x1}) = ∅. However, E(V,
{
[x1, 0]

}
) = H, since (h1, h2) and1195

(h3, h4) differ on [0, x2].1196

And so, 1 = CC(V, SX) >
∑2

i=1 CC(Vi, S
i
X) = −∞, since CC(V1, S

1
X) = −∞.1197
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Remark G.6. In conclusion, to show the upper bound, need to impose Cartesian product condition.1198

Negative Example motivating the need to assume a particular label cost definition:1199

When the label cost is cone, there are settings where CC(V, SX) can be much larger i.e.1200

CC(V, SX) >>
∑n

i=1 CC(Vi, S
i
X).1201

Proposition G.7. If the label cost is cone(y) = 1(∃i, yi ̸=⊥), there exists V and S such that
CC(Vi, S

i
X) = 1, but CC(V, SX) = |X |. This implies that:

CC(V, SX) >

n∑
i=1

CC(Vi, S
i
X)

Proof. Consider V = {h1, h2} × {h3, h4}, where h1, h2 ∈ V1 are thresholds functions h1 = 1(x ≥1202

0), h2 = 1(x ≥ 1) and h3, h4 ∈ V2 are also thresholds h3 = 1(x ≥ 0), h4 = 1(x ≥ 1).1203

X =
{
[ 1
m+1 ,

1
m+1 ], ..., [

m
m+1 ,

m
m+1 ]

}
, which means that X1 = X2 =

{
1

m+1 , ...,
m

m+1

}
.1204

We will show that:
CC(V, ∅) >> CC(V1, ∅) + CC(V2, ∅)

We first have that CC(V1, ∅), CC(V2, ∅) = 1, since only one labeled sample is needed to distinguish1205

between h1, h2 and between h3, h4.1206

However, we have CC(V, ∅) ≥ m = |X | with the following labeling strategy T :1207

1) As long as |SX | < m− 1, for queried point [ i
m+1 ,

i
m+1 ], return (⊥, h3(

i
m+1 )).1208

2) Only when |SX | = m− 1, for queried point [ j
m+1 ,

j
m+1 ], return (h1(

j
m+1 ), h3(

j
m+1 )).1209

We can first that this is an identifiable labeling strategy that identifies (h1, h3).1210

And, for any querying algorithm, h∗ is only identified when SX = X .1211

Thus, |X | labeled samples need to be queried, making CC(V, ∅) = |X |.1212

1213

Remark G.8. To prove the above bound, we need to assume the label cost to be: 1(y ̸=⊥) =1214

1(∀i, yi ̸=⊥) = call(y).1215

G.2.2 POSITIVE RESULTS1216

Change in Definition of the Game:1217

• To prove the upper bound, we have a changed definition in labeling payoff, which is now:

1(y ̸=⊥) := 1(∀i, yi ̸=⊥)

• The earlier negative example motivates requiring the assumption that V is a Cartesian1218

product.1219

Theorem G.9. For all V = ×i∈[n]Vi and SX ⊆ X , under labeling cost call(y) = 1(∀i, yi ̸=⊥):

CC(V, SX) ≤
n∑

i=1

CC(Vi, S
i
X)

1220

Proof. We prove this by induction on the size of SX .1221

Base Case: When SX = X ⇒ Si
X = Xi. So for all i, |E(Vi, S

i
X)| ≤ 1.1222

It suffices to check that CC(V, SX) = 0⇒ ∀i, CC(Vi, S
i
X) = 0.1223

Indeed, if CC(V, SX) = 0, then |E(V,X )| = 1. Denote by h the only element of E(V,X ).1224
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We must have V = {h}, which in turn implies that for all i Vi = {hi}. Therefore, for all i,1225

|E(V,X )| = {hi} = 1, which implies ∀i, CC(Vi, S
i
X) = 0.1226

Induction Step:1227

Suppose the following holds for SX ⊂ X for |SX | = |X |, ..., j + 1. Now let |SX | = j (note that1228

SX ⊂ X ).1229

We will analyze the three cases:1230

• ∃i, CC(Vi, S
i
X) = −∞1231

• ∀i, CC(Vi, S
i
X) ≥ 0 and ∀i, CC(Vi, S

i
X) = 01232

• ∀i, CC(Vi, S
i
X) ≥ 0 and ∃i, CC(Vi, S

i
X) ≥ 1.1233

1. If there is at least one i such that CC(Vi, S
i
X) = −∞.1234

It suffices to verify that ∃i, E(Vi, S
i
X) = ∅ ⇒ E(V, SX) = ∅.1235

This follows immediately from that E(V, SX) = ×n
i=1E(Vi, S

i
X) (Lemma G.1).1236

2. For all i, CC(Vi, S
i
X) is at its base case and CC(Vi, S

i
X) = 0.1237

That is, we have ∀i, |E(Vi, S
i
X)| = 1.1238

From Lemma G.1, we have that E(V, SX) = ×n
i=1E(Vi, S

i
X), which means that1239

|E(V, SX)| = 1. And so, CC(V, SX) = 0 =
∑n

i=1 CC(Vi, S
i
X).1240

3. Exists i such that CC(V1, S
1
X) ≥ 1, and CC(Vi, S

i
X) ≥ 0 for all i.1241

Without loss of generality, i = 1.1242

Note that if |E(V, SX)| ≤ 1, then CC(V, SX) ≤ 0 ≤
∑n

=1 CC(Vi, S
i
X).1243

And so, throughout the rest of the proof, we focus on the case that |E(V, SX)| ≥ 2. Also,1244

recall that since CC(V1, S
1
X) ≥ 1 implies that E(V1, S

1
X) ≥ 2.1245

Define1246

x∗
1 = argmin

x∈X1\S1
X

max
y∈Y

1(y ̸=⊥) + CC(V1[(x
∗
1, y)], S

1
X ∪ {x∗

1})

We may express:

CC(V1, S
1
X) = max

y∈Y
1(y ̸=⊥) + CC(V1[(x

∗
1, y)], S

1
X ∪ {x∗

1})

And since x∗
1 ∈ X1 \ S1

X , the set X∗
1 =

{
x′ ∈ X \ SX : x′

1 = x∗
1

}
is non-empty.1247

Denote LX =
{
x : (x, y) ∈ L

}
. Consider the following procedure:1248

repeat1249

L = ∅1250

Query some x ∈ X∗
11251

Labeler returns y:

y = argmax
y

1(y ̸=⊥) + CC(V [L ∪
{
(x, y)

}
], SX ∪ LX ∪ {x})

X∗
1 ← X∗

1 \ {x}1252

L← L ∪
{
(x, y)

