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A HyperBand1

We present the whole algorithm for Hyperband in Algorithm 1, and you can refer to Li et al. [7] for2

more details.3

B Optimizers4

Notations. Given a vector of parameters θ ∈ Rd, we denote a sub-vector of its i-th layer’s parameters5

by θ(i). {αt}Tt=1 is a sequence of learning rates during the optimization procedure of a horizon6

T . {φt, ψt}Tt=1 represents a sequence of functions to calculate the first-order and second-order7

momentum of the gradient gt, which are mt and vt respectively at time step t. Different optimization8

algorithms are usually specified by the choice of φ(·) and ψ(·). {rt}Tt=1 is an additional sequence of9

adaptive terms to modify the magnitude of the learning rate in some methods. For algorithms only10

using the first-order momentum, µ is the , while β1 and β2 are coefficients to compute the running11

averages m and v. ε is a small scalar (e.g., 1× 10−8) used to prevent division by 0.12

Generic optimization framework. Based on, we further develop a thorough generic optimization13

framework including an extra adaptive term in Algorithm 2. The debiasing term used in the original14

version of Adam is ignored for simplicity. Note that for {αt}Tt=1, different learning rate scheduling15

strategies can be adopted and the choice of scheduler is also regarded as a tunable hyperparameter.16

Without loss of generality, in this paper, we only consider a constant value and a linear decay [10] in17

the following equation, introducing γ as a hyperparameter.18

αt =

{
α0, constant;
α0 − (1− γ)α0

t
T , linear decay.

With this generic framework, we can summarize several popular optimization methods by explicitly19

specifying mt, vt and rt in Table 1. It should be clarified that Lookahead is an exception of the20

generic framework. In fact it is more like a high-level mechanism, which can be incorporated with any21

other optimizer. However, as stated in Zhang et al. [11], this optimizer is robust to inner optimization22

algorithm, k, and αs in Algorithm 3, we still include Lookahead here with Adam as the base for23

a more convincing and comprehensive evaluation. We consider Lookahead as a special adaptive24

method, and tune the same hyperparamters for it as other adaptive optimziers.25

C Task description26

We make a concrete description of tasks selected for our optimizer evaluation protocol:27

Submitted to the 35th Conference on Neural Information Processing Systems (NeurIPS 2021) Track on Datasets
and Benchmarks. Do not distribute.



Algorithm 1 Hyperband
Input: R, η
Initialization: smax = blogη Rc , B = (smax + 1)R

1: for s ∈ {smax, smax − 1, . . . , 0} do
2: n = dBR

ηs

(s+1)e, r = Rη−s

3: // begin SuccessiveHalving with (n, r) inner loop
4: T = random_get_configuration(n)
5: for i ∈ {0, . . . , s} do
6: ni = bnη−ic, ri = rηi

7: L = {run_then_return_val_loss(t, ri): t ∈ T}
8: T = top_k(T, L, bni/ηc)
9: end for

10: end for
Return Hyperparameter configuration with the smallest loss seen so far

Algorithm 2 Generic framework of optimization methods
Input: parameter value θ1, learning rate with scheduling {αt}, sequence of functions {φt, ψt, χt}Tt=1
to compute mt, vt, and rt respectively.

1: for t = 1 to T do
2: gt = ∇ft(θt)
3: mt = φt(g1, · · · , gt)
4: vt = ψt(g1, · · · , gt)
5: rt = χt(θt,mt, vt)
6: θt+1 = θt − αtrtmt/

√
vt

7: end for

• Image classifcation. For this task, we adopt a ResNet-50 [5] model on CIFAR10 and CIFAR10028

with a batch size of 128 and the maximum epoch of 200 per trial.29

• VAE. We use a vanilla variational autoencoder in Kingma and Welling [6] with five convolutional30

and five deconvolutional layers with a latent space of dimension 128 on CelebA. There are no31

dropout layers. Trained with a batch size of 144.32

• GAN. We train SNGAN with the same network architecture and objective function with spectral33

normalization for CIFAR10 in Miyato et al. [8], and the batch size of the generator and the34

discriminator is 128 and 64 respectively.35

• Natural language processing. In this domain, we finetune RoBERTa-base on MRPC, one of the test36