}
1253

until y1 ̸=⊥ or X∗
1 = ∅1254

Denote by ŷ1 the value of y1 at the end of the procedure, let |L| = m and, in1255

order, interaction history L is such that L =
{
(x1, y1), ..., (xm, ym)

}
. Let Li =1256 {

(xi, yi) : (x, y) ∈ L, yi ̸=⊥
}

index the binary labeled data for the ith task.1257
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CC(V, SX) ≤ 1(y1 ̸=⊥) + CC(V [(x1, y1)], SX ∪
{
x1
}
) (since x1 ∈ X∗

1 ⊆ X \ SX )

= CC(V [(x1, y1)], SX ∪
{
x1
}
) (since y11 =⊥)

≤ ...
(unrolling according to L, which is possible as CC(V, SX) ≥ 1⇒ CC(V [L], SX ∪ LX) ≥ 1)

≤ 1(ym ̸=⊥) + CC(V [L], SX ∪ LX)

≤ 1(ŷ1 ̸=⊥) + CC(V [L], SX ∪ LX)
(1(∀i, ymi ̸=⊥) ≤ 1(ŷ1 ̸=⊥) since ym1 = ŷ1)

= 1(ŷ1 ̸=⊥) + CC(×i∈[n]Vi[L
i], SX ∪ LX) (V is a Cartesian product)

≤ 1(ŷ1 ̸=⊥) +
n∑

i=1

CC(Vi[L
i], (SX ∪ LX)i)

(using induction hypothesis as |LX | ≥ 1)

= 1(ŷ1 ̸=⊥) + CC(V1[(x
∗
1, ŷ1)], S

1
X ∪ {x∗

1}) +
n∑

i=2

CC(Vi[L
i], (SX ∪ LX)i)

(⋄)

≤ CC(V1, S
1
X) +

n∑
i=2

CC(Vi[L
i], (SX ∪ LX)i) (by definition of x∗

1)

≤ CC(V1, S
1
X) +

n∑
i=2

CC(Vi, S
i
X) (⋄⋄)

(⋄): For the fourth step, there are two cases:1258

• If upon exit, X∗
1 = ∅:1259

Then using the definition of S1
X , since ̸ ∃x ∈ X \ (SX ∪ LX) with x1 = x∗

1, we have1260

that (SX ∪ LX)1 = S1
X ∪ {x∗

1}.1261

Therefore, CC(V1[L
1], (SX ∪ LX)1) = CC(V1[(x

∗
1, ŷ1)], S

1
X ∪ {x∗

1}).1262

• Otherwise, upon exit, X∗
1 ̸= ∅. Then, we must have that ŷ ̸=⊥:1263

So ∃x ∈ X \ (SX ∪ LX) with xi = x∗
i .1264

Therefore, (SX ∪ LX)1 = S1
X , hence CC(V1[L

1], (SX ∪ LX)1) =1265

CC(V1[(x
∗
1, ŷ1)], S

1
X).1266

From Lemma G.3, we have that CC(V1[(x
∗
1, ŷ1)], S

1
X) = CC(V1[(x

∗
1, ŷ1)], S

1
X ∪1267

{x∗
1}).1268

(⋄⋄): For the last step, consider each task i for i ∈ {2, . . . , n}:1269

Define:1270

• Li1
X =

{
x′ : ∃(x, y) ∈ L, xi = x′, yi ̸=⊥ ∧x′ ∈ (SX ∪ LX)i

}
1271

• Li2
X =

{
x′ : ∀(x, y) ∈ L, xi = x′, yi =⊥ ∧x′ ∈ (SX ∪ LX)i

}
1272

• Li3
X =

{
x′ : ∃(x, y) ∈ L, xi = x′, yi ̸=⊥ ∧x′ ̸∈ (SX ∪ LX)i

}
1273

• Li4
X =

{
x′ : ∀(x, y) ∈ L, xi = x′, yi =⊥ ∧x′ ̸∈ (SX ∪ LX)i

}
1274

With these definitions, we have (SX ∪LX)i = Si
X ∪Li1

X ∪Li2
X . The binary labeled examples1275

comprise of Li
X = Li1

X ∪ Li3
X .1276
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We have that:

CC(Vi[L
i], (SX ∪ LX)i) = CC(Vi[L

i], Si
X ∪ Li1

X ∪ Li2
X)

= CC(Vi[L
i], Si

X ∪ Li1
X ∪ Li2

X ∪ Li3
X)
(using Lemma G.3 on Li3

X )

= CC(Vi[L
i ∪
{
(x,⊥) : x ∈ Li2

X

}
], Si

X ∪ Li1
X ∪ Li2

X ∪ Li3
X)

≤ CC(Vi, S
i
X)

(iteratively applying Lemma G.2 on Li1
X ∪ Li2

X ∪ Li3
X )

1277

G.3 LOWER BOUND1278

Label Cost Function: From this point onwards, we assume that the label cost is (the more generous)1279

cone.1280

G.3.1 NEGATIVE RESULTS1281

Lower Bound when there is Identifiability:1282

The following example leverages the fact that structure in the multi-task hypothesis class constrains1283

the target hypotheses across all n tasks. And so, abstentions can lead to the multi-task setting requiring1284

fewer samples than even the single-task setting with the highest sample complexity.1285

Proposition G.10. There exists a non-Cartesian product version space V and query response S such
that CC(Vi, S

i
X) ≥ 0 for all i, but:

CC(V, SX) < max
i∈[n]

CC(Vi, S
i
X)

Proof. Hypothesis Class: Define all zero-classifier, h0(x) = 0 for all x. Let hi = 1(x ∈ [i, i+ 1))1286

for i ∈ [n] be the ith interval.1287

Let g1, g2, g3 be three distinct threshold functions, g1 = 1(x ≥ 1/4), g2 = 1(x ≥ 1/2), g3 = 1(x ≥1288

3/4) for x ∈ [0, 1].1289

SetH to be
{
(h0, g1), (h0, g2),

{
(hi, g3)

}n
i=1

}
.1290

Data: Define X =
{
[x11, 0], ...., [x1n, 0], [0, x21], [0, x22]

}
where x1i = i + 1/2 for i ∈ [n] and1291

x21 = 1/3, x22 = 2/3. By construction, g1(x21) ̸= g2(x21) and g2(x22) ̸= g3(x22).1292

Define S =
{
([0, x21], [⊥,⊥])

}
. SX =

{
[0, x21]

}
, S1

X = {}, S2
X = {x21}.1293

We have V = H[S] = H. V1 = H1 = {h0, h1, h2, h3, ..., hn} and V2 = H2 = {g1, g2, g3}.1294

g1((X \ SX)2) = g2((X \ SX)2)⇒ (h0, g1), (h0, g2) ̸∈ E(V, SX).1295

We have E(V, SX) =
{
(hi, g3)

}n
i=1

, because for any i ̸= j, (hi, g3) and (hj , g3) differ on [x1j , 0].1296

From this, we get that CC(V, SX) = n− 1. Querying any point [x1i, 0] at any time removes only1297

one model from the E-VS. Since the E-VS is of size n, n− 1 binary labeled examples are needed to1298

reduce the E-VS size to at most 1.1299

On the other hand, we have that for CC(V1, S
1
X) with |V1| = n + 1 and S1

X = ∅, CC(V1, S
1
X) =1300

n > CC(V, SX).1301

1302

Lower Bound when there is no Identifiability even with Cartesian product assumption:1303

Proposition G.11. There exists a Cartesian product version space V and query response S with
CC(V, SX) < 0 such that:

CC(V, SX) < max
i∈[n]

CC(Vi, S
i
X)
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Proof. Let H = {h11, h12} × {h21, h22}, where h11 = 1(x ≥ 0), h12 = 1(x ≥ 1) are intervals,1304

and h21 = 1(x ≥ 0), h22 = 1(x ≥ 1) are intervals.1305

X =
{
[x1, 0], [0, x2]

}
where x1 = 1/2, x2 = 1/2.1306

Labeling is: S =
{
([x1, 0], [⊥, 1])

}
. SX =

{
[x1, 0]

}
, S1

X = {x1}, S2
X = {0}.1307

So V = H[S] = H. V1 = {h11, h12} and V2 = {h21, h22}.1308

Under S, we observe that E(V, SX) = ∅, since (h11, h) and (h12, h) for h ∈ V2 = {h21, h22},1309

predict the same on
{
[0, x2]

}
= X \ SX . Hence, CC(V, SX) = −∞.1310

However, CC(V2, S
2
X) = CC({h21, h22} , {0}) = 1 > CC(V, SX).1311

1312

Remark G.12. To prove the lower bound, need to impose both identifiability CC(V, SX) ≥ 0 *and*1313

Cartesian product condition.1314

G.3.2 POSITIVE RESULTS1315

Theorem G.13. For all V = ×i∈[n]Vi and SX ⊆ X , if CC(V, SX) ≥ 0, then:

CC(V, SX) ≥ max
i∈[n]

CC(Vi, S
i
X)

Proof. We prove this by induction on the size of SX .1316

Base Case: When SX = X ⇒ Si
X = Xi, so for all i, CC(Vi, S

i
X) ≤ 0 ≤ CC(V, SX).1317

Induction Step: Suppose the following holds for |SX | = |X |, ..., j + 1.1318

Now let |SX | = j. Note that this implies SX ⊂ X .1319

First, consider the case when CC(V, SX) = 0. We have that |E(V, SX)| = 1. And so, using1320

Lemma G.1, for all i, |E(Vi, S
i
X)| = 1. Thus, CC(Vi, S

i
X) = 0 for all i.1321

Now, we consider the case when CC(V, SX) ≥ 1.1322

Let k = argmaxi∈[n] CC(Vi, S
i
X). It suffices to verify the statement when CC(Vk, S

k
X) ≥ 1.1323

Since X \ SX is non-empty due to SX ⊂ X , define:

xmin = argmin
x∈X\SX

max
y′∈Y

1(y′ ̸=⊥) + CC(V y′

x , SX ∪ {x})

We have that Xk \Sk
X = (X \SX)k =

{
x′ ∈ Xk : ∃x ∈ X \ SX , xk = x′}, and so xmin

k ∈ Xk \Sk
X1324

since xmin ∈ X \ SX .1325

Since CC(Vk, S
k
X) ≥ 1, we know there exists ỹk such that:

CC(Vk, S
k
X) ≤ 1(ỹk ̸=⊥) + CC(Vk[(x

min
k , ỹk)], S

k
X ∪

{
xmin
k

}
).

Note in particular that E(Vk[(x
min
k , ỹk)], S

k
X ∪

{
xmin
k

}
) ̸= ∅, as otherwise CC(Vk, S

k
X) ≤ −∞1326

which would contradict our assumption that CC(Vk, S
k
X) ≥ 1.1327
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CC(V, SX) = max
y′∈Y

1(y′ ̸=⊥) + CC(V y′

xmin , SX ∪
{
xmin

}
)

≥ 1(y ̸=⊥) + CC(×i∈[n](Vi)
yi

xmin
i

, SX ∪
{
xmin

}
)

(setting y′ = y as constructed in Lemma G.14 and using that V y
xmin = ×i∈[n](Vi)

yi

xmin
i

)

≥ 1(y ̸=⊥) + max
i∈[n]

CC((Vi)
yi

xmin
i

, (SX ∪
{
xmin
i

}
)i)

(using induction hypothesis since xmin ̸∈ SX , so |SX ∪
{
xmin

}
| = j + 1)

≥ 1(ỹk ̸=⊥) + CC((Vk)
ỹk

xmin
k

, (SX ∪
{
xmin

}
)k)

(1(y ̸=⊥) ≥ 1(yk ̸=⊥) = 1(ỹk ̸=⊥) as yk = ỹk by construction)

≥ 1(ỹk ̸=⊥) + CC((Vk)
ỹk

xmin
k

, Sk
X ∪

{
xmin
k

}
)

(note that xmin
k ∈ (X \ SX)k, so xmin

k ∈ Xk \ Sk
X and ⋄)

≥ CC(Vk, S
k
X)

(⋄): Either we have (SX ∪
{
xmin

}
)k = Sk

X ∪
{
xmin
k

}
or (SX ∪

{
xmin

}
)k = Sk

X . The former case1328

yields equality and the statement holds.1329

For the latter case, we can use Lemma G.2 (for ỹk =⊥) or Lemma G.3 (for ỹk ̸=⊥) to get that:1330

CC((Vk)
ỹk

xmin
k

, (SX ∪
{
xmin

}
)k) = CC((Vk)

ỹk

xmin
k

, Sk
X) ≥ CC((Vk)

ỹk

xmin
k

, Sk
X ∪

{
xmin
k

}
).1331

1332

Lemma G.14. Suppose C(V, SX) ≥ 0 and xmin = argminx∈X\SX
maxy∈Y 1(y ̸=⊥) +

CC(V y
x , SX ∪ {x}). If there ỹk such that CC(Vk, S

k
X) ≤ 1(ỹk ̸=⊥) + CC(Vk[(x

min
k , ỹk)], S

k
X ∪{

xmin
k

}
) for CC(Vk, S

k
X) ≥ 0, then there exists y such that its kth coordinate yk = ỹk such that:

CC(V [(xmin, y)], SX ∪
{
xmin

}
) ≥ 0

Proof. We explicitly construct some y such that yk = ỹk and the above holds:1333

• Firstly, CC(V, SX) ≥ 0, which implies there exists h ∈ E(V, SX).1334

h ∈ V implies that ∀i, hi ∈ Vi.1335

Also, CC(Vk[(x
min
k , ỹk)], S

k
X ∪

{
xmin
k

}
) ≥ CC(Vk, S

k
X)− 1 ≥ 0. This implies that there1336

exists some h̃k ∈ E(Vk[(x
min
k , ỹk)], S

k
X ∪

{
xmin
k

}
).1337

• We claim that y = (h1(x
min
1 ), ..., h̃k(x

min
k ), ..., hn(x

min
n )) satisfies the condition.1338

To show this, define h̃ = (h1, ..., h̃k, ..., hn).1339

Firstly, since hi ∈ Vi (for i ̸= k, i ∈ [n]) and h̃k ∈ Vk, we have that h̃ ∈ ×i∈[n]Vi = V .1340

Also, h̃(xmin) = y. Therefore, h̃ ∈ V y
xmin .1341

• We will show that h̃ ∈ E(V y
xmin , SX ∪

{
xmin

}
), which proves the result.1342

From Lemma D.10, We have that:

h̃k ∈ E(Vk[(x
min
k , ỹk)], S

k
X ∪

{
xmin
k

}
) ⊆ E(Vk[(x

min
k , ỹk)], (SX ∪

{
xmin

}
)k)

since Sk ∪
{
xmin
k

}
⊇ (SX ∪

{
xmin

}
)k.1343

For all i ̸= k, we have:

h ∈ E(V, SX)⇒ hi ∈ E(Vi, S
i
X)⇒ hi ∈ E(Vi[(x

min
i , yi)], S

i
X ∪

{
xmin
i

}
)
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since for all h′ ∈ Vi \ {hi} with h′(xmin
i ) = yi = hi(x

min
i ), h′ must be such that h′(X \1344

(Si
X ∪

{
xmin
i

}
)) ̸= hi(X \ (Si

X ∪
{
xmin
i

}
)). Since this holds for all h′ ∈ Vi[(x

min
i , yi)] \1345

{hi}, we have hi ∈ E(Vi[(x
min
i , yi)], S

i
X ∪

{
xmin
i

}
).1346

From Lemma D.10, We have that:1347

hi ∈ E(Vi[(x
min
i , yi)], S

i
X ∪

{
xmin
i

}
) ⊆ E(Vi[(x

min
i , yi)], (SX ∪

{
xmin

}
)i)

since Si
X ∪

{
xmin
i

}
⊇ (SX ∪

{
xmin

}
)i.1348

Hence,

h̃ ∈ ×k
i=1E(V [(xmin

i , yi)], (SX ∪
{
xmin

}
)i))⇒ h̃ ∈ E(V [(xmin, y)], SX ∪

{
xmin

}
))

since from Lemma G.1, we have that:1349

E(V [(xmin, y)], SX ∪
{
xmin

}
)) = ×k

i=1E(V [(xmin
i , yi)], (SX ∪

{
xmin

}
)i))

1350

Remark G.15. As CC(×i∈[n](Vi)
yi

xmin
i

, SX ∪
{
xmin

}
) ≥ 0, the precondition for induction hypoth-1351

esis holds.1352

G.4 MULTI-TASK ACTIVE LEARNING WITHOUT ABSTENTION1353

We also investigate the related multi-task, minimax active learning setting without abstention, which1354

may be of independent interest. To our knowledge, this is also an open problem. Our goal is again to1355

relate the multi-task complexity to the single-task complexity. Since abstention is the cause of several1356

of the negative examples above, one can prove more general upper bounds when labels have to be1357

given.1358

G.4.1 GAME SETUP1359

Without abstention, the state may now be tracked simply with VS (instead of E-VS). The analogous1360

CC game may be defined as follows:1361

CC(V, SX) =


−∞ |V | = 0

0, |V | = 1

minx∈X\SX
maxy∈{−1,+1}

(
1 + CC(V y

x , SX ∪ {x})
)
, |V | ≥ 2

G.4.2 LEMMAS USED1362

Lemma G.16. For any SX , |V | ≥ 1⇔ CC(V, SX) ≥ 0.1363

Proof. Base Case: We prove this by induction on |SX |. If SX = X , then |V | ≥ 1 ⇒ |V | = 1 ⇒1364

CC(V, SX) = 0.1365

Induction Step: Suppose this is true for |SX | = |X |, ..., j + 1. Now |SX | = j. Let h ∈ V .1366

If |V | = 1, then the result holds.1367

Otherwise, |V | ≥ 2. We will show that |V | ≥ 2⇒ CC(V, SX) ≥ 1:

CC(V, SX) = min
x∈X\SX

max
y∈{+1,−1}

1 + CC(V y
x , SX ∪ {x})

≥ 1 + CC(V [(x∗, h(x∗)], SX ∪ {x∗}))
(for x∗ = argminx∈X\SX

maxy∈{+1,−1} 1 + CC(V y
x , SX ∪ {x}))

≥ 1
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The last step that CC(V [(x∗, h(x∗)], SX ∪ {x∗})) ≥ 0 follows from induction hypothesis, whose1368

precondition is satisfied because h ∈ V ⇒ h ∈ V [(x∗, h(x∗)].1369

(⇐) |V | = 0⇒ CC(V, SX) = −∞ < 0, hence CC(V, SX) ≥ 0⇒ |V | ≥ 1.1370

Corollary G.17. We have that:1371

1. CC(V, SX) = −∞⇔ |V | = 01372

2. CC(V, SX) = 0⇔ |V | = 11373

Proof. 1. (⇒): Follows from that CC(V, SX) < 0⇒ |V | < 1⇒ |V | = 0.1374

(⇐): Follows from the base case definition of CC.1375

2. (⇒): From the above, we have that |V | ≥ 2⇒ CC(V, SX) ≥ 1. And so, CC(V, SX) ≤1376

0⇒ |V | ≤ 1.1377

The result follows since CC(V, SX) = 0 ̸= −∞⇒ |V | ≠ 0⇒ |V | = 1.1378

(⇐): Follows from the base case definition of CC.1379

1380

Lemma G.18. For V ′ ⊆ V and any SX ⊆ X :

CC(V, SX) ≥ CC(V ′, SX)

Proof. We will prove this statement by induction on the size of SX .1381

Base Case: SX = X . This means CC(V, SX), CC(V ′, SX) are at the base-case. If |V ′| = 1 ⇒1382

|V | = 1, and the statement holds. If |V ′| = 0, the statement holds since RHS is equal to −∞.1383