suit in GLUE benchmark. For each optimizer, we set the maximal exploration budget to be 80037

epochs. The batch size is 16 sentences.38

• Graph learning. Among various graph learning problems, we choose node classification as semi-39

supervised classification. In GCN training, in there are multiple ways to deal with the neighborhood40

explosion of stochastic optimizers. We choose Cluster-GCN [4] as the backbone to handle neigh-41

borhood expansion and PPI as the dataset.42

• Reinforcement learning. We select Walker2d-v3 from OpenAI Gym ([3]) as our training environ-43

ment, and PPO ([9]), implemented by OpenAI SpinningUp ([1]), as the algorithm that required44

tuning. We use the same architectures for both action value network Q and the policy network π.45

We define 40,000 of environment interactions as one epoch, with a batch size of 4,000. The return46

we used is the highest average test return of an epoch during the training.47

D Implementation Details48

Implementation details of our experiments are provided in this section. Specifically, we give the49

unified search space for all hyperparamters and their default values in Table 2. Note that we tune the50

learning rate decay factor for image classification tasks when tuning every hyperparamter. For the51

task on MRPC, γ is tuned for all experiments. In other cases, we only tune original hyperparamters52

without a learning rate scheduler.53
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Table 1: A summary of popular optimization algorithms with different choices of mt, vt and rt.
mt vt rt

SGD(M) µmt−1 + gt 1 1
Adam β1mt−1 + (1− β1)gt β2vt−1 + (1− β2)g2t 1

RAdam β1mt−1 + (1− β1)gt β2vt−1 + (1− β2)g2t
√

(ρt−4)(ρt−2)ρ∞
(ρ∞−4)(ρ∞−2)ρt

Yogi β1mt−1 + (1− β1)gt vt−1 − (1− β2) sign(vt−1 − g2t )g2t 1
LARS µmt−1 + gt 1 ‖θ(i)t ‖/‖m

(i)
t ‖

LAMB β1mt−1 + (1− β1)gt β2vt−1 + (1− β2)g2t
‖θ(i)t ‖

‖m(i)
t /

√
v
(i)
t ‖

Lookahead* β1mt−1 + (1− β1)gt β2vt−1 + (1− β2)g2t 1

Algorithm 3 Lookahead Optimizer
Input: Initial parameters θ0, objective function f , synchronization period k, slow weights step size
αs, optimizer A

1: for t = 1, 2, . . . do
2: Synchronize parameters θ̂t,0 ← θt−1

3: for i = 1, 2, . . . , k do
4: Sample minibatch of data d ∈ D
5: θ̂t,i ← θ̂t,i−1 +A(L, θ̂t,i−1, d)
6: end for
7: Perform outer update θt ← θt−1 + αs(θ̂t,k − θt−1)
8: end for

Return Parameters θ

In addition, Hyperband parameter values for each task are listed in Table 3. These parameters are54

assigned based on properties of different tasks.

Table 2: Hyperparamter search space and default value
Hyperparamter Search space Default value

α0 Log-Uniform(−8, 1) ×
µ Uniform[0, 1] 0 for SGD and 0.9 for LARS

1− β1 Log-Uniform(−4, 0) 0.1
1− β2 Log-Uniform(−6, 0) 0.001
ε Log-Uniform(−8, 1) 1e-8
γ Log-Uniform(−4, 0) ×

55

For time cost of our evaluation protocols, it depends on how many budgets are available. Specifically,56

in our paper, the unit of time budget is one epoch, then the total time will be Bepoch ∗ Tepoch, where57

Bepoch is the total available budget and Tepoch is the running time for one epoch. There is no58

additional computational cost, i.e., running our protocol once takes the same time as running one59

hyperparameter search with Hyperband. In our experiment on CIFAR10, we roughly evaluated 20060

hyperparameter configurations in one Hyperband running, while the same time can only allow about61

50 configurations in random search.62

Moreover, we can further accelerate our evaluation protocol by resampling, shown in Algorithm63

4. The basic idea is that we keep a library of different hyperparameter settings. At the beginning,64

the library is empty. And in each repetition, we sample a number of configurations required by65

running Hyperband once. During the simulation of Hyperband, we just retrieve the value from the66

library if the desired epoch of current configuration is contained in the library. Otherwise, we run this67

configuration based on Hyperband, and store the piece of the trajectory to the library.68

E Additional results69

More detailed experimental results are reported in this section.70
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Table 3: Hyperband parameters for each task.

Task Hyperband parameter
R nc η

Image
Classification 200 172

η = 3
VAE 50 62
GAN 200 172

GLUE benchmark 10 200
Graph learning 200 200

RL 200 172

Algorithm 4 Alternative End-to-End Efficiency Evaluation Protocol
Input: A set of optimizers O = {o : o = (U ,Ω)}, task a ∈ A, search space F , library size S

1: for o ∈ O do
2: Sample S configurations from F , initialize the library with an empty list for each setting
3: for i = 1 to M do
4: Simulate Hyperband with o using configurations re-sampled from the library on a
5: if the desired accuracy is pre-computed in the library then
6: Retrieve the value directly
7: else
8: Training normally, and store values to the library
9: end if

10: Record the performance trajectory {Pt}Tt=1 explored by HyperBand
11: Calculate the peak performance and CPE by Eq. 1
12: end for
13: Average peak and CPE values over M repetitions for the optimizer o
14: end for
15: Evaluate optimizers according to their peak and CPE values

E.1 Impact of η71

Since there is an extra hyperparameter, the reduction factor η in Hyperband, we conduct an experiment72

with different values (η = 2, 3, 4, 5) to observe the potential impact of this additional hyperparameter73

on our evaluation. Specifically, we use Hyperband to tune the learning rate for three optimizers, SGD,74

Adam, and Lookahead on CIFAR10, and results are presented in Table 4. As we can see, although75

the change of η may lead to different CPE values, the relative ranking among three optimizers76

remains unchanged. Besides, they all achieve comparable peak performance at the end of training.77

Considering the efficiency of Hyperband, we choose η = 3 based on the convention in Li et al. [7] in78

all our experiments.79

Table 4: CPE on CIFAR10 with different η. The value in the round brackets is peak performance.

Optimizer CIFAR10 (%) ↑
η = 2 η = 3 η = 4 η = 5

Tune learning rate only:
SGD 88.63 (93.42) 88.87 (93.39) 88.45 (93.34) 87.97(93.73)
Adam 90.35 (93.24) 90.42 (93.65) 90.06 (93.26) 88.75 (93.23)

Lookahead 90.46 (93.53) 90.60 (93.60) 90.33 (93.40) 89.05 (93.62)

E.2 End-to-end training80

Table 5 shows peak performance for optimizers on each task. For GAN, we only conduct evaluation81

on optimizers tuning learning rate due to time limit, and present its CPE and peak performance in82

Table 6. There is also an end-to-end training curve for GAN on CIFAR10 in Figure 1. Figures for83

end-to-end training curves on the rest of tasks are shown in Figure 4 and 5.84
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Table 5: Peak performance during end-to-end training. The best one for each task is highlighted in
bold.

Optimizer CIFAR10 (%) ↑ CIFAR100 (%) ↑ CelebA ↓ MRPC (%) ↑ PPI ↑ Walker2d-v3 ↑
(classification) (classification) (VAE) (NLP) (GCN) (RL)

Tune learning rate only:
SGD 93.39 ± 0.12 73.68 ± 0.13 0.1351 ± 0.0003 71.05 ± 0.25 94.74 ± 2.7× 10−2 3589 ± 221
Adam 93.65 ± 0.13 71.51 ± 0.21 0.1326 ± 0.0001 84.90 ± 0.10 98.73 ± 5.9× 10−4 4735 ± 91

RAdam 93.93 ± 0.09 72.30 ± 0.09 0.1325 ± 0.0002 85.41 ± 1.45 98.70 ± 1.0× 10−3 5020 ± 112
Yogi 93.58 ± 0.03 73.48 ± 0.93 0.1334 ± 0.0002 70.19 ± 0.92 98.18 ± 9.0× 10−4 5013 ± 439