Induction Step: Suppose the statement holds for |SX | = |X |, ..., j + 1 and any V ′ ⊆ V . Consider1384

some SX such that |SX | = j.1385

(a) First, we examine what happens if |V | ≤ 1.1386

(i) if |V | = 0⇒ |V ′| = 0, then CC(V, SX) = −∞ = CC(V ′, SX)1387

(ii) if |V | = 1⇒ |V ′| ≤ 1, so CC(V, SX) = 0 ≥ CC(V ′, SX).1388

(b) If |V | ≥ 2 and |V ′| ≤ 1, then since |V | ≥ 1, we have CC(V, SX) ≥ 0 ≥ CC(V ′, SX) using1389

Lemma G.16.1390

(c) The remaining case is when |V | ≥ 2 and |V ′| ≥ 2.1391

We have that:

CC(V, SX) = min
x∈X\SX

max
y∈{+1,−1}

1 + CC(V y
x , SX ∪ {x}) (since |V | ≥ 2, we can unroll)

≥ min
x∈X\SX

max
y∈{+1,−1}

1 + CC((V ′)yx, SX ∪ {x})

(for all x, y, V ′ ⊆ V ⇒ V ′[(x, y)] ⊆ V [(x, y)], so we may apply induction hypothesis)

= CC(V ′, SX)

1392

Lemma G.19. For any data point (x1, y1) for x1 ̸∈ SX and y1 ∈ {+1,−1}:1393

CC(V [(x1, y1)], SX ∪ {x1}) ≤ CC(V, SX)

Proof. Base Case:1394

We first handle the case when |V [(x1, y1)]| ≤ 1:1395

If |V [(x1, y1)]| = 0, then the result holds.1396

If |V [(x1, y1)]| = 1⇒ |V | ≥ 1, and the result holds from Lemma G.16.1397
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This covers the base case when SX = X .1398

Induction Step: Suppose the statement holds for when |SX | = |X |, ..., j + 1. Let |SX | = j.1399

It suffices to examine the case that |V [(x1, y1)]| ≥ 2, which implies that |V | ≥ 2.1400

Define1401

x′ ∈ argmin
x∈X\SX

max
y

1 + CC(V [(x′, y)], S ∪
{
x′});

with this definition,

CC(V, SX) = max
y

1 + CC(V [(x′, y)], SX ∪
{
x′})

If x′ = x1, then the result follows.1402

If x′ ̸= x1, then x′ ∈ X \ S ∪ {x1}, and we can write:1403

CC(V [(x1, y1)], SX ∪ {x1}) ≤ max
y

1 + CC(V [(x1, y1), (x
′, y)], SX ∪

{
x1, x

′})
(as |V [(x1, y1)| ≥ 2 so we can unroll with x′ ∈ X \ SX ∪ {x1})
≤ max

y
1 + CC(V [(x′, y)], SX ∪

{
x′})

(using induction hypothesis)
= CC(V, SX)

1404

Lemma G.20. For x ∈ X \ SX and some y ∈ {+1,−1}:

CC(V [(x, y)], SX) = CC(V [(x, y)], SX ∪ {x})

Proof. We show this by induction on size of SX .1405

Base Case: Firstly, the version space are the same, V [(x, y)].1406

So LHS is equal to RHS when |V [(x, y)]| ≤ 1 in the base case. This covers the case when SX = X .1407

Induction Step: Suppose the statement holds for when |SX | = |X |, ..., j + 1. Let |SX | = j.1408

It suffices to consider when |V [(x, y)]| ≥ 2. We may write:

CC(V, SX) = min
x′∈X\SX

max
y′∈{+1,−1}

1 + CC(V [(x′, y′)]], SX ∪
{
x′})

Define x∗ ∈ argminx′∈X\SX
maxy′∈{+1,−1} 1 + CC(V [(x′, y′)]], SX ∪

{
x′}).1409

We will show that x∗ ̸= x.1410

In fact, for any x′ ∈ X \ SX , x′ ̸= x∗ (which exists because {x} ⊂ X \ SX ) we have:

max
y′∈{+1,−1}

1 + CC(V y
x [(x, y

′)]], SX ∪ {x})

= max(1 + CC(V y
x , SX ∪ {x}), 1 + CC(∅, SX ∪ {x}))

= 1 + CC(V y
x , SX ∪ {x}) (maximized at when y′ = y)

≥ max
y′∈{+1,−1}

1 + CC(V y
x [(x

′, y′)]], SX ∪
{
x, x′}) (using Lemma G.19)

= max
y′∈{+1,−1}

1 + CC(V y
x [(x

′, y′)]], SX ∪
{
x′})

(using induction hypothesis since |SX ∪
{
x′} | = j + 1)
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And so,

CC(V [(x, y)], SX) = min
x′∈X\SX

max
y′∈{+1,−1}

1 + CC(V y
x [(x

′, y′)]], SX ∪
{
x′})

= min
x′∈X\(SX∪{x})

max
y′∈{+1,−1}

1 + CC(V y′

x′ [(x, y)]], SX ∪
{
x′})

(since x∗ ̸= x)

= min
x′∈X\(SX∪{x})

max
y′∈{+1,−1}

1 + CC(V y′

x′ [(x, y)]], (SX ∪
{
x′}) ∪ {x})

(using induction hypothesis since |SX ∪
{
x′} | = j + 1)

= min
x′∈X\(SX∪{x})

max
y′∈{+1,−1}

1 + CC(V y
x [(x

′, y′)]], (SX ∪ {x}) ∪
{
x′})

(rearranging)
= CC(V [(x, y)], SX ∪ {x})

1411

G.4.3 UPPER BOUND1412

Theorem G.21. For all V ⊆ H and SX ⊆ X :

CC(V, SX) ≤
n∑

i=1

CC(Vi, S
i
X)

Proof. We will proceed by induction on the size of SX :1413

Base Case: When SX = X . In this case, Si
X = Xi. So all CC’s are at the base-case.1414

It suffices to check that if CC(V, SX) = 0⇒ ∀i, CC(Vi, S
i
X) = 0.1415

This follows because CC(V, SX) = 0 ⇔ |V | = 1. By definition of Vi, |Vi| = 1. And so,1416

CC(V, SX) = 0 =
∑n

i=1 CC(Vi, S
i
X).1417

Induction Step:1418

Suppose the following holds for SX ⊂ X for |SX | = |X |, ..., j + 1. Now let |SX | = j ( with1419

SX ⊂ X ).1420

We consider three cases:1421

• ∃i, Vi = ∅1422

• ∀i, |Vi| ≥ 1 and ∀i, |Vi| = 11423

• ∀i, |Vi| ≥ 1 and ∃i, |Vi| ≥ 21424

1. If there is i such that CC(Vi, S
i
X) = −∞.1425

Then Vi = ∅ ⇒ V = ∅, and therefore, CC(V, SX) = −∞.1426

2. For all i, CC(Vi, S
i
X) = 0.1427

This means that for all i, |Vi| = 1. And we wish to show that |V | ≤ 1, which would imply1428

that CC(V, SX) ≤ 0 =
∑n

i=1 CC(Vi, S
i
X).1429

Suppose not, there exists h, h′ ∈ V . Then, h ̸= h′ ⇒ ∃i such that hi ̸= h′
i ⇒ hi, h

′
i ∈1430

Vi ⇒ |Vi| ≥ 2, which is a contradiction.1431

3. Exists i such that CC(Vi, S
i
X) ≥ 1, and CC(Vj , S

j
X) ≥ 0 for all j.1432

Assume WLOG i = 1. Note that if |V | ≤ 1, then CC(V, SX) ≤ 0 ≤
∑n

i=1 CC(Vi, S
i
X).1433

And so, we will consider the case when |V | ≥ 2 and |V1| ≥ 2.1434
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Define1435

x∗
1 ∈ argmin

x∈X1\S1
X

max
y∈{+1,−1}

1 + CC(V1[(x
∗
1, y)], S

1
X ∪ {x∗

1})

we may express:1436

CC(V1, S
1
X) = max

y∈{+1,−1}
1 + CC(V1[(x

∗
1, y)], S

1
X ∪ {x∗

1}) (11)

Moreover, we have that ∃x∗ ∈ X \ SX with the first coordinate equal to x∗
1. And so,

CC(V, SX) ≤ max
y∈{+1,−1}n

1+CC(V [(x∗, y)], SX∪{x∗}) = 1+CC(V [(x∗, y′)], SX∪{x∗})

With this,

CC(V, SX) ≤ 1 + CC(V [(x∗, y′)], SX ∪ {x∗})

≤ 1 +

n∑
i=1

CC((V [(x∗, y′)])i, (SX ∪ {x∗})i) (using induction hypothesis)

= 1 + CC((V [(x∗, y′)])1, (SX ∪ {x∗})1) +
n∑

i=2

CC((V [(x∗, y′)])i, (SX ∪ {x∗})i)

≤ 1 + CC(V1[(x
∗
1, y

′
1)], S

1
X ∪ {x∗

1}) +
n∑

i=2

CC((V [(x∗, y′)])i, (SX ∪ {x∗})i)

(using Lemma G.18 and ⋄ for task 1)

≤ CC(V1, S
1
X) +

n∑
i=2

CC((V [(x∗, y′)])i, (SX ∪ {x∗})i)

(using Equation 11)

≤ CC(V1, S
1
X) +

n∑
i=2

CC(Vi[(x
∗
i , y

′
i)], S

i
X ∪ {x∗

i })

(using Lemma G.18 and ⋄ for tasks 2 to n)

≤ CC(V1, S
1
X) +

n∑
i=2

CC(Vi, S
i
X) (using Lemma G.19 for tasks 2 to n)

For any task i:1437

Lemma G.22. For any x, y and V ,

(V [(x, y)])i ⊆ Vi[(xi, yi)]

Proof. We have that h′
i ∈ (V [(x, y)])i ⇒ ∃h ∈ V [(x, y)], hi = h′

i.1438

hi ∈ Vi[(xi, yi)], since h ∈ V [(x, y)]⇒ hi ∈ Vi ∧ hi(xi) = yi (from h(x) = y).1439

And so, we get that h′
i = hi ∈ Vi[(xi, yi)].1440

1441

Using this lemma, we may apply Lemma G.18 to get that:

CC((V [(x∗, y′)])i, (SX ∪ {x∗})i) ≤ CC(Vi[(x
∗
i , y

′
i)], (SX ∪ {x∗})i)

We will show below that:

CC(Vi[(x
∗
i , y

′
i)], (SX ∪ {x∗})i) = CC(Vi[(x

∗
i , y

′
i)], S

i
X ∪ {x∗

i })

(⋄): There are two cases to consider:1442
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• Case 1: (SX ∪ {x∗})i = Si
X ∪

{
x∗
i

}
; in this case, CC(Vi[(x

∗
i , y

′
i)], (SX ∪ {x∗})i) =1443

CC(Vi[(x
∗
i , y

′
i)], S

i
X ∪

{
x∗
i

}
) holds;1444

• Case 2: (SX ∪ {x∗})i = Si
X , in this case, CC(Vi[(x

∗
i , y

′
i)], (SX ∪ {x∗})i) =1445

CC(Vi[(x
∗
i , y

′
i)], S

i
X) = CC(Vi[(x

∗
i , y

′
i)], S

i
X ∪

{
x∗
i

}
), where the last equality uses1446

Lemma G.20.1447

1448

G.4.4 LOWER BOUND1449

Example of non-Cartesian Product V can reverse inequality:1450

Proposition G.23. There exists a non-Cartesian product version space V and SX such that:

CC(V, SX) < max
i∈[n]

CC(Vi, S
i
X)

Proof. ConsiderH =
{
(h1, g1), (h2, g1), (h3, g2)

}
. hi and gj’s are thresholds.1451

Let X =
{
[x11, x2], [x12, x2]

}
, where x11 separates h1, h2, x12 separates h2, h3 and x2 separates1452

g1, g2.1453

Let S = ∅, so SX = S1
X = S2

X = ∅.1454

V = H =
{
(h1, g1), (h2, g1), (h3, g2)

}
, V1 = {h1, h2, h3}, V2 = {g1, g2}.1455

Then, we have that CC(V1, ∅) = 2 for V1 = {h1, h2, h3}. However, CC(V, ∅) = 1, since one needs1456

to query [x11, x2] only.1457

Remark G.24. The observation is that x11 helps to distinguish between h1 and h2 ∈ V1, while1458

x2 helps with distinguishing between g1 and g2 ∈ V2, which in turn helps to distinguish between1459

{h1, h2} and {h3} ⊂ V1.1460

Theorem G.25. For all V = ×i∈[n]Vi and SX ⊆ X such that CC(V, SX) ≥ 0:

CC(V, SX) ≥ max
i∈[n]

CC(Vi, S
i
X)

Proof. We prove this by induction on the size of SX .1461

Base Case: SX = X ⇒ Si
X = Xi.1462

If CC(V,X ) = 0, then |V | = 1⇒ |Vi| = 1,∀i⇒ CC(Vi, S
i
X) = 0 for all i.1463

Induction Step: Suppose the following holds for |SX | = |X |, ..., j + 1. Now let |SX | = j, note that1464