LARS 93.46 ± 0.01 73.53 ± 0.17 0.1332 ± 0.0001 68.97 ± 0.85 98.45 ± 4.7× 10−4 4073 ± 443
LAMB 93.39 ± 0.03 70.38 ± 0.08 0.1329 ± 0.0002 82.23 ± 0.78 98.46 ± 2.2× 10−4 4219 ± 191

Lookahead 93.60 ± 0.04 71.75 ± 0.68 0.1327 ± 0.0001 72.99 ± 0.61 98.63 ± 1.4× 10−3 5246 ± 666
Tune every hyperparameter:

SGD 93.47 ± 0.02 73.94 ± 0.06 0.1344 ± 0.0003 72.80 ± 1.58 98.64 ± 1.5× 10−3 3647 ± 129
Adam 92.58 ± 1.63 73.82 ± 0.25 0.1327 ± 0.0002 88.46 ± 0.66 98.93 ± 7.5× 10−4 4986 ± 404

RAdam 94.47 ± 0.24 73.50 ± 0.32 0.1326 ± 0.0001 88.78 ± 0.72 98.92 ± 6.0× 10−4 4886 ± 334
Yogi 93.75 ± 0.08 73.88 ± 0.25 0.1333 ± 0.0004 69.60 ± 1.20 98.85 ± 4.8× 10−4 4612 ± 370

LARS 94.22 ± 0.10 74.08 ± 0.04 0.1333 ± 0.0003 79.83 ± 6.50 98.88 ± 8.4× 10−4 3526 ± 312
LAMB 93.88 ± 0.32 71.31 ± 0.08 0.1332 ± 0.0002 87.80 ± 1.07 98.80 ± 1.0× 10−3 3654 ± 243

Lookahead 93.82 ± 0.18 72.90 ± 0.85 0.1330 ± 0.0005 86.15 ± 0.69 98.87 ± 1.9× 10−3 4614 ± 96

Table 6: CPE on GAN for end-to-end training. The value in the bracket is peak performance.

Optimizer GAN-CIFAR10↓
Tune learning rate only:

SGD 113.25 (50.08)
Adam 77.04 (25.14)

RAdam 73.85 (19.61)
Yogi 76.80 (25.36)

LARS 157.71 (73.82)
LAMB 68.47 (25.55)

Lookahead 65.61 (20.40)

Besides the general performance profile, we present a probabilistic version described in Barreto et al.85

[2] in Figure 2 to account for randomness. The probabilistic performance profile can be formulated86

as87

ρ̄o(τ) =
1

|A|
∑
a

P(r̄o,a ≤ τ), r̄o,a ∼ N (
µo,a
ba

,
σ2
o,a

b2a
), (1)

where µo,a and σo,a are the mean and standard deviation of CPE of the optimizer o on the task a88

respetively, and ba is just the best expectation of CPE on a among all optimizers. It can be seen in89

Figure 2 that the probabilistic performance profiles shows a similar trend to Figure 4 in the main90

paper.91

We also attach two end-to-end training trajectories on CIFAR10 with the error in Figure 3. Since it is92

hard to distinguish optimizers with the standard deviation added, we just instead report the std of93

CPE and peak performance.94

E.3 Data addition training95

We provide training curves for data-addition training on full MRPC and PPI dataset in Figure 6.96

E.4 Training time comparison97

In this part, we report training time for each optimizer of running one epoch on CIFAR100 in Table 7.98

As we can see, SGD runs faster than all other advanced optimizers. Besides, we plot the performance99

of different optimizers along with the training time in Figure 7. Here the unit is the running time100

for one epoch of SGD. The relative ranking of selected optimizers is consistent with that under the101

budget of training epochs.102
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Figure 1: End-to-end training curves for GAN on CIFAR10.
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Figure 2: Probabilistic performance profile of 7 optimizers in the range [1.0, 1.3].
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Figure 7: End-to-end training curves on CIFAR100 of different time budget units: epoch and training
time.
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Figure 4: End-to-end training curves on CIFAR10, CIFAR100, and CelebA.
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Figure 5: End-to-end training curves on MRPC, PPI, and Walker2d-v3.
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Figure 6: Data addition trainong on MRPC and PPI.
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