SX ⊂ X .1465

We first handle the base cases.1466

If CC(V, SX) = 0, then V = {h} ⇒ ∀i, Vi = {hi} (due to the Cartesian product structure of V )1467

⇒ CC(Vi, S
i
X) = 0.1468

Now, if CC(V, SX) ≥ 1 and if k = argmaxi∈[n] CC(Vi, S
i
X), then it suffices to verify the statement1469

when CC(Vk, S
k
X) ≥ 1.1470

Define:
xmin = argmin

x∈X\SX

max
y′∈Y

1(y′ ̸=⊥) + CC(V y′

x , SX ∪ {x})

From definition, Xk \ Sk
X = (X \ SX)k =

{
x′ ∈ Xk : ∃x ∈ X \ SX , xk = x′}. And so xmin

k ∈
Xk \ Sk

X since xmin ∈ X \ SX . Since CC(Vk, S
k
X) ≥ 1, we know there exists ỹk such that:

CC(Vk, S
k
X) ≤ 1 + CC(Vk[(x

min
k , ỹk)], S

k
X ∪

{
xmin
k

}
)
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Note in particular that Vk[(x
min
k , ỹk)] ̸= ∅ as otherwise CC(Vk, S

k
X) ≤ −∞ (which contradicts our

assumption):

CC(V, SX) = min
x∈X\SX

max
y′∈Y

1 + CC(V y′

x , SX ∪ {x}) ( X \ SX is non-empty, since SX ⊂ X )

= max
y′∈Y

1 + CC(V y′

xmin , SX ∪
{
xmin

}
)

≥ 1 + CC(×i∈[n](Vi)
yi

xmin
i

, SX ∪
{
xmin

}
)

(setting y′ = y as constructed below (†) and using that V y
xmin = ×i∈[n](Vi)

yi

xmin
i

)

≥ 1 + max
i∈[n]

CC((Vi)
yi

xmin
i

, (SX ∪
{
xmin
i

}
)i)

(using induction hypothesis since xmin ̸∈ SX , so |SX ∪
{
xmin

}
| = j + 1)

≥ 1 + CC((Vk)
ỹk

xmin
k

, (SX ∪
{
xmin

}
)k) (by construction, yk = ỹk)

= 1 + CC((Vk)
ỹk

xmin
k

, Sk
X ∪

{
xmin
k

}
)

(note that xmin
k ∈ (X \ SX)k, so xmin

k ∈ Xk \ Sk
X and ⋄)

≥ CC(Vk, S
k
X)

(†) : Claim: There exists some y such that yk = ỹk and V y
xmin ̸= ∅ (that is, (Vi)

yi

xmin
i
̸= ∅ for each i).1471

Firstly, CC(V, SX) ≥ 0⇒ |V | ≥ 1. This means that there exists h ∈ V , and that ∀i,∃hi ∈ Vi.1472

Since Vk[(x
min
k , ỹk)] ̸= ∅, there exists some h̃k ∈ Vk[(x

min
k , ỹk)] ̸= ∅.1473

We claim that y = (h1(x
min
1 ), ..., h̃k(x

min
k ), ..., hn(x

min
n )) satisfies the property.1474

Let h = (h1, ..., h̃k, ..., hn). Then we have h ∈ V y
xmin , since:1475

i) hi ∈ Vi, h̃k ∈ Vk implies h ∈ ×i∈[n]Vi = V1476

ii) h(xmin) = y.1477

And so, |V y
xmin | ≥ 1 ⇒ CC(V y

xmin , SX ∪
{
xmin

}
) ≥ 0, which means we meet the precondition1478

needed to use the induction hypothesis.1479

(⋄): For task k, We know that (SX ∪
{
xmin

}
)k is either Sk

X or Sk
X ∪

{
xmin
k

}
. In the latter case,1480

equality holds.1481

In the former case, we may use Lemma G.20 to get that equality also holds:1482

CC((Vk)
ỹk

xmin
k

, (SX ∪
{
xmin

}
)k) = CC((Vk)

ỹk

xmin
k

, Sk
X) = CC((Vk)

ỹk

xmin
k

, Sk
X ∪

{
xmin
k

}
).1483

1484
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H MISCELLANEOUS1485

H.1 COMPARISON OF REPRESENTATIONS1486

H.1.1 DATA-BASED GAME REPRESENTATION1487

We begin with defining a natural set of state representation, motivated by the definition of identifiability1488

for determining the termination condition.1489

Definition H.1. Given the set of labeled examples and their labels S, and the queried examples SX ,1490

classifier h ∈ H is said to be identifiable with respect to (S, SX), if (1) h is consistent with S; (2) for1491

all h′ ∈ H consistent with S,1492

h′(X \ SX) = h(X \ SX) =⇒ h′ = h

The above definition naturally motivates the following definition of effective version space:1493

Definition H.2. Given the set of labeled examples and their labels S, and the queried examples SX ,1494

define its induced effective version space as1495

F (S, SX) =
{
h ∈ H : h is identifiable with respect to (S, SX)

}
With this, it is natural to recursively define the learning game, taking the set of labeled examples and1496

their labels S, and the queried examples SX as the state representation.1497

f(S, SX) =



−∞ F (S, SX) = ∅
0, |F (S, SX)| = 1

minx∈X\SX
max

f(S ∪
{
(x,⊥)

}
, SX ∪ {x})

1 + f(S ∪
{
(x,+1)

}
, SX ∪ {x})

1 + f(S ∪
{
(x,−1)

}
, SX ∪ {x})

 , |F (S, SX)| ≥ 2,

Here, we use the base-case game payoffs to encode the labeler’s promise of identifiability. Non-1498

identifiability (F (S, SX) = ∅) leads to a terminal payoff of −∞. Identifiability constrains the labeler1499

to not provide arbitrary labels and “string along” the learner for as long as possible. As we will later1500

see, this constraint is not crucial, as the algorithm we develop is also robust to a labeler that does not1501

guarantee identifiability.1502

H.1.2 VERSION SPACE-BASED GAME REPRESENTATION1503

We now turn to the version space game representation, which we use throughout, and prove it is1504

correct.1505

Definition H.3. Given a labeled dataset S and a set of classifiers V , define version space V [S] =1506 {
h ∈ V : ∀(x, y) ∈ S ∧ y ̸=⊥, h(x) = y

}
as the subset of classifiers in V consistent with S.1507

Definition H.4. Given the set of labeled examples and their labels S, and the queried examples SX ,1508

classifier h ∈ H is said to be identifiable with respect to (S, SX) if:1509

• h is consistent with S, h ∈ H[S].1510

• for all other consistent h′ ∈ H[S]: h′(X \ SX) = h(X \ SX) =⇒ h′ = h, where for1511

brevity we denote h1(SX) = h2(SX) ⇐⇒ ∀x ∈ SX � h1(x) = h2(x).1512

Definition H.5. Given a set of classifiers V and a set of queried examples SX , define1513

E(V, SX) =
{
h ∈ V : ∀h′ ∈ V \ {h} : h′(X \ SX) ̸= h(X \ SX)

}
as the effective version space (E-VS) with respect to V and SX .1514

The following proposition relates the effective version space to the classical notion of version space:1515

Proposition H.6.
F (S, SX) = E(H[S], SX)

1516
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Proof.

h ∈ F (S, SX)⇔ h ∈ H[S] ∧ ∀h′ ∈ H[S], h′(X \ SX) = h(X \ SX) =⇒ h′ = h

⇔ h ∈ H[S] ∧ ∀h′ ∈ H[S], h′ ̸= h =⇒ h′(X \ SX) ̸= h(X \ SX)
(taking the contrapositive)

⇔ h ∈ E(H[S], SX)

1517

Thus, another potential state space representation is using the version space and the data that has been1518

queried. We may define the minimax game as follows, which corresponds to Protocol 4.1519

CC(V, SX) =


−∞ E(V, SX) = ∅
0, |E(V, SX)| = 1

minx∈X\SX
maxy∈{−1,+1,⊥}

(
1(y ̸=⊥) + CC(V [(x, y)], SX ∪ {x})

)
, |E(V, SX)| ≥ 2

The following structural lemma justifies that this is also a valid representation.1520

Lemma H.7. f(S, SX) = CC(H[S], SX)1521

Proof. We prove this by backward induction on SX .1522

Base case: SX = X . In this case, F (S,X ) = E(H[S],X ) has size 0 or 1; in both cases,1523

f(S, SX) = CC(H[S], SX) by their respective definitions in the bases cases.1524

Inductive case. Suppose f(S, SX) = CC(H[S], SX) holds for any S and any SX such that1525

|SX | ≥ j + 1. Now consider any S and any SX of size j.1526

If F (S, SX) = E(H[S], SX) has size 0 or 1, f(S, SX) = CC(H[S], SX) holds true.1527

Otherwise, |F (S, SX)| = |E(H[S], SX)| ≥ 2. By inductive hypothesis, for any x ∈ X \ SX :

f(S ∪
{
(x,⊥)

}
, SX ∪ {x}) = CC(H[S ∪

{
(x,⊥)

}
], SX ∪ {x})

f(S ∪
{
(x,+1)

}
, SX ∪ {x}) = CC(H[S ∪

{
(x,+1)

}
], SX ∪ {x})

f(S ∪
{
(x,−1)

}
, SX ∪ {x}) = CC(H[S ∪

{
(x,−1)

}
], SX ∪ {x})

Therefore, for any x:1528

max


f(S ∪

{
(x,⊥)

}
, SX ∪ {x})

1 + f(S ∪
{
(x,+1)

}
, SX ∪ {x})

1 + f(S ∪
{
(x,−1)

}
, SX ∪ {x})

 = max


CC(H[S ∪

{
(x,⊥)

}
], SX ∪ {x})

1 + CC(H[S ∪
{
(x,+1)

}
], SX ∪ {x})

1 + CC(H[S ∪
{
(x,−1)

}
], SX ∪ {x})


Taking minimum over x ∈ X \ SX , we also have f(S, SX) = CC(H[S], SX).1529

This completes the induction.1530

1531
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I ADDITIONAL RELATED WORKS1532

Abstaining Classifiers: Prior works have studied the task of learning a predictor with the ability to1533

abstain (Puchkin & Zhivotovskiy, 2021; Zhu & Nowak, 2022). Our settings differ in that we aim1534

to learn the true classifier that does not abstain. Rather, it is the labeler that can abstain during the1535

learning process to slow-down learning.1536

Cross space learning: One of our constructions is related to the cross space learning (Tao et al.,1537

2022) setup, where each sample is represented in multiple instance spaces. The key observation is1538

that a strategic labeler can force learning on the instance space with the highest sample complexity,1539

by abstaining on all other instance spaces.1540

Strategic Machine Learning: Strategic ML is a line of work concerned with agent manipulation1541

of inputs into the ML model (Hardt et al., 2016). Much of this topic has focused on inference-time1542

feature manipulation to influence the model output. And among this large body of work, there is a1543

subset that deal with strategic manipulation of labels. In these settings, there are multiple agents,1544

each of whom can (mis)reports their data point label to manipulate the final model trained on all of1545

their collective data (Perote & Perote-Pena, 2004; Dekel et al., 2010; Chen et al., 2018). This line of1546

work largely focuses on the linear-regression setting, under various notions of strategyproofness.1547

Our work differs from this body of work in considering, at training time (instead of at inference time),1548

how a single labeler can maximize the query complexity of a learner under general hypothesis classes,1549

which includes the linear hypothesis class.1550

Economics of Knowledge Transfer: We note that the idea of strategically slowing down the transfer1551

of knowledge is not a novel conception. It is a real strategy that people have been documented to use1552

in apprenticeships for example (Garicano & Rayo, 2017; Fudenberg & Rayo, 2019), spanning across1553

several industries such as law, entertainment and culinary arts. There are two reasons that motivate1554

the slowed transfer of expertise.1555

Firstly, as described in (Garicano & Rayo, 2017; Fudenberg & Rayo, 2019), before the apprentice1556

has learned everything and can graduate, he will be working for the teacher (or master as is often1557

used in apprenticeship parlance) and performing labor for cheap. Thus, this incentivizes the master to1558

slowly down training, so that the apprentice takes longer to graduate and the master can enjoy this1559

cheap labor for longer.1560

Secondly, the master can better protect the value of his expertise by slowing down the transfer of his1561

expertise. Overly fast transfer of the master’s know-how would graduate too many apprentices too1562

quickly, all of whom also have the same expertise and could thus reduce the value of the master’s1563

expertise.1564

In our setting, we consider the relationship between a human teacher (labeler) and a student (machine).1565

There is a similar incentive at play in that, while the learner has yet to learn h∗, the labeler is paid by1566

the learner for the training labels provided. But once h∗ is identified, the student has no need for the1567

teacher. And so, this incentivizes the labeler to slow down learning, in order to give and be paid for1568

as many labels as possible. One difference we note is that in this setting, the transfer of expertise has1569

more serious consequences in rendering the labeler’s expertise obsolete, which is not the case in the1570

apprenticeship setting.1571
